

SECTION A-A

- WNEN COPPER RPE IS USED, T RATNG is 0

MINESSTA MNNG \& MANUFACTVRNG CO.
(-3.0) UL PENETRATION DETAILS

(न1.0) $\frac{\text { RELOCATED SPRINKLER HEAD DETAIL }}{\text { Not To ScAIE }}$

GENERAL NOTES

9. contractor shall arrance for, obtan and bear the cost of necessary permits, bonos,

 23. The Contractor shall coooonnate work wh other trades in oreer to avoli connlucts.

 2. all work shall ee scheoule anv cleared throuch the prouect represenante.

LEGENDS，GENERAL NOTES AND ABBREVIATIONS

ABBREVIATIONS

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{DUCTWORK} \& \multicolumn{2}{|l|}{PIPING} \\
\hline \multicolumn{2}{|l|}{\(\boxtimes\) up \(\boxtimes\) ON SUPPIY OUCT（UP \＆Doown）} \& \multirow[t]{4}{*}{} \& Convenser water suply \\
\hline \(\square\) UP \(\square\) on \& ExAaust ouct（UP \＆dom） \& \& Convenser water return \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\square\) up \(\square\) on return ar ouct（up \＆oomm）}} \& \& chlled watr supply \\
\hline \& \& \& chlleo mater reven \\
\hline － \& \multirow[t]{3}{*}{celug diffusers} \& －co－ \& Convensatit line \\
\hline \multirow[t]{2}{*}{\%} \& \& －RL－ \& refrigerant louid \\
\hline \& \& －rs－ \& \({ }_{\text {Refregerant sucton }}^{\text {Rergerant }}\) \\
\hline \(\square \rightarrow\) \& \multirow[t]{2}{*}{Sie wall registre or grale
Return or exhaust celug grlue} \& RHG \& refrigerant hot tas \\
\hline \(\square \square\) \& \& －Hws \& Hot water supply \\
\hline \(\square\) \& Exhaust or return wall mid crile \& －нw－ \& hot watrr retu \\
\hline \(10 \times 8\) \& \multirow[t]{2}{*}{} \& － \& domestc mater \\
\hline \& \& \multirow[t]{2}{*}{} \& GATE VALVE \\
\hline \(\square\) \& Exising duct to reman \& \& \\
\hline \(\stackrel{\square}{2}\) \& （SNSLE LINE） \& \[
\mathrm{O}_{\mathrm{N}}^{\infty}
\] \& ball valve \\
\hline £－－－才 \& EXISTING DUCT TO BE REMOVED \& － \& plug valve \\
\hline \({ }^{z---z}\) \& \multirow[t]{2}{*}{\begin{tabular}{l}
FLEXIBLE DUCTWORK（INSULATED） \\
（SINGLE LINE）
\end{tabular}} \& －离－ \& pressure reuacmg valve \\
\hline \(\xrightarrow{\sim}\) \& \& 一凶 \& \({ }_{2}\)－war control value \\
\hline \(\square\) \& SPN－N Fitinc \& 一＊ \& 3 －war Mooulating control \\
\hline \& （SNCLE LINE） \& \multirow[t]{2}{*}{¢

\uparrow} \& Safety or pressure relef valve

\hline \square \& \multirow[t]{2}{*}{dUCT SIZE TRANSITION（CONCENTRIC） （SINGLE LINE）} \& \& manal ar vent

\hline \longleftrightarrow \& \& \multirow[t]{2}{*}{$$
\stackrel{\stackrel{4}{\|}}{\square}
$$} \& butteral valve

\hline \square \& \multirow[t]{2}{*}{DUCT SIZE TRANSITION（ECCENTRIC） （SINGLE LINE）} \& \& ноse

\hline \longleftarrow \& \& $$
\overline{\text { s- }}
$$ \& ancle gloee valve

\hline \square \& \multirow[t]{2}{*}{DUCT TRANSITION（RECTANGULAR TO ROUND） （SINGLE LINE）} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& \text { 一离 } \\
& \text { 离 }
\end{aligned}
$$} \& motor operateo gate valve

