

May 21, 2013

TO: All Interested Bidders

SUBJECT: Invitation for Bids #13-0773CD

US 301 @ Fort Hamer Road Intersection Improvements

ADDENDUM #3

Bidders are hereby notified that this Addendum shall be acknowledged on page <u>00300-1</u> of the Bid Form and made a part of the above named bidding and contract documents. Bids submitted without acknowledgment of the Addendum will be considered incomplete.

The following items are issued to add to, modify, and clarify the bid and contract documents. These items shall have the same force and effect as the original bidding and contract documents, and cost involved shall be included in the bid prices. Bids to be submitted on the specified bid date, shall conform to the additions and revisions listed herein.

- 1. **ADD** the Limited Phase II Environmental Site Assessment report for the Fort Hamer Road & US 301 Intersection Improvement Project dated November 2010 that is attached to this Addendum #3 to the Bid Documents.
- 2. **DELETE** the Tree Removal Permit paragraph on page 18 of the Contract Documents.
- 3. **CLARIFICATION** of Well Abandonment listed in the Technical Special Provisions:

There are a total of nine (9) wells to be abandoned: six (6) monitoing wells (MW-4R,MW-6R, MW-9, MW-20, MW-22, MW-23), one (1) deep monitoring well (DW-1), and two (2) potable water wells. Please refer to the well exhibits that are attached to this Addendum #3 for well locations and depth information.

4. **CLARIFICATION** of Contaminated Site Activity and Well Abondonment permit requrements listed in the Technical Special Provisions:

Any NPDES concerns need to be routed to 813-632-7600, Jorge Perez at extension 312 or Cindy Zhang-Torres at extension 410.

For abandoning water wells, Contractors need to follow the instructions in the permit application to abandon water wells: State of Florida Permit Application to Construct, Repair, Modify, or Abandon a Well (LEG-R.040.01 (June 2010) 40D-3.101(1), F.A.C.). They can obtain the permit application at the following SWFWMD web address:

http://www.swfwmd.state.fl.us/permits/wellconstruction/

Financial Management Department -Purchasing Division 1112 Manatee Avenue West, Suite 803, Bradenton, FL 34205 PHONE: 941.749.3014 * FAX: 941.749.3034

www.mvmanatee.org

5. **ADD** the following **CRUSHED CONCRETE ARTICLE** to the Special Provisions of the Contract Documents:

CRUSHED CONCRETE BASE (OPTIONAL SUB BASE FOR COUNTY ROW ONLY)

Crushed Concrete Base shall follow FDOT Standard Specifications 2007 (rev 8-07) except that the Lime Rock Bearing Ratio (LBR) shall be minimum 150. The layer coefficient of 0.18 with LBR minimum150 is allowed to calculate the base thickness.

Only FDOT certified piles are acceptable to this project. The producing process certified by FDOT without the actual pile certified is not considered solid enough for the acceptance of the material. The Contractor shall send the Engineer the delivery tickets with FDOT certified pile number, pile location, project name and manufacturer's contact information shown.

Additional tests and pile inspections will be required for the quality control and the Contractor will be responsible for the cost of the initial ten tests and any re-tests when needed. The material will be rejected by the County if the initial test fails. The rejected material shall be completely removed from the project site.

- 1) Regarding structural number on Crushed Concrete Base, Manatee County to approve SN0.18 if following criteria is met and maintained:
 - A) Limerock Bearing Ratio value of 150 or greater 10" compacted thickness in place.
 - B) Gradation conforms to FDOT Specifications 2007 (rev 8-07).
 - C) Deleterious materials conform to FDOT Specifications 2007 (rev 8-07).
 - D) Delivery ticket indicates FDOT approved source, actual lot allocated to a particular project.
 - E) Piles or lots to be inspected by Manatee County representative prior to acceptance.
- 2) Regarding Limerock Bearing Ratio value:
 - A) No Limerock Bearing Ratio value less than 150, with no under tolerance.
- 3) Regarding source approval:
 - A) FDOT approved source, allocated lot sufficient to serve project's needs, delivery tickets stating FDOT approved source, project name, FDOT preapproved lot or pile number.
- 4) Regarding deleterious materials:
 - A) Deleterious material content in addition to the FDOT Specifications2007 (rev 8-07) should state that no construction debris such as Styrofoam insulation, telephone wire, lumber, shingles, aluminum window or door frames etc., or household trash ie: bottles, cans, paper goods etc. is acceptable.

CRUSHED CONCRETE BASE (Continued)

- 5) Material source inspection:
 - A) Prior to acceptance of base product, a representative of Manatee County will visit the Producer's location and obtain a sample of the proposed base for the specified project. In addition to sampling, the pile will be visually inspected for deleterious materials, substantial segregation, or any other undesirable characteristics. The pile shall have a traceable identification by pile number or lot number and an accurate quality assessment.
- 6) Import and placement of base product:
 - A) During import of base product, a County Inspector or duly designated representative of the county will be onsite monitoring incoming loads, making visual assessments of the product and checking load tickets for verification of materials.
- 7) Import and placement of base product:
- A) After spreading out, prior to compacting, samples of the base product will be obtained by Manatee County approved testing lab, every 500 LF staggering right, left, center of the roadway for Limerock Bearing Ratio, gradation and deleterious material testing.
- 8) Rejection of materials:
- A) Material not meeting above requirements will be subject to rejection and be removed from the project site. Any three (3) concurrent rejections will require immediate shut down of imported material and require review and remedies prior to restart.
- 9) Compaction of material:
 - A) In place material should be a minimum of 10" in compacted thickness and achieve 98% of AASHTO T-180 compaction.
- 6. **CHANGE** Article E.5, Dewatering System Operation, on page 17-7 of the Technical Special Provisions to read as follows:
 - Payment for the dewatering system operation including incidental work will be based on the Day price for the Dewatering System Operation Bid Item # 64.
- 7. **CHANGE** Article TSP-2.B, Basis of Payment, on page 17-8 of the Technical Special Provisions to read as follows:
 - The basis of payment and method of measurement for well abandonment shall be based on the Day price for the Well Abandonment Bid Item #67.

- 8. **DELETE** Sheet Numbers 1,18,34,51,54,71 of the Plan Set and **INSERT** the revised Sheet Numbers 1,18,34,51,54,71 of the Plan Set that are atteched to this Addendum #3.
- 9. **DELETE** Bid Form pages 00300-2 thru 00300-11 and **INSERT** the REVISED Bid Form pages 00300-2 thru 00300-11 that are attached to this Addendum #3.

The following questions have been asked regarding this IFB:

QUESTION #1: Reference specification section SPECIAL TERMS AND CONDITIONS, page 14, POST CONSTRUCTION STORM PIPE TESTING, this paragraph speaks only to televising the newly constructed storm pipe and no mention of laser profiling as the F.D.O.T. specifications require, please confirm that we do not have to laser profile the pipe.

RESPONSE #1: Laser profiling of all storm sewer pipe will be required per section 430-4.8 of the specifications.

QUESTION #2: Reference specification section SPECIAL PROVISIONS, page 5, GUARANTEE, here we are told the guarantee period is 12 (twelve) months, in the Information For Bidders section 00030, page 00030-3, par. C.07, WARRANTY AND GUARANTEE PROVISIONS, the guarantee period is for 3 (three) years, which is correct? It makes a difference if we do not have to purchase an additional 2 (two) year warranty bond.

RESPONSE #2: The minimum Warranty period shall be three (3) years.

QUESTION #3: The bid item for Turnout Construction; 727 SY – a review of the plans indicates some of these turnouts will be concrete and some are asphalt. Can a bid item & quantity be determined for concrete locations allowing for consistency in the materials used in case there is a change in quantity of this item?

RESPONSE #3: The Pay Item No. 524-3 for Sidewalk Concrete, 6" Thick is the pay item for concrete driveways. The Pay Item 286-1 for Turnout Construction is the pay item for the asphalt driveway turnouts.

QUESTION #4: Also in regards to the Turnout Construction; please confirm that the proposed thickness is as per FDOT std specification 515, sheet 6.

RESPONSE #4: The Turnout Construction for asphalt driveways will be as indicated in FDOT Design Standards Index 515, Sheets 5 and 6.

QUESTION #5: Sheet 39 shows the 60th Street East and Doris Road connections to US 301 will be removed and indicate a cul-de-sac will be constructed. A review of sheet 19 and 72 however, show the US 301 connections are removed, but a Y-type turnaround is proposed for 60th Street E and a Dead End barricade for Doris Road. Please clarify what is required at these two locations and provide a typical section for roadway construction.

RESPONSE #5: The pavement design for the Ft. Hamer Road is to be used for the cul-de-sacs. Sheet 39 is the soil survey sheet from the soil report and is not to be used to construct the roadway improvements. Sheet 19 (Plan & Profile) and Sheet 72 (S&PM) are consistent with each other and will be used to control the roadway construction.

IFB #13-0773CD ADDENDUM #3 PAGE 5

QUESTION #6: A review of the FDOT driveway permit does not state there are any lane closure restrictions on US 301. Can the County clarify if the work on US 301 can occur during the daytime or what lane restrictions will be enforced during construction?

<u>RESPONSE #6:</u> The Plan sheets have been updated to indicate the lane closure restrictions along US301- see item #6 of Addendum #3 above.

QUESTION #7: The Soils report indicates that organic soil was encountered at Station 14+00, 30' RT and Station 22+00, 30' LT @ 4-5' depth. What are the expected limits (width, length and depth) of the subsoil excavation that calculate to the 200 cy bid item quantity shown?

RESPONSE #7: The limits will be determined in the field and payment for this item will be based on field measurements.

QUESTION #8: For the Remediation of Soil items; please provide the limits and calculations for the Soil excavation (1000 cy) and Impacted soil (75 tn).

RESPONSE #8: The limits will be determined in the field and payment for this item will be based on field measurements.

QUESTION #9: Are the existing monitoring wells to be left in place; ie protected during the excavation work?

RESPONSE #9: See item #3 above for monitoring wells that the Contractor is to abandon. All other monitoring wells on private property are to remain undisturbed.

QUESTION #10: For the relocated light poles proposed along US 301; is the contractor to maintain the lights operational at all times (via temporary lighting) or can the lights be taken out of service during the removal and relocation period?

RESPONSE #10: The FDOT has indicated that the existing lighting along US 301 is to be maintained so existing lights shall not be removed until new or temporary lights are functioning.