\hline \longmapsto \& \& \& motor oferateo cloes valve

\hline \square \& ACoustcally uneo duct \& \& test plug（pressure／temerature）

\hline 네료II \& WCLINED RISE，w N IRECTON of AR flow \& $\xrightarrow{\text { 本 }}$ \& OUTSISE SCREW \＆Yoke（0 $\mathrm{s} \times$ r）

\hline \& \multirow[t]{2}{*}{INCLINED DROP，IN DIRECTION OF AIR FLOW flexble connection} \& \multirow[t]{2}{*}{\cdots} \& Drecton of flow

\hline $\square 11$ \& \& \& ANCHOR

\hline \square \& Louver \& \square \& ECCEENTRCC Revucer

\hline \square \& manval volume danmer \& － \& Top comection， 45 OR 90 deg．

\hline \square \& free damer \& \multirow[t]{2}{*}{} \& BOTTOM CONNECTION， 45 OR 90 DEG．

\hline \bigcirc \& swoke damer \& \& CAPPEO OUILET

\hline $\stackrel{8}{\square}$ \& Fre／Smoke damper \& \multirow[t]{2}{*}{\square} \& RSEE OR ORop N P PPE

\hline Om \& Smoke detecor \& \& UnON

\hline － \& OUCT HEATER \& \multirow[t]{2}{*}{$\begin{array}{r}1 \\ \substack{1 \\ \hline \\ \hline \\ \hline \\ \hline} \\ \hline\end{array}$} \& ${ }_{\text {Straner }}^{\text {THERMOU ETER }}$

\hline 5 \& VANED ELBOW（PROVIDE ALL SQUARE \& \& Pressure cage

\hline \& \& － \& WATER FLOW MEASURING DEVICE

\hline 0 \& Vaned elibow（Short ranus） \& \&

\hline 5 \& standaro radus eliow \& \&

\hline 目 \& \& \&

\hline \& \multirow[t]{2}{*}{thermostat／temperature sensor HUMIDISTAT／HUMIDITY SENSOR} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{DRAWING SYMBOLS}}

\hline $\stackrel{\oplus}{*}$ \& \& \&

\hline ＊ \& UNoERCUT（1＂u．o．n．） \& \multicolumn{2}{|l|}{2－Detal numer}

\hline \& AR DEVICE TYPE \& \multicolumn{2}{|l|}{FP5－DRAWING NUMBER WHERE DRAWN}

\hline 区 \& 4 －way ar fow \& \& On Letiter ming ind

\hline 区 \& 3 －way AR fow \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}}

\hline 区 \& ${ }^{2}$－way AR fow \& \&

\hline 囚 \& \multirow[t]{2}{*}{| 1－WAY AIR FLOW |
| :--- |
| SMOKE EXHAUST GRILLE |} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}}

\hline 回 \& \& \&

\hline
\end{tabular}

GENERAL NOTES

 3．OUCT DIMENSINS SHOWN ON THE DRAWMNS ARE CLEAR NSDDE AR PASSAGE OMENSIONS．
4．PRovve SPN－N Fitincs at all fexxble ouct runouts to diffusers mit Ar extractor and
5．MaXmum Lengit of flexile ouct shall be $6^{\prime}-0^{\prime \prime}$

 i9．Sise achinectural refiected celing plan for exact locaton of all ar dences locatio in
20．SEE ELECTRCCAL DRAMNGS FOR ELECTRCAL CHARACCTRRSTCSS OF MECHANCAL EQUPMENT
 22．PROODE LOW LEAKAGE MOTORZED DAMPERS IN ALL OUTSDE AR OUCTS．
23．PRovoe oran p－traps in the convensate lins at all air handung unis．

 30．THE CONTRACTOR SHALL COORONATE WORK MTH OTHER TRAOES IN ORDER To AVOD CONFLCTS． 31．PRovore balancing damper in Each branch connectow．

NOTE：

GRILLE, REGISTER AND DIFFUSER SCHEDULE											
	Pattern	$\underbrace{\text { SEEK }}_{\text {Skek }}$	${ }_{\substack{\text { mooute } \\ \text { SIE }}}$	$\underset{\substack{\text { SRRME } \\ \text { STME }}}{\substack{\text { cter }}}$	materal	FmsH	${ }_{\substack{\text { cfan } \\ \text { RAMGE }}}$	Accessoris	MANUFACTURER	Mooel	remarks
s-1	4 war	$6^{\prime \prime}{ }^{\circ}$	${ }_{24 \times 24}$	taar	alum	wnle	0-120	1	Trus	PAS-AA	2
s-2	4 war	$8{ }^{\circ \prime}$	24×24	tatr	alum	wHITE	105-230	1	Trus	PAS-AA	2
s-3	4 war	$10^{\circ 6}$	24×24	твав	alum	wHITE	165-415	1	тTvs	PAS-AA	2
s-4	4 war	${ }^{12 *}$	24×24	твав	alum	WHIE	${ }^{240-525}$	1	mus	PAS-AA	2
s-5	4 war	14^{46}	${ }^{24 \times 24}$	твав	Alum	wHITE	${ }^{320-740}$	1	тrus	PAS-AA	2
s-6	D8L ofl	10x12	12×14	surf	alum	wHITE	216-504	1	Trus	${ }^{300 \%}$	2.7
s-7	08L ofl	12×12	14×14	surf	alum	wHIE	${ }^{264-6616}$	1	Trus	${ }^{300 \%}$	2.7
E-1	35	12×8	13×9	SurF	ALUM	wHIE	0-400	1	тTus	350 L	2.3
$E / 5-1$	EE6/tBar	${ }_{6 \times 6}$	24×24	Surf	alum	WHIE	0-120	1	Trus	50\%NT	2.4
E/S-2	EEG/tBar	14×6	24×24	SurF	alum	wHIE	105-230	1	Trus	50\%NT	2.5
E/S-3	E66/TBAR	${ }^{12 \times 12}$	24×24	SurF	alum	wHIE	${ }^{240-525}$	1	Trus	50fnt	2.6
E/S-4	E06//UVRF.	6x6	8×8	SurF	alum	wHIE	0-152	1	Trus	50 F	2,4
R-1	Perf	$8^{\prime \prime}$	24×24	tBaR	alum	wHIE	0-240	1	Trus	Par-AA	2
R-2	PerF	10\%	${ }^{24 \times 24}$	taar	alum	wnle	165-430	1	тTus	Par-AA	2
R-3	PerF	$1{ }^{120}$	24×24	TBAR	ALUM	${ }^{\text {wnIE }}$	235-750	1	Trus	PAR-AA	2
R-4	PERF	14°	24×24	tвar	alum	wHITE	320-1050	1	trus	PAR-AA	2

HVAC LOAD CALCULATIONS SUMMARY		
	zone 1-ANUA 1	ZONE 2-AHU42, 3
SIZN © METHOO	CARREREE20II	CARREERE201
AREA (S, FEET)	${ }_{56525 \%}$	1916 SF
Total coolne remurb w	${ }^{174.3}$	${ }^{273}$
OUTDOOR DRY YULE USED	${ }^{93}$	${ }^{93}$
OUTDOor Wer tuub useo	${ }^{79}$	${ }^{79}$
RELATVE Humblry	${ }^{48}$	50
	${ }^{75}$	${ }^{75}$
TOTA HEATN EREOURED W	${ }^{32}$	。
Total Lensile Ean (erl	${ }^{122.7}$	256.3
total Latent Gan ment	${ }^{516}$	${ }^{20,7}$
	00231	00027