QUESTION #11: It was stated during the pre-bid meeting that the County will be completing all of the structure demolition shown on the roadway plans prior to this contract start. Does this include existing drainfields, septic tanks and fencing/gates? Does it also include concrete sidewalks, driveways and parking areas?

RESPONSE #11: The County hired demolition contractor will be removing the following items from three properties as follows: 12104 US 301 (Herrera Property)- Demo contractor to remove garage structure, truck body, existing tires, poultry barn with concrete slab, and concrete slab South of the building, Fill to grade and sod only in the bldg footprint, and remove all manmade trash and debris. 5751 Ft Hamer Road (Marsh Property)- Demo contractor to remove house, pool and cage, wooden shed to the South of the house, concrete drive, septic tank and drain field. 5851 Ft Hamer Road (Marsh Property)- Demo Contractor will remove the drain field.

IFB #13-0773CD ADDENDUM #3 PAGE 6

QUESTION #12: Have the affected utility owners been advised of the project and if so, are there utility relocation schedules that can be provided to the proposed bidders?

RESPONSE #12: The utility coordination was performed for the project. The dispositions of existing and proposed utility relocations are reflected in the Utility Adjustment Sheets. The contractor will take over utility coordination during construction per Special Provisions. The utility companies do not provide Manatee County relocation schedules so there are not any available.

QUESTION #13: Sheet 16; it appears that the cross hatch designating milling and resurfacing was omitted from the Westbound lanes of US 301. Please confirm that this section of US 301 is to be milled and resurfaced as per the typical section.

RESPONSE #13: The Contractors shall construct US 301 improvements as shown on Sheets 18, 19, 20 and 21. Not as shown on Sheet 16 which is for the Ft. Hamer Road improvements.

QUESTION #14: Are "all" of the Oak Trees shown in the Right of Way to be removed or it is the County's intent to try and save some of the trees which will not be affected by the Construction.

RESPONSE #14: Unless otherwise indicated on plans, all trees (including oaks) shown in the Right of Way are to be removed. Plan and profile sheets show trees with trunk diameter greater than 4-inches. Trees and brush with trunk diameters less than 4-inches and within the Right of Way shall also be removed.

QUESTION #15: Technical Special Provisions TSP 1-D-3 mentions that the soils to be removed offsite are to be taken to a thermal treatment facility. May a properly licensed landfill be an acceptable alternative to the thermal treatment facility? Considering the dumping fees associated with a treatment facility, a landfill would be very economical.

RESPONSE #15: The contaminated soil can be disposed at any facility that has been approved by DEP to receive contaminated soil.

QUESTION #16: Some questions on the bid docs: 1. After the site visit, clarification is needed as to what will be left on-site after the demolition? a. Which structures will be left standing? b. Any septic systems? c. Wells?

RESPONSE #16: See response to Question #11 above for items that will be demolished by the County's demolition contractor.

QUESTION #17: As to the plans: a. Sheet 5 – Existing structure details: i. Grate inlets 11, 12 and 13 and pipes 17, 18 and 19 are said to be removed "by others".

RESPONSE #17: Survey was completed prior to US-301 project by FDOT, which was to remove these pipes and structures. See attached image for pipes and structures to be removed (marked in red). As final disposition of pipes and structures was not verified by survey, Contractor shall field verify that they have been removed.

IFB #13-0773CD ADDENDUM #3 PAGE 7

QUESTION #18: 1. Part of demolition? ii. Existing pipes, sht 5 – can't find #14, #15, #16?

RESPONSE #18: No, existing pipes are north of construction limits on Ft. Hamer Road and are to remain.

QUESTION #19: 1. Part of demolition? iii. Existing structures, sht 5 - #806 – remove structure P-5? Calls for plug?

RESPONSE #19: Yes, P-5 inlet # 806 shall be removed. The pipe shall be plugged and filled with flowable fill.

END OF ADDENDUM #3

Bids will be received at Manatee County Purchasing, 1112 Manatee Avenue West, Bradenton, Florida 34205 until **Wednesday**, **May 29, 2013 at 3:00 PM**.

Sincerely,

Melissa M. Wendel, CPPO

Purchasing Official

(Submit in Triplicate) Section 00300

PAY ITEM NO.	FDOT ITEM NUMBER	DESCRIPTION	UNITS	QTY.	BID PRICE PER UNIT (\$)	TOTAL BID PRICE (\$)
		ROADWAY				
1	101-1	Mobilization	LS	1	\$	\$
2	102-1	Maintenance of Traffic	LS	1	\$	\$
3	102-3	Commercial Material for Driveway Maintenance	CY	100	\$	\$
4	104-10-3	Sediment Barrier	LF	5,823	\$	\$
5	104-11	Floating Turbidity Barrier	LF	101	\$	\$
6	104-15	Soil Tracking Prevention Device	EA	2	\$	\$
7	104-18	Inlet Protection System	EA	40	\$	\$
8	107-1	Litter Removal And Disposal (calculate using performance sod area times project duration in days divided by 30 days)	AC	14.0	\$	\$
9	107-2	Mowing (calculate using performance sod area times project duration in days divided by 30 days)	AC	4.3	\$	\$
10	110-1-1	Clearing & Grubbing (9.5 Ac)	LS	1	\$	\$
11	110-4	Removal of Existing Concrete Pavement	SY	1,529	\$	\$
12	110-7-1	Mailbox	EA	5	\$	\$
13	120-1	Regular Excavation	CY	8,678	\$	\$
14	120-4	Subsoil Excavation	CY	200	\$	\$
15	120-6	Embankment	CY	7,538	\$	\$
16	121-70	Flowable Fill (Contigency)	CY	10	\$	\$
17	160-4	Type B Stabilization	SY	14,538	\$	\$
18	162-1-11	Prepared Soil Layer, 6"	SY	25,721	\$	\$
19	285-701	Optional Base, Base Group 1	SY	485	\$	\$
20	285-709	Optional Base, Base Group 9	SY	12,397	\$	\$
21	286-1	Turnout Construction	SY	727	\$	\$
22	327-70-6	Milling Exist Asph Pavt, 1 1/2" Avg Depth	SY	11,947	\$	\$
23	334-1-13	Superpave Asphaltic Conc, Traffic C (1-1/2")	TN	512	\$	\$
24	334-1-13	Superpave Asphaltic Conc, Traffic C (3")	TN	978	\$	\$

Bidder Name:	
Authorized Signature:	

(Submit in Triplicate) Section 00300

PAY ITEM	FDOT ITEM	DESCRIPTION	UNITS	QTY.	BID PRICE PER	TOTAL BID PRICE
NO.	NUMBER				UNIT (\$)	(\$)
25	337-7-33	Asphalt Concrete Friction Course, Traffic C, FC-12.5, Rubber (1.5")	TN	2,060	\$	\$
26	400-2-2	Concrete Class II, Endwalls	CY	6.9	\$	\$
27	425-1201	Inlets, Curb, Type 9, <10'	EA	1	\$	\$
28	425-1351	Inlets, Curb, Type P-5, <10'	EA	12	\$	\$
29	425-1361	Inlets, Curb, Type P-6, <10'	EA	5	\$	\$
30	425-1511	Inlets, Dt Bot, Type B, <10'	EA	1	\$	\$
31	425-1521	Inlets, Dt Bot, Type C, <10'	EA	1	\$	\$
32	425-1541	Inlets, Dt Bot, Type D, <10'	EA	2	\$	\$
33	425-1543	Inlets, Dt Bot, Type D, J Bot, <10'	EA	5	\$	\$
34	425-1579	Inlets, Ditch Bottom, Type G, Modify	EA	1	\$	\$
35	425-2-43	Manholes, P-7, Partial, <10'	EA	1	\$	\$
36	425-2-61	Manholes, P-8, <10'	EA	6	\$	\$
37	425-2-71	Manholes, J-7, <10'	EA	1	\$	\$
38	425-2-93	Manholes, J-8, Partial	EA	2	\$	\$
39	425-11	Modify Drainage Structure	EA	1	\$	\$
40	430-174- 118	Pipe Culvert, Optional Material, Round, 18" SD	LF	94	\$	\$
41	430-174- 230	Pipe Culvert, Optional Material, Other - Ellip/Arch, 30" SD (24"x38")	LF	47	\$	\$
42	430-175- 115	Pipe Culvert, Optional Material, Round, 15" S/CD	LF	97	\$	\$
43	430-175- 118	Pipe Culvert, Optional Material, Round, 18" S/CD	LF	694	\$	\$
44	430-175- 124	Pipe Culvert, Optional Material, Round, 24" S/CD	LF		\$	\$
45	430-175- 130	Pipe Culvert, Optional Material, Round, 30" S/CD	LF	59	\$	\$
46	430-175- 230	Pipe Culvert, Optional Material, Other - Ellip/Arch, 30" S/CD (24"x38")	LF	244	\$	\$
47	430-175- 236	Pipe Culvert, Optional Material, Other - Ellip/Arch, 36" S/CD (29"x45")	LF	435	\$	\$
48	430-175- 242	Pipe Culvert, Optional Material, Other - Ellip/Arch, 42" S/CD (34"x53")	LF	471	\$	\$
49	430-982-	Mitered End Sect, Optional Round, 30"	EA	1	\$	\$
50	133 430-984-	CD Mitered End Sect, Optional Round, 18"	EA	5	\$	\$
	125	SD				

Bidder Name:	
Authorized Signature:	

(Submit in Triplicate) Section 00300

PAY ITEM NO.	FDOT ITEM NUMBER	DESCRIPTION	UNITS	QTY.	BID PRICE PER UNIT (\$)	TOTAL BID PRICE (\$)
51	430-984- 633	Mitered End Sect, Optional / Ellip /Arch, 30" SD (24"x38" SD)	EA	3	\$	\$
52	430-830	Pipe Filling And Plugging - Place Out of Service	CY	8	\$	\$
53	520-1-7	Concrete Curb & Gutter, Type E	LF	1,027	\$	\$
54	520-1-10	Concrete Curb & Gutter, Type F	LF	1,967	\$	\$
55	522-1	Sidewalk Concrete, 4" Thick	SY	901	\$	\$
56	522-2	Sidewalk Concrete, 6" Thick	SY	255	\$	\$
57	524-3	Concrete Core Ditch Blocks	CY	27.8	\$	\$
58	530-3-4	Riprap, Rubble, F&I, Ditch Lining	TN	10	\$	\$
59	570-1-2	Performance Turf, Sod (Incl. Fert. And Water)	SY	25,721	\$	\$
		SUBTOTAL (ROADWAY ONLY)				\$
		REMEDIATION OF PETROLEUM IMPACTED SOIL AND GROUNDWATER				
		ACTIVITIES (all categories include lab equipment & expendables)	or, fuel,			
60	CON_1	Contaminated Soil Excavation - (includes loading of excavated soils)	CY	1,000	\$	\$
61	CON_2	Transport - Impacted Soil	TN	75	\$	\$
62	CON_3	Disposal - Impacted Soil	TN	75	\$	\$
63	CON_4	Dewatering System Installation: (specify # of points:) (system	LS	1	\$	\$
64	CON_5	Dewatering System Operation:	DAY	20	\$	\$
65	CON_6	Holding Tank (specify tank size:gallons)	LS	1	\$	\$
66	CON_7	Mobilization	LS	1	\$	\$
67	CON_8	Well Abandonment	DAY	2	\$	\$
		SUBTOTAL (REMEDIATION OF PETROLEUM IMPACTED SOIL AND GROUNDWATER ONLY)				\$

Bidder Name:	
Authorized Signature:	

(Submit in Triplicate) Section 00300

PAY ITEM NO.	FDOT ITEM NUMBER	DESCRIPTION	UNITS	QTY.	BID PRICE PER UNIT (\$)	TOTAL BID PRICE (\$)
		SIGNING AND MARKING				
68	700-20-11	Sign Single Post, F&I, Less Than 12 SF	AS	33	\$	\$
69	700-20-12	Sign Single Post, F&I, 12-20 SF	AS	4	\$	\$
70	700-20-40	Sign Single Post, Relocate	AS	3	\$	\$
71	700-20-60	Sign Single Post, Remove	AS	11	\$	\$
72	700-48-48	Sign Panels, Relocate, 15 Or Less	EA	4	\$	\$
73	700-48-58	Sign Panels, Replace, 15 Or Less	EA	2	\$	\$
74	705-10-1	Type I Object Marker	EA	2	\$	\$
75	705-10-4	Type 4 Object Marker	EA	5	\$	\$
76	706-3	Retro-Reflective Pavement Markers	EA	289	\$	\$
77	711-11- 111	Thermoplastic, Standard, White, Solid, 6"	LF	6,811	\$	\$
78	711-11- 122	Thermoplastic, Standard, White, Solid, 8"	LF	1,596	\$	\$
79	711-11- 123	Thermoplastic, Standard, White, Solid, 12"	LF	137	\$	\$
80	711-11- 124	Thermoplastic, Standard, White, Solid, 18"	LF	1,580	\$	\$
81	711-11- 125	Thermoplastic, Standard, White, Solid, 24"	LF	91	\$	\$
82	711-11- 131	Thermoplastic, Standard, White, Skip, 6"	LF	845	\$	\$
83	711-11- 151	Thermoplastic, Standard, White, Dotted / Guideline / 6-10 Gap Extension, 6"	LF	459	\$	\$
84	711-11- 160	Thermoplastic, Standard, White, Message	EA	8	\$	\$
85	711-11- 170	Thermoplastic, Standard, White, Arrow	EA	23	\$	\$
86	711-11- 211	Thermoplastic, Standard, Yellow, Solid, 6"	LF	6,917	\$	\$
87	711-11- 224	Thermoplastic, Standard, Yellow, Solid, 18"	LF	153	\$	\$
88	711-11- 260	Thermoplastic, Standard, Yellow, Dotted / Guideline / 6-10 Gap Extension, 6"	LF	302	\$	\$
		SUBTOTAL (SIGNING AND MARKING ONLY)				\$

Bidder Name:	
Authorized Signature:	

(Submit in Triplicate) Section 00300 US 301 @ FORT HAMER ROAD INTERSECTION IMPROVEMENTS Bid "A" Based on Completion Time of 300 Calendar Days

PAY ITEM	FDOT ITEM	DESCRIPTION	UNITS	QTY.	BID PRICE PER UNIT (\$)	TOTAL BID PRICE (\$)
NO.	NUMBER	ROADWAY LIGHTING			- (+,	(*,
89	555-1-2	Directional Bore, 6" to less than 12"	LF	120	\$	\$
90	715-1-12	Lighting Conductors, F&I, insul. No. 6	LF	4,000	\$	\$
91	715-1-13	Lighting Conductors, F&I, insul. No. 4	LF		\$	\$
92	715-1-70	Lighting Conductors, Remove	LF	,	\$	\$
93	715-2-11	Conduit, F&I, Underground (Min. 2-inch Lighting Conduit at 1,820 LF and 3-inch Communication Conduit at 1,780 LF)	LF	3,600	\$	\$
94	715-4-123	Light Pole Complete, F&I, 130 MPH, 50	EA	5	\$	\$
95	715-7-11	Load Center, F&I, Secondary Voltage	EA	1	\$	\$
96	715-14-11	Lighting, Pull Box, F&I, Roadside, Moulded	EA	13	\$	\$
97	715-14-51	Lighting, Pull Box, Remove, Roadside	EA	3	\$	\$
98	715-31-1	Lighting Routine Maintenance	LU	3	\$	\$
99	715-500-1	Pole Cable Distribution System, Conventional	EA	8	\$	\$
100	715-540- 000	Light Pole Complete, Relocate	EA	3	\$	\$
101	783-5-1	Fiber Optic Pull Box	EA	2	\$	\$
102	783-6-1	Fiber Optic Splice Box	EA	3	\$	\$
		SUBTOTAL (ROADWAY LIGHTING ONLY)				\$
		DISCRETIONARY WORK (USED ONLY WITH COUNTY APPROVAL)				\$200,000.00
		TOTAL PRICE FOR BID "A" - Based on Completion Time of 300 Calendar Days				\$

Bidder Name:	
Authorized Signature:	

(Submit in Triplicate) Section 00300

PAY ITEM NO.	FDOT ITEM NUMBER	DESCRIPTION	UNITS	QTY.	BID PRICE PER UNIT (\$)	TOTAL BID PRICE (\$)
		ROADWAY				
1	101-1	Mobilization	LS	1	\$	\$
2	102-1	Maintenance of Traffic	LS	1	\$	\$
3	102-3	Commercial Material for Driveway Maintenance	CY	100	\$	\$
4	104-10-3	Sediment Barrier	LF	5,823	\$	\$
5	104-11	Floating Turbidity Barrier	LF	101	\$	\$
6	104-15	Soil Tracking Prevention Device	EA	2	\$	\$
7	104-18	Inlet Protection System	EA	40	\$	\$
8	107-1	Litter Removal And Disposal (calculate using performance sod area times project duration in days divided by 30 days)	AC	14.0	\$	\$
9	107-2	Mowing (calculate using performance sod area times project duration in days divided by 30 days)	AC	4.3	\$	\$
10	110-1-1	Clearing & Grubbing (9.5 Ac)	LS	1	\$	\$
11	110-4	Removal of Existing Concrete Pavement	SY	1,529	\$	\$
12	110-7-1	Mailbox	EA	5	\$	\$
13	120-1	Regular Excavation	CY	8,678	\$	\$
14	120-4	Subsoil Excavation	CY	200	\$	\$
15	120-6	Embankment	CY	7,538	\$	\$
16	121-70	Flowable Fill (Contigency)	CY	10	\$	\$
17	160-4	Type B Stabilization	SY	14,538	\$	\$
18	162-1-11	Prepared Soil Layer, 6"	SY	25,721	\$	\$
19	285-701	Optional Base, Base Group 1	SY	485	\$	\$
20	285-709	Optional Base, Base Group 9	SY	12,397	\$	\$
21	286-1	Turnout Construction	SY	727	\$	\$
22	327-70-6	Milling Exist Asph Pavt, 1 1/2" Avg Depth	SY	11,947	\$	\$
23	334-1-13	Superpave Asphaltic Conc, Traffic C (1-1/2")	TN	512	\$	\$
24	334-1-13	Superpave Asphaltic Conc, Traffic C (3")	TN	978	\$	\$

Bidder Name:	
Authorized Signature:	

(Submit in Triplicate) Section 00300

PAY ITEM NO.	FDOT ITEM NUMBER	DESCRIPTION	UNITS	QTY.	BID PRICE PER UNIT (\$)	TOTAL BID PRICE (\$)
25	337-7-33	Asphalt Concrete Friction Course, Traffic C, FC-12.5, Rubber (1.5")	TN	2,060	\$	\$
26	400-2-2	Concrete Class II, Endwalls	CY	6.9	\$	\$
27	425-1201	Inlets, Curb, Type 9, <10'	EA	1	\$	\$
28	425-1351	Inlets, Curb, Type P-5, <10'	EA	12	\$	\$
29	425-1361	Inlets, Curb, Type P-6, <10'	EA	5	\$	\$
30	425-1511	Inlets, Dt Bot, Type B, <10'	EA	1	\$	\$
31	425-1521	Inlets, Dt Bot, Type C, <10'	EA	1	\$	\$
32	425-1541	Inlets, Dt Bot, Type D, <10'	EA	2	\$	\$
33	425-1543	Inlets, Dt Bot, Type D, J Bot, <10'	EA	5	\$	\$
34	425-1579	Inlets, Ditch Bottom, Type G, Modify	EA	1	\$	\$
35	425-2-43	Manholes, P-7, Partial, <10'	EA	1	\$	\$
36	425-2-61	Manholes, P-8, <10'	EA	6	\$	\$
37	425-2-71	Manholes, J-7, <10'	EA	1	\$	\$
38	425-2-93	Manholes, J-8, Partial	EA	2	\$	\$
39	425-11	Modify Drainage Structure	EA	1	\$	\$
40	430-174- 118	Pipe Culvert, Optional Material, Round, 18" SD	LF	94	\$	\$
41	430-174- 230	Pipe Culvert, Optional Material, Other - Ellip/Arch, 30" SD (24"x38")	LF	47	\$	\$
42	430-175- 115	Pipe Culvert, Optional Material, Round, 15" S/CD	LF	97	\$	\$
43	430-175- 118	Pipe Culvert, Optional Material, Round, 18" S/CD	LF	694	\$	\$
44	430-175- 124	Pipe Culvert, Optional Material, Round, 24" S/CD	LF	1,416	\$	\$
45	430-175- 130	Pipe Culvert, Optional Material, Round, 30" S/CD	LF	59	\$	\$
46	430-175- 230	Pipe Culvert, Optional Material, Other - Ellip/Arch, 30" S/CD (24"x38")	LF	244	\$	\$
47	430-175- 236	Pipe Culvert, Optional Material, Other - Ellip/Arch, 36" S/CD (29"x45")	LF	435	\$	\$
48	430-175- 242	Pipe Culvert, Optional Material, Other - Ellip/Arch, 42" S/CD (34"x53")	LF	471	\$	\$
49	430-982- 133	Mitered End Sect, Optional Round, 30" CD	EA	1	\$	\$
50	430-984- 125	Mitered End Sect, Optional Round, 18" SD	EA	5	\$	\$