Reference: 503.2 SIING, 2010 FLORDA BULLDNG CODE - ENERG

OUTDOOR AIR LOAD CALCULATIONS

$$
\begin{aligned}
& \text { FIC Thale } 003.3 \text { and Astrine sit } 622010
\end{aligned}
$$

Sevencee of operations

(14.0) $\frac{\text { EXISTING SF-4 }}{\text { NOT TO SCAIE }}$ TO REMAIN DETAIL

CONTROL POINT ABBREVIATION LEGEND	
${ }^{\circ}$	oigtal nput
-	digital outut
${ }^{\text {A }}$	analog meut
${ }^{\text {a }}$	analog outut
s/s	stapt/stop
vod	varable freuencr drve
crws	спHLED MATER Supplr
ctwr	chlled mater return
T	temeratioge
н	нumorir
c	co_{2}
sp	statc Presure
fs	flow smich
${ }^{\text {Lat }}$	Leatug alr temerature
s	Starter
(2)	Smoke defector
s	sucton rempreant line
\llcorner	Luvio refrigrant line

（1．4．AIR HANDLING UNIT COIL PIPING WITH AUTOMATC FLOW CONTROL VALVE

notes

 oferatow：

（ ${ }^{2}$ ． 1 FIRE／SMOKE DAMPER DETAIL
（24．1）$\frac{\text { FIRE／SMM }}{\text { Not To scale }}$

（M．1）$\frac{\text { REFRIGERANT PIPING DETAIL }}{\text { Not To SCALE }}$

BRANCH DLAN VIEW TAKE－OFF

AIR SPLIT TYPE DUCT TAKE－OFF
（M．1）SUPPLY DUCT TAKE－OFFS

ABBREVIATIONS，LEGENDS AND GENERAL NOTES

```
ABBREVIATIONS
```


SYMBOLS	
\rightarrow－	Valve－Sle courract segricatons for Tpe，
－凶－	gate valve
－	gloge valve
一边－	presure regucmg valve
一本－	osar valve
\cdots	Check valve
（1）－	back water valve
柰本	sack flow preveniter
－	unow
\｜－	butitrriv valve
\rightarrow－	ball valve
\square	gas cock
\square	Straner
un	Exxansoon Jont
－	grao cleanout N －Line
\checkmark	concentric revucr
	ECCENTRCC Reouctr
	Prpe anchor
$\stackrel{+}{\square}$	flow orecton
\square^{\wedge}	hammer arestor（pol stz mocateo）
－	temerature galue
${ }^{\text {s－}}$	Safeti or pressure relief valve
－	ancle cloee value
${ }^{4}$	manual ar vent
\cdots	cleanout exposso
\bigcirc	floor cleanout
\triangle	Grade cleanout enoline
	Capeed ourlet
	VALVE N N RISER
\triangle－	
	P－treap
\rightarrow	hose aibe w／vacuum breaker
—均	wall hrorant w／vacuum brakkr
䀏	floor dran
－	Roof dran
\rightarrow	wall cleanout

\section*{PIPING AND CONNECTIONS

DRAWING SYMBOLS

Q．Pont of INTEFFACE EETMEEN NEW \＆ExSTING P．o．c． $\stackrel{\text { P．O．C }}{\otimes}$ Ponti of demoltion f．o．D．
－pont of Niteracace betwen contractors
vall cleanout

GENERAL NOTES

Make such offsis and deynatons from mork show on the drawncs，as may be

12．PROVOE DEELECREC UNONS AT ALL CONNETTONS BEEWEN IISSMLAR PPNGG METALS．
13．Fill veriry all exsting ppe size pror to nstalatioy
（2）

 TO THE OWERCOUN

19．Thin cinicraction shall cooronnate work mit other traoes in oroer to avoio

21．COMTRACTOR SHALI PROMDE COT SHEETS OF MAOOR EOUPMENT AT TME OF PERMT
2．fire siop ano seal all pring pene rations as nocicaie on the detals．