Bidder Name:	
Authorized Signature:	

(Submit in Triplicate) Section 00300 US 301 @ FORT HAMER ROAD INTERSECTION IMPROVEMENTS Bid "B" Based on Completion Time of 240 Calendar Days

PAY	FDOT	Bid B Based on Completion		T		
ITEM NO.	ITEM NUMBER	DESCRIPTION	UNITS	QTY.	BID PRICE PER UNIT (\$)	TOTAL BID PRICE (\$)
51	430-984- 633	Mitered End Sect, Optional / Ellip /Arch, 30" SD (24"x38" SD)	EA	3	\$	\$
52	430-830	Pipe Filling And Plugging - Place Out of Service	CY	8	\$	\$
53	520-1-7	Concrete Curb & Gutter, Type E	LF	1,027	\$	\$
54	520-1-10	Concrete Curb & Gutter, Type F	LF	1,967	\$	\$
55	522-1	Sidewalk Concrete, 4" Thick	SY	901	\$	\$
56	522-2	Sidewalk Concrete, 6" Thick	SY	255	\$	\$
57	524-3	Concrete Core Ditch Blocks	CY	27.8	\$	\$
58	530-3-4	Riprap, Rubble, F&I, Ditch Lining	TN	10	\$	\$
59	570-1-2	Performance Turf, Sod (Incl. Fert. And Water)	SY	25,721	\$	\$
		SUBTOTAL (ROADWAY ONLY)				\$
		REMEDIATION OF PETROLEUM IMPACTED SOIL AND GROUNDWATER				
		ACTIVITIES (all categories include lab equipment & expendables)	or, fuel,			
60	CON_1	Contaminated Soil Excavation - (includes loading of excavated soils)	CY	1,000	\$	\$
61	CON_2	Transport - Impacted Soil	TN	75	\$	\$
62	CON_3	Disposal - Impacted Soil	TN	75	\$	\$
63	CON_4	Dewatering System Installation: (specify # of points:) (system	LS	1	\$	\$
64	CON_5	Dewatering System Operation:	DAY	20	\$	\$
65	CON_6	Holding Tank (specify tank size: gallons)	LS	1	\$	\$
66	CON_7	Mobilization	LS	1	\$	\$
67	CON_8	Well Abandonment	DAY	2	\$	\$
		SUBTOTAL (REMEDIATION OF PETROLEUM IMPACTED SOIL AND GROUNDWATER ONLY)				\$

Bidder Name:	
Authorized Signature:	

(Submit in Triplicate) Section 00300

PAY ITEM NO.	FDOT ITEM NUMBER	DESCRIPTION	UNITS	QTY.	BID PRICE PER UNIT (\$)	TOTAL BID PRICE (\$)
		SIGNING AND MARKING				
68	700-20-11	Sign Single Post, F&I, Less Than 12 SF	AS	33	\$	\$
69	700-20-12	Sign Single Post, F&I, 12-20 SF	AS	4	\$	\$
70	700-20-40	Sign Single Post, Relocate	AS	3	\$	\$
71	700-20-60	Sign Single Post, Remove	AS	11	\$	\$
72	700-48-48	Sign Panels, Relocate, 15 Or Less	EA	4	\$	\$
73	700-48-58	Sign Panels, Replace, 15 Or Less	EA	2	\$	\$
74	705-10-1	Type I Object Marker	EA	2	\$	\$
75	705-10-4	Type 4 Object Marker	EA	5	\$	\$
76	706-3	Retro-Reflective Pavement Markers	EA	289	\$	\$
77	711-11- 111	Thermoplastic, Standard, White, Solid, 6"	LF	6,811	\$	\$
78	711-11- 122	Thermoplastic, Standard, White, Solid, 8"	LF	1,596	\$	\$
79	711-11- 123	Thermoplastic, Standard, White, Solid, 12"	LF	137	\$	\$
80	711-11- 124	Thermoplastic, Standard, White, Solid, 18"	LF	1,580	\$	\$
81	711-11- 125	Thermoplastic, Standard, White, Solid, 24"	LF	91	\$	\$
82	711-11- 131	Thermoplastic, Standard, White, Skip, 6"	LF	845	\$	\$
83	711-11- 151	Thermoplastic, Standard, White, Dotted / Guideline / 6-10 Gap Extension, 6"	LF	459	\$	\$
84	711-11- 160	Thermoplastic, Standard, White, Message	EA	8	\$	\$
85	711-11- 170	Thermoplastic, Standard, White, Arrow	EA	23	\$	\$
86	711-11- 211	Thermoplastic, Standard, Yellow, Solid, 6"	LF	6,917	\$	\$
87	711-11- 224	Thermoplastic, Standard, Yellow, Solid, 18"	LF	153	\$	\$
88	711-11- 260	Thermoplastic, Standard, Yellow, Dotted / Guideline / 6-10 Gap Extension, 6"	LF	302	\$	\$
		SUBTOTAL (SIGNING AND MARKING ONLY)				\$

Bidder Name:	
Authorized Signature:	

(Submit in Triplicate) Section 00300 US 301 @ FORT HAMER ROAD INTERSECTION IMPROVEMENTS Bid "B" Based on Completion Time of 240 Calendar Days

PAY	EDOT 1	Bid B Based on Completion	T			<u> </u>
ITEM NO.	FDOT ITEM NUMBER	DESCRIPTION	UNITS	QTY.	BID PRICE PER UNIT (\$)	TOTAL BID PRICE (\$)
		ROADWAY LIGHTING				
89	555-1-2	Directional Bore, 6" to less than 12"	LF	120	\$	\$
90	715-1-12	Lighting Conductors, F&I, insul. No. 6	LF	4,000	\$	\$
91	715-1-13	Lighting Conductors, F&I, insul. No. 4	LF	1,620	\$	\$
92	715-1-70	Lighting Conductors, Remove	LF	1,740	\$	\$
93	715-2-11	Conduit, F&I, Underground (Min. 2-inch Lighting Conduit at 1,820 LF and 3-inch Communication Conduit at 1,780 LF)	LF	3,600	\$	\$
94	715-4-123	Light Pole Complete, F&I, 130 MPH, 50	EA	5	\$	\$
95	715-7-11	Load Center, F&I, Secondary Voltage	EA	1	\$	\$
96	715-14-11	Lighting, Pull Box, F&I, Roadside, Moulded	EA	13	\$	\$
97	715-14-51	Lighting, Pull Box, Remove, Roadside	EA	3	\$	\$
98	715-31-1	Lighting Routine Maintenance	LU	3	\$	\$
99	715-500-1	Pole Cable Distribution System, Conventional	EA	8	\$	\$
100	715-540- 000	Light Pole Complete, Relocate	EA	3	\$	\$
101	783-5-1	Fiber Optic Pull Box	EA	2	\$	\$
102	783-6-1	Fiber Optic Splice Box	EA	3	\$	\$
		SUBTOTAL (ROADWAY LIGHTING ONLY)				\$
		DISCRETIONARY WORK (USED ONLY WITH COUNTY APPROVAL)				\$200,000.00
		TOTAL PRICE FOR BID "B" - Based on Completion Time of 240 Calendar Days				\$

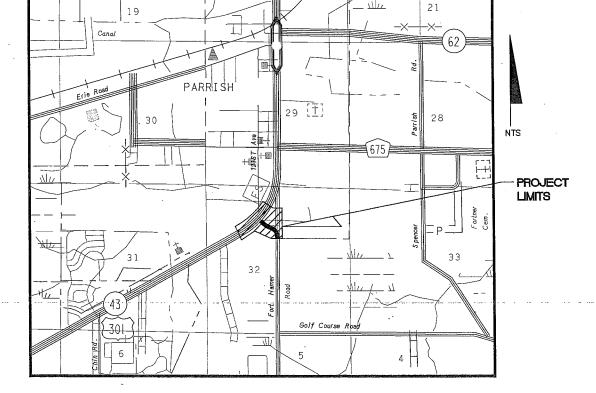
Bidder Name:	
Authorized Signature:	

CONTRACT DRAWINGS

US 301 (SR 43) AND FT. HAMER ROAD INTERSECTION IMPROVEMENTS (FROM BRITT ROAD TO US 301) FOR

MANATEE COUNTY, FLORIDA **COUNTY PROJECT NUMBER: 6061960**

RELATED STANDARDS AND SPECIFICATIONS

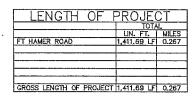

- MANUAL OF UNIFORM MINIMUM STANDARDS FOR DESIGN, CONSTRUCTION, AND MAINTENANCE FOR STREETS AND HIGHWAYS, FLORIDA DEPARTMENT OF TRANSPORTATION, (FLORIDA GREEN BOOK), (2010),
- FDOT DESIGN STANDARDS FOR DESIGN, CONSTRUCTION, MAINTENANCE AND UTILITY OPERATIONS ON THE STATE HIGHWAY SYSTEM, (JANUARY 2012),
- AASHTO, GUIDE FOR PLANNING, DESIGN, AND OPERATION OF PEDESTRIAN
- FHWA MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES, (MUTCD), (2009),
- CHAPTER 14-96 AND 14-97, FLORIDA ADMINISTRATIVE CODE RULE FOR
- CHAPTER 14-86, FLORIDA ADMINISTRATIVE CODE RULE FOR FDOT DRAINAGE
- FDOT STANDARD SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION,
- SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT ENVIRONMENTAL RESOURCE PERMITTING (ERP) INFORMATION MANUAL, LATEST EDITION
- MANATEE COUNTY DRAINAGE MANUAL, LATEST EDITION AND STATE OF FLORIDA EROSION AND SEDIMENT CONTROL DESIGNER AND REVIEWER MANUAL (JUNE 2007).

ATTENTION IS DIRECTED TO THE FACT THAT THESE PLANS MAY HAVE BEEN REDUCED IN SIZE BY REPRODUCTION THIS MUST BE CONSIDERED WHEN OBTAINING SCALED DATA.

UTILITY WARNING NOTE

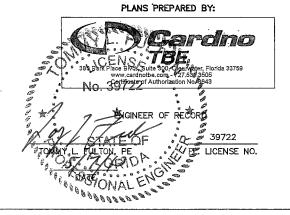
ABOVE GROUND AND / OR UNDERGROUND UTILITIES MAY BE IN THE AREA OF THIS PROJECT - PROCEED WITH CAUTION - THE CONTRACTOR SHALL CALL SUNSHINE STATE ONE CALL AT 1-800-432-4770 AND THE UTILITY OWNERS IN ADVANCE OF BEGINNING WORK, IN ACCORDANCE WITH CHAPTER 556, FLORIDA STATUTES.

DATE	DESCRIPTION		
⚠ RE	VISED SHEETS 18, 34, 51, 54 & 71	TJB	5-7-2013



COMPONENTS OF CONTRACT PLANS SET

ROADWAY PLANS LIGHTING AND COMMUNICATIONS PLANS


INDEX OF ROADWAY PLANS

	· · · · · · · · · · · · · · · · · · ·
SHEET NO	SHEET DESCRIPTION
1	COVER SHEET
2	SURVEY NOTES
3	LEGEND AND ABBREVIATIONS
4	DRAINAGE MAP
5	EXISTING STRUCTURE DATA
6	PROPOSED DRAINAGE STRUCTURE DATA
7-10	TYPICAL SECTIONS
11	SUMMARY OF QUANTITIES
12-13	GENERAL NOTES
14-16	PLAN AND PROFILE — FT HAMER ROAD
17	PLAN AND PROFILE - CONNECTOR ROAD
1821	PLAN - US HIGHWAY 301
22	INTERSECTION DETAIL
23	RETENTION-DETENTION POND A
24	POND TYPICAL SECTIONS
25	DRAINAGE DETAILS
26-31	CROSS SECTIONS - FT HAMER ROAD
32-33	CROSS SECTIONS - CONNECTOR ROAD
34-38	CROSS SECTIONS - US 301
39-40	ROADWAY SOILS SURVEY
41–48	EROSION CONTROL
49-50	STORMWATER POLLUTION PREVENTION PLAN
51-57	MAINTENANCE OF TRAFFIC
58-65	UTILITY ADJUSTMENTS
66-74	SIGNING AND PAVEMENT MARKING
-	

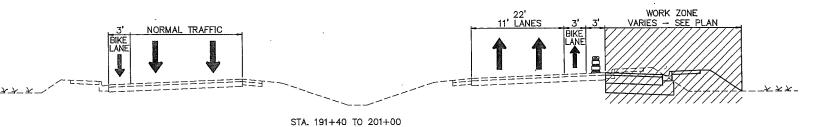
ROAD CLASSIFICATION: US 301 -- URBAN ARTERIAL

ROAD CLASSIFICATION: 60TH STREET EAST - URBAN LOCAL ROAD CLASSIFICATION: DORIS STREET EAST - URBAN LOCAL DESIGN SPEED: 45 MPH (FT HAMER ROAD) 45 MPH (US 301) 1-800-432-4770

DATE: 8-15-2012

L. FILE: J:00193/00193008,03\ACAD\dwg\CV1930008003-1.dwg LAST SAVED: Tue, 05/07/13-2:12p PLOTTED; Tue, 05/07/13-2:13p BY: Tim.Bowe

CONSTRUCTION PHASING NOTES US HWY 301:

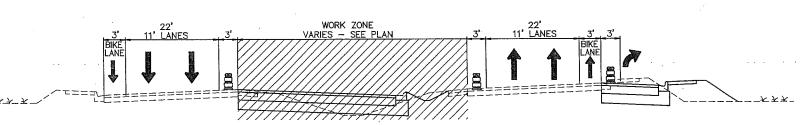

PHASE I:

INSTALL INITIAL PROJECT SIGNING ON US 301 AS NECESSARY FOR PHASE I WHILE MAINTAINING THE EXISTING TRAFFIC PATTERNS. REDUCE NORTHBOUND LANE WIDTHS AND SHIFT TRAFFIC. SOUTHBOUND TRAFFIC WILL REMAIN NORMAL TRAFFIC

PATTERN. CLOSE DORIS ROAD AND 60TH STREET EAST AT US 301.

CONSTRUCT RIGHT TURN LANE (NORTHBOUND), EMBANKMENT, DRAINAGE AND TURNOUT TO FT. HAMER ROAD.

CONSTRUCT ROAD IMPROVEMENTS, SIDEWALKS AND EMBANKMENT AT DORIS ROAD AND AT 60TH STREET EAST TERMINAL POINTS.



PHASE II:

MODIFY THE PHASE I SIGNAGE AS NECESSARY FOR PHASE II.

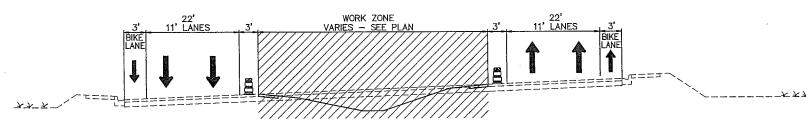
REDUCE SOUTHBOUND LANE WIDTHS AND SHIFT TRAFFIC. KEEP NEWLY CONSTRUCTED NORTHBOUND RIGHT TURN LANE CLOSED. CONSTRUCT LEFT TURN LANE (SOUTHBOUND), EMBANKMENT, AND DRAINAGE.

OPEN ROADWAY AT THE INTERSECTION OF FT. HAMER ROAD AND US 301

STA. 190+80 TO 202+00

PHASE III:

MODIFY THE PHASE II SIGNAGE AS NECESSARY FOR PHASE III.
REDUCE NORTHBOUND AND SOUTHBOUND LANE WIDTHS AND SHIFT TRAFFIC.
CLOSE MEDIAN OPENING ON US 301 AT EXISTING FT HAMER RD.

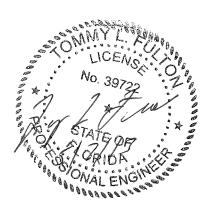

CONSTRUCT MEDIAN, EMBANKMENT AND DRAINAGE

PHASE IV:

MODIFY THE PHASE III SIGNAGE AS NECESSARY FOR PHASE IV.

MILL 3/4" AND RESURFACE WITH FC-5 (80LB/SY) ALL AREAS ALONG US 301 AFFECTED BY TEMPORARY STRIPING INSTALL STRIPING AS SHOWN ON PLANS AND TO MATCH ORIGINAL CONFIGURATIONS WHERE NOT SHOWN ON PLANS.

OPEN ROADWAY COMPLETELY...


STA. 202+80 TO 211+12

Λ

MAINTENANCE OF TRAFFIC NOTES

1. NO DAY TIME LANE CLOSURES WILL BE ALLOWED FROM 9:00 AM TO 4:00 PM.

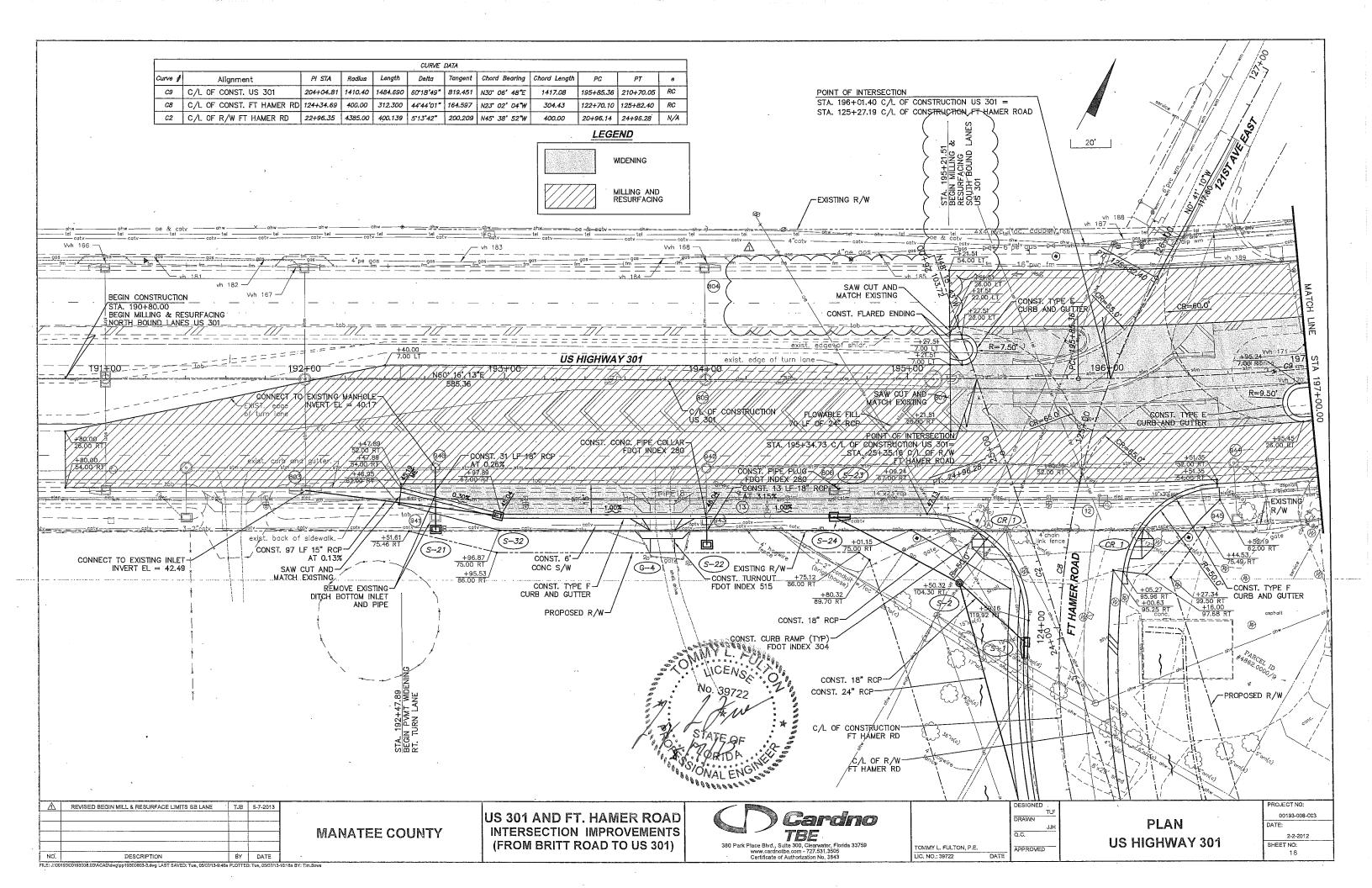
2. LANE CLOSURES SHALL COMPLY WITH THE FDOT CONNECTION PERMIT APPROVED FOR PROJECT.

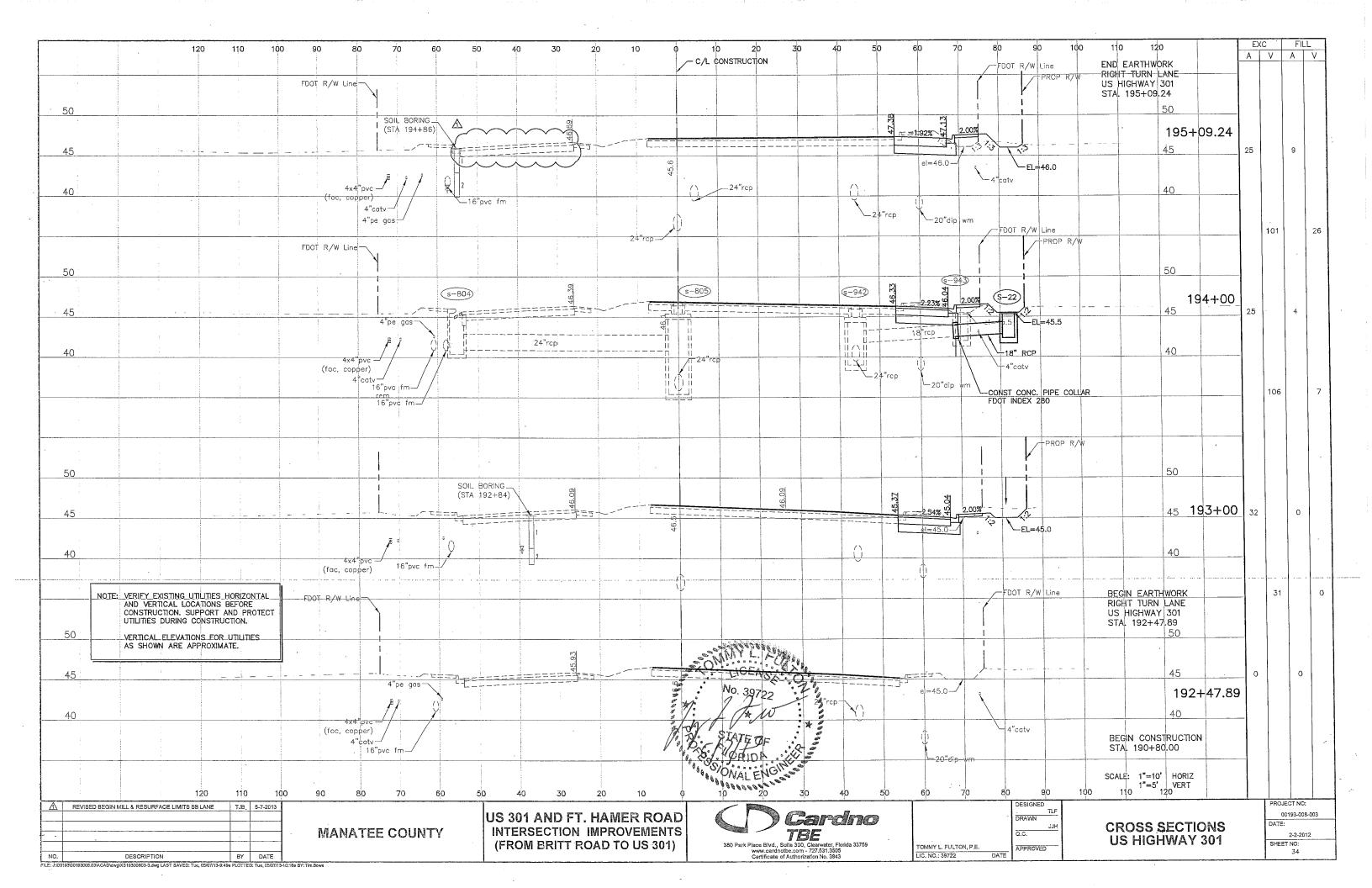
-	Δ	ADDED NOTES FOR LANES CLOSURES	TJB	5-7-2013	l

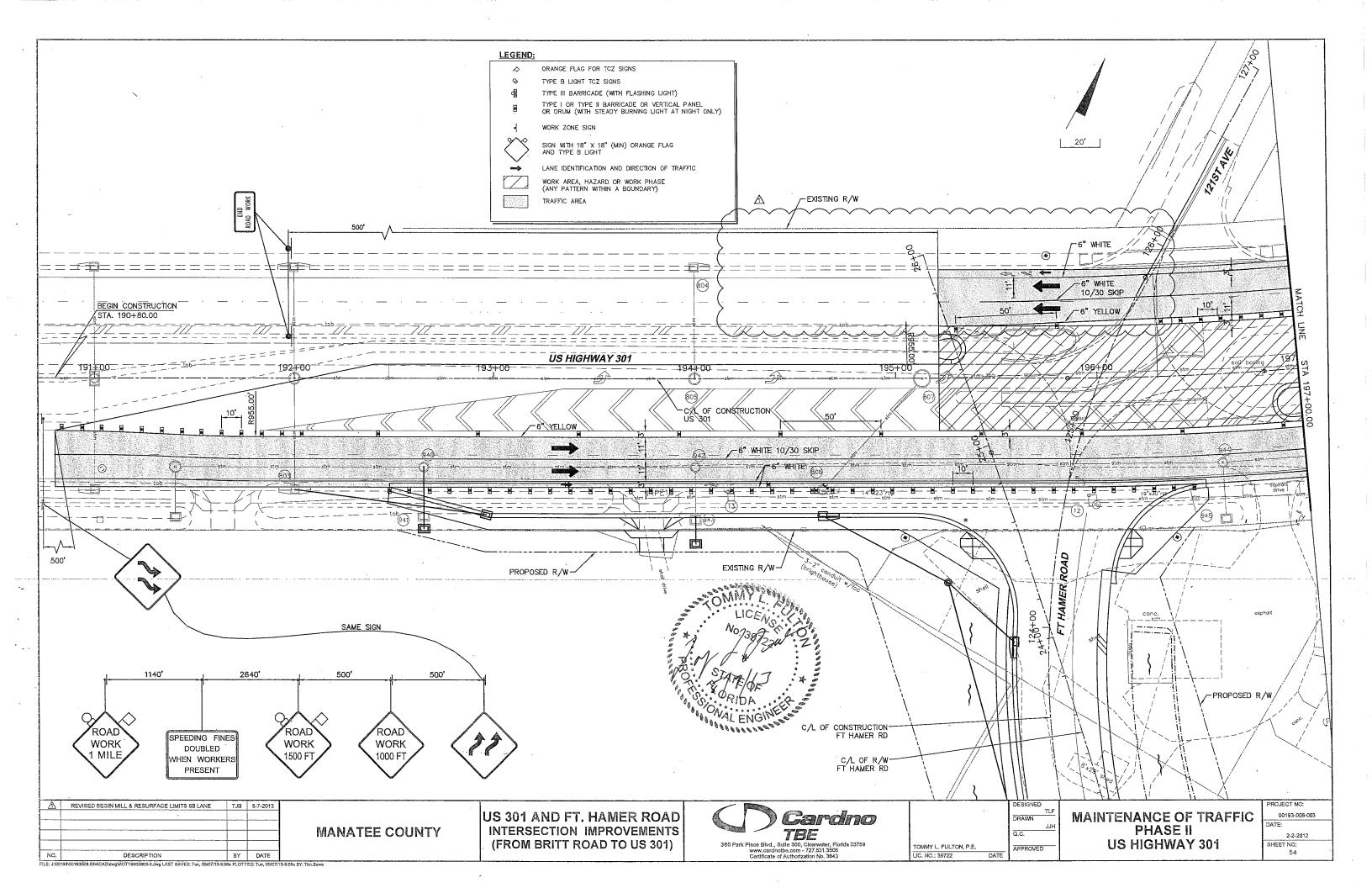
- 1					10.25
					M
-	NO.	DESCRIPTION	BY	DATE	Ì
	FILE: J:\00	193\DB193008.03\ACAD\dwg\MOT19300803-1.dwg LAST SAVED: Tue, 05/07/13-2	:22p PLOT	ED: Tue, 05/07/	13-2:23p BY: Tim.Bowe

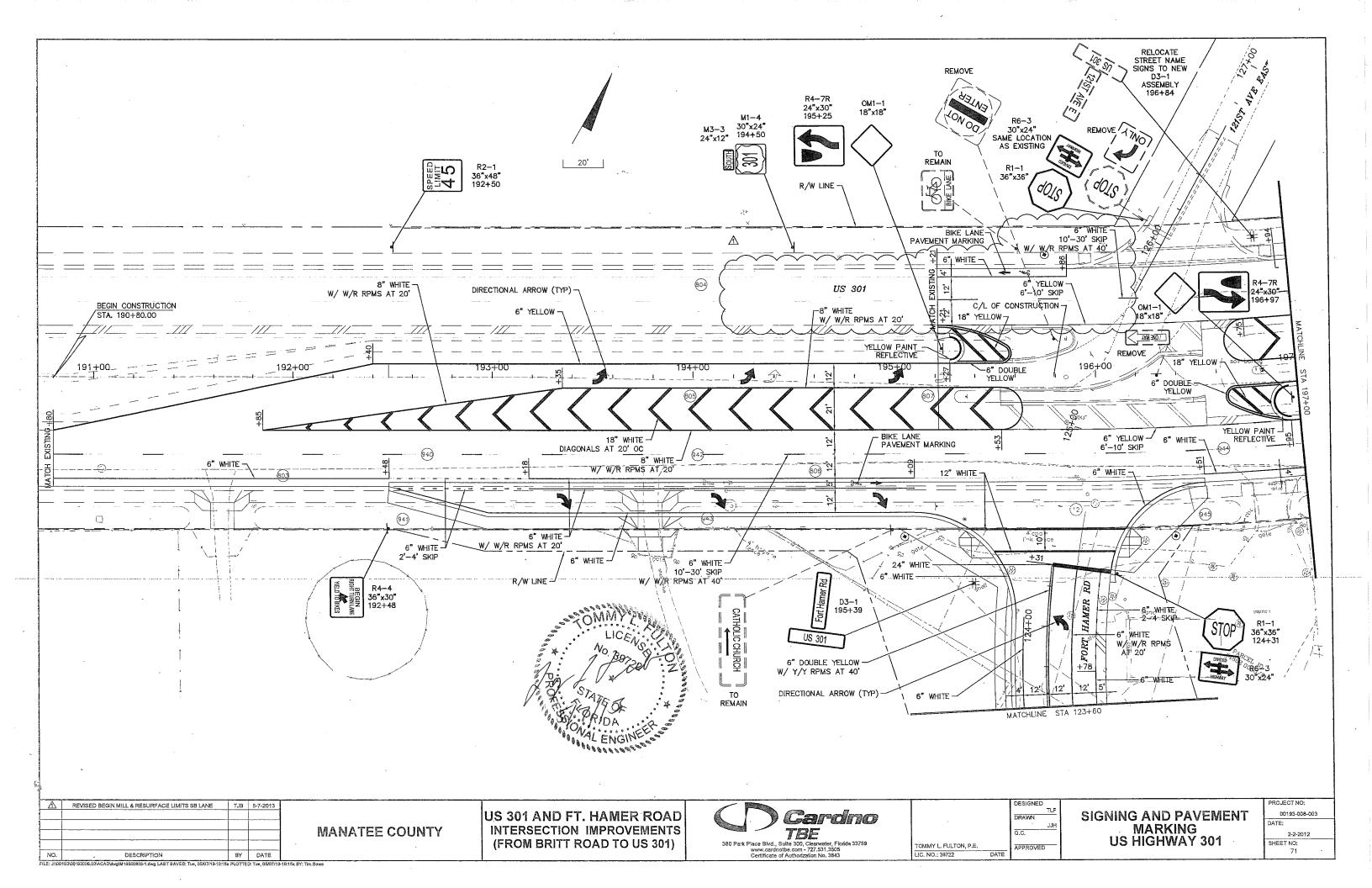
MANATEE COUNTY

US 301 AND FT. HAMER ROAD INTERSECTION IMPROVEMENTS (FROM BRITT ROAD TO US 301)




3759 TOMMY L. FULTON, P.E. LIC. NO.: 39722


DESIGNED
TLF
DRAWN
JJH
Q,C.


MAINTENANCE OF TRAFFIC PHASING NOTES US 301

ROJECT NO:	
00193-008-003	
ATE:	
2-2-2012	
HEET NO:	
51	

TABLE 1: WATER LEVEL ELEVATION DATA

Facility Name: Address: City, State:

Herrera Property 12107 60th Street East Parrish, Florida

All Measurements = Feet FP = Free Product TOC = Top of Casing ELEV = Elevation

County: FDEP FAC#: AET Project #:

Manatee County 41/9201948 24043.04

DTW = Depth To Water
NS = Not Sampled
NL = Well not Located

WELL NO.	MW-1	MW-2	MW-3	MW-4	MW-4R
DIAMETER (IN)	2	2	2	2	2 .
WELL DEPTH (FT)	15	15	15	15	15
SCREEN INTERVAL (FT)	2.5 - 15	2.5 - 15	2.5 - 15	2,5 - 15	2 - 15
TOC ELEVATION (FT)	49.72	49.29	49.60	49.55	49.23

DATE	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP			
7/12/2001	42.40	7.32		42,29	6.99		42.44	7.16		42.35	7.20				
12/20/2001	44.36	5,36		44.21	5.08		NS	NS		44.26	5.29				
5/14/2002	41.44	8.28		41.32	7.97		NS	NS		41.34	8,21			L	
11/1/2004		ESTROYE			STROY			STROY			STROY				
3/2/2005		ESTROYE			STROY		DE	STROY	ED	DE	STROY	ED	44.77	4.46	
7/12/2005	D	ESTROYE	D	DE	STROY	ED		STROY		DE	STROY	ED	46.83	2.40	
8/2/2005		ESTROYE			STROY			STROY			STROY		46.89	2.34	
4/21/2006		ESTROYE			STROY			STROY			STROY		40,30	8.93	
7/5/2006		ESTROYE			STROY			STROY			STROY		41.59	7.64	
10/12/2006	D	ESTROYE	D	DE	STROY	ED	DE	STROY	ED	DE	STROY	ED	45.12	4.11	
5/17/2007	D	ESTROYE	D	DE	STROY	ED	DE	STROY	ED	DE	STROY	ED	41.08	8,15	
8/15/2007	D	ESTROYE	D	DE	STROY	ED	DE	STROY	ED	DE	STROY	ED	44.13	5.10	0.00
11/15/2007	D	ESTROYE	Đ	DE	STROY	ΈD	DE	STROY	ΈD	DE	STROY	ED	42.30	6,93	0.00
3/29/2011	D	ESTROYE	D	DE	STROY	ΈD	DE	STROY	ED	DE.	STROY	ED	41.25	7.98	
7/27/2011	ł									l			42.19	7.04	
12/30/2011													42.29	6,94	
3/6/2012	l												40.78	8.45	
7/27/2012													45,03	4.20	
12/3/2012													42.90	6.33	
4/17/2013													41.51	7.72	
													L		

WELL NO.	MW-5	MW-6	MW-6R	MW-7	MW-8
DIAMETER (IN)	2	2	2	2	2
WELL DEPTH (FT)	15	15	15	15	15
SCREEN INTERVAL (FT)	2,5 - 15	2,5 - 15	2 - 15	2.5 - 15	2.5 - 15
TOC ELEVATION (FT)	49,86	49.36	49.44	49,78	48.95

DATE	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP
7/12/2001	42.35	7.51		42.11	7.25					42.18	7.80		41.78	7.17	
12/20/2001	44.21	5.65		44.06	5.30					44.03	5.72		43.89	5,06	
5/14/2002	41.29	8,57		41,19	8.17					41.13	8.65		40.12	8.83	
11/1/2004	D	ESTROYE	D	DE	STROY	ED				46.08	3.70		45.88	3.07	
3/2/2005	D	ESTROYE	D	DE	STROY	ED	45.29	4.15		45.93	3,85		46.15	2.80	
7/12/2005	D	ESTROYE	D	DE	STROY	ED	48.06	1.38		NS	NS		48.15	0.80	
8/2/2005	D	ESTROYE	D		STROY		47.99	1.45		47.76	2.02		47.90	1.05	
3/16/2006		ESTROYE			STROY		41.80	7.64		41.73	8.05		43.02	5.93	
7/5/2006		ESTROYE			STROY		42.24	7.20		42.11	7.67		42.26	6.69	
10/12/2006		ESTROYE			STROY					46.34	3.44		46.05	2.90	
5/17/2007		ESTROYE			STROY		41.62	7.82		41.52	8,26				
8/15/2007		ESTROYE			STROY		44.65	4.79	0.00	44.56	5,22	0,00			
11/15/2007	D	ESTROYE	.D	DE	STROY	ED	42.82	6.62	0.00	42.77	7.01	0,00			
7/27/2011							42.68	6.76							
12/30/2011							r	not gaug	e						
3/6/2012							41.24	8.20							
7/27/2012	<u> </u>												45.88	3.07	
12/3/2012													43.81	5.14	
4/17/2013													obstr	uction @	6.23
	1														

TABLE 1: WATER LEVEL ELEVATION DATA

Facility Name: Address; City, State:

Herrera Property 12107 60th Street East Parrish, Florida Manatee County 41/9201948 24043.04

All Measurements = Feet
FP = Free Product
TOC = Top of Casing
ELEV = Elevation
DTW = Depth To Water
NS = Not Sampled
NL = Well not Located

County; FDEP FAC#: AET Project #:

		145 1	TOR HOLE.OCCICG		
WELL NO.	MW-9	MW-10	MW-11	MW-12	MW-13
DIAMETER (IN)	2	2	2	2	2
WELL DEPTH (FT)	15	15	15	15	15
SCREEN INTERVAL (FT)	2.5 - 15	2.5 - 15	2.5 - 15	2.5 - 15	2.5 - 15
TOC ELEVATION (FT)	49,69	49.59	49.62	49.19	49.56

	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP
7/12/2001	42.26	7.43													
12/20/2001	44.19	5.50		43,97	5.47		43.85	5.04		44.14	5.42		43.96	5.06	
	41,28	8.41		41.15	8,44		41.06	8.56		41.25	7.94		41.12	8.44	
	45.96	3.73		46.02	3.57		45.83	3.79		45.71	3.48		45.79	3.77	
3/2/2005	45,59	4.10		45.79	3.80		45.97	3.65		45.63	3.56		45,75	3,81	
7/12/2005	44.84	1.85		NS	NS		NS	NS		NS	NS		NS	NS	
8/2/2005	47.57	2.12		47.87	1.72		47.92	1.70		47.11	2,08		47.58	1.98	
3/16/2006	NL	NL		41.67	7.92		41.74	7.88		NL	NL		NL	NL.	
7/5/2006	42.08	7.61		42.09	7.50		42.33	7.29		DE	STROY	ED	DES	TROYE	D
10/12/2006	46.30	3,39		46.06	3.53		46.01	3.61		DE	STROY	ED	DES	TROYE	D.
5/17/2007	41.56	8.13		41.38	8.21					DE	STROY	ED	DES	STROYE	D
8/15/2007	44,69	5,00	0,00	44.43	5.16	0.00				DE	STROY	ED	DES	TROYE	D
11/15/2007	42.82	6.87	0.00	42.66	6,93	0.00	1			DE	STROY	ED	DES	TROYE	D
3/29/2011	41.74	7.95								DE	STROY	ED	DES	STROYE	D
7/27/2011	42.74	6.95													
12/30/2011 4	42,84	6,85													
3/6/2012	41.29	8.40													
7/27/2012	45.77	3.92		45,60	3.99										
12/3/2012	43.33	6.36		43.22	6.37										
4/17/2013	42,02	7.67		41.85	7.74										

WELL NO.	MW-14	MW-15	MW-15R	MW-16	MW-17
DIAMETER (IN)	2	2	2	2	2
WELL DEPTH (FT)	15	15	15	15	12
SCREEN INTERVAL (FT)	2.5 - 15	2.5 - 15	2 - 15	2.5 - 15	2 - 12
TOC ELEVATION (FT)	49.90	49.77	49.93	49.73	49.80

DATE	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP
7/12/2001															
12/20/2001	44.00	5.60		43.85	4,85					43.76	4.62				
5/14/2002	41.14	8.76		41,04	8.73					40.97	8.76		40,88	8,92	
11/1/2004	46.18	3,72			STROY					DE	STROY	ED	DE	STROY	ED
3/2/2005	45.79	4.11			STROY		45.09	4.84		DE	STROY	ED	DE	STROY	ED
7/12/2005	48.25	1.65			STROY		47.32	2,61		DE	STROY	ED	DE	STROY	ED
8/2/2005	48.22	1.68			STROY		47.37	2.56			STROY			STROY	
3/16/2006	41,68	8,22			STROY		41.76	8.17			STROY			STROYE	
7/5/2006	42.01	7.89			STROY		42.26	7.67			STROY			STROYE	
10/12/2006	46.37	3,53			STROY		45.59	4.34		DE	STROY	ED	DE	STROYE	D
5/17/2007	41.29	8.61			STROY		1			DE	STROY	ED .	DES	STROYE	D
8/15/2007	44.29	5.61	0.00	DE	STROY	ED				DE	STROY	ED .	DES	STROYE	D
11/15/2007	42.58	7.32	0.00	DE	STROY	ED				DE	STROY	ED .	DES	STROYE	D
3/6/2012				DE	STROY	ED	41.15	8.78		DE	STROY	ED .	DES	STROYE	D
				L											

TABLE 1: WATER LEVEL ELEVATION DATA

Facility Name: Address: City, State:

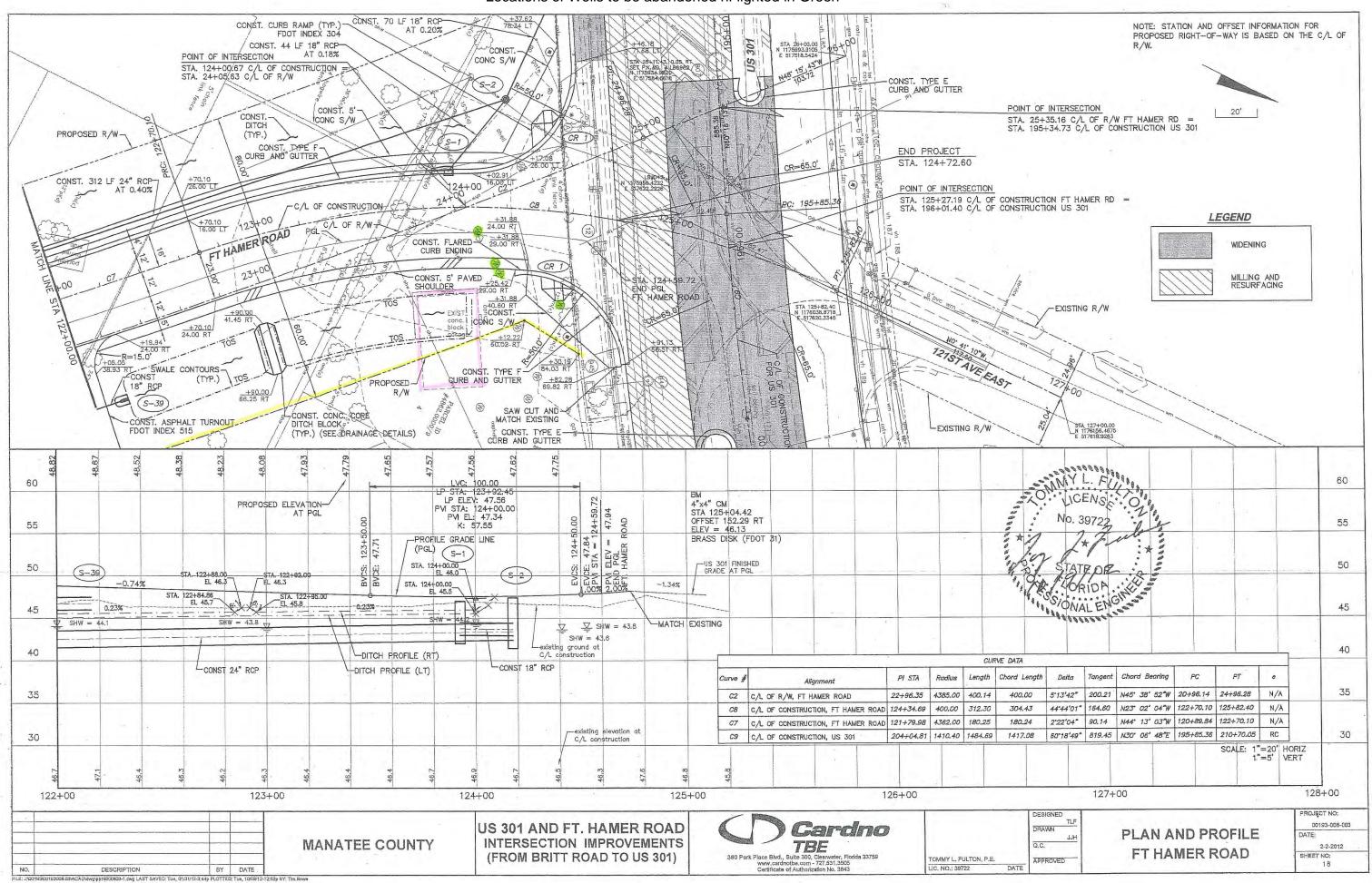
County: FDEP FAC#:

AET Project #:

Herrera Property 12107 60th Street East Parrish, Florida Manatee County 41/9201948 24043.04

All Measurements = Feet
FP = Free Product
TOC = Top of Casing ELEV = Elevation

DTW = Depth To Water
NS = Not Sampled
NL = Well not Located


			Ion not Located		
WELL NO.	MW-18	MW-19	MW-20	MW-21	MW-22
DIAMETER (IN)	2	2	2	2	2
WELL DEPTH (FT)	12	12	15	15	15
SCREEN INTERVAL (FT)	2 - 12	2 - 12	2 - 15	2 - 15	2 - 15

DATE	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP
7/12/2001	T						Г								
12/20/2001															
5/14/2002	40.82	9,07		40,92	8.96					I					
11/1/2004	D	ESTROYE	D	DE	STROY	ED									
3/2/2005	D	ESTROYE	D	DE	STROY	ED	45,53	4.49		45.79	4.34		45.84	4.04	
7/12/2005	D	ESTROYE	D	DE	STROY	ED	NS	NS		48.69	1.41		NS	NS	
8/2/2005		ESTROYE			STROY		48.44	1,58		48.70	1.40		47.77	2.11	
3/16/2006	D	ESTROYE	D		STROY		NL	NL		42.33	7.77		42.27	7,61	
7/5/2006		ESTROYE			STROY		42.36	7.66		42.70	7.40		42.44	7,44	
10/12/2006		ESTROYE			STROY		46.16	3.86		46.91	3.19		46.23	3,65	
5/17/2007	D	ESTROYE	D	DE	STROY	ED		not found	1	42.06	8.04		42,08	7.80	
8/15/2007	D	ESTROYE	ED.	DE	STROY	ED		not found	f	45.08	5.02	0.00	45.13	4.75	0.00
11/15/2007		ESTROYE		DE	STROY	ED		not found	1	43.20	6.90	0.00	43,30	6,58	0.00
3/29/2011	D	ESTROYE	D	DE	STROY	ED	42.00	8.02			i				
7/27/2011	1							not found	f	43.24	6.86		1	not foun	d
12/30/2011	1							not found	i	44.05	6,05			not foun	d
3/6/2012							41.62	8.40		41.76	8.34		41.72	8.16	
7/27/2012										46.41	3,69				
12/3/2012										44.47	5.63				
4/17/2013	I						42.29	7.73		42.51	7.59				

WELL NO.	DW-1	DW-2	MW-23	MW-24
DIAMETER (IN)	2	2	2	2
WELL DEPTH (FT)	25	25	15	15
SCREEN INTERVAL (FT)	20 - 25	20 - 25	2 - 15	2 - 15
TOC ELEVATION (FT)	49.61	49.57	49.93	50.72

DATE	ELEV	DTW	FP	ELEV	DTW	FP.	ELEV	DTW	FP	ELEV	DTW	FP
7/12/2001												
12/20/2001	44.10	5,45		43.98	5.43							
5/14/2002	41.13	6.48		41.15	8.42			,				
11/1/2004	44.99	4,62		44.92	4,65						ì	
3/2/2005	45.02	4.59		44.89	4,68							
7/12/2005	NS	NS		NS	NS		47.81	2.12		48.02	2.70	
8/2/2005	45.87	3.74		45.76	3.81		47.76	2.17		47.79	2.93	
3/16/2006	41.57	8.04		41.49	8.08		we	Il not for	ind	42.58	8.14	
4/21/2006	NS	NS		NS	NS		41.29	8.64	ļ	NS	NS	
7/5/2006	41.95	7.66		41.87	7.70		42.67	7.26		43.12	7,60	
10/12/2006	45,35	4.26		45.29	4.28		46.47	3.46		46,34	4.38	
5/17/2007							42,08	7.85				
8/15/2007							45.04	4.89	0.00			
11/15/2007							43.09	6.84	0.00			
12/30/2011							43,30	6,63				
3/6/2012	41.06	8.55		T			41.83	8,10				
7/27/2012							46.00	3,93				
12/3/2012							43,92	6,01				
	1	. ,								i		

Locations of Wells to be abandoned hi-lighted in Green

12107 60th STREET PARRISH, FLORIDA MANATEE COUNTY FDEP FAC. ID NO.: 41 9201948

SITE MAP

FIGURE PROJECT NO. 24043.09

HOUSE

GRASS DEPTH CFT.)

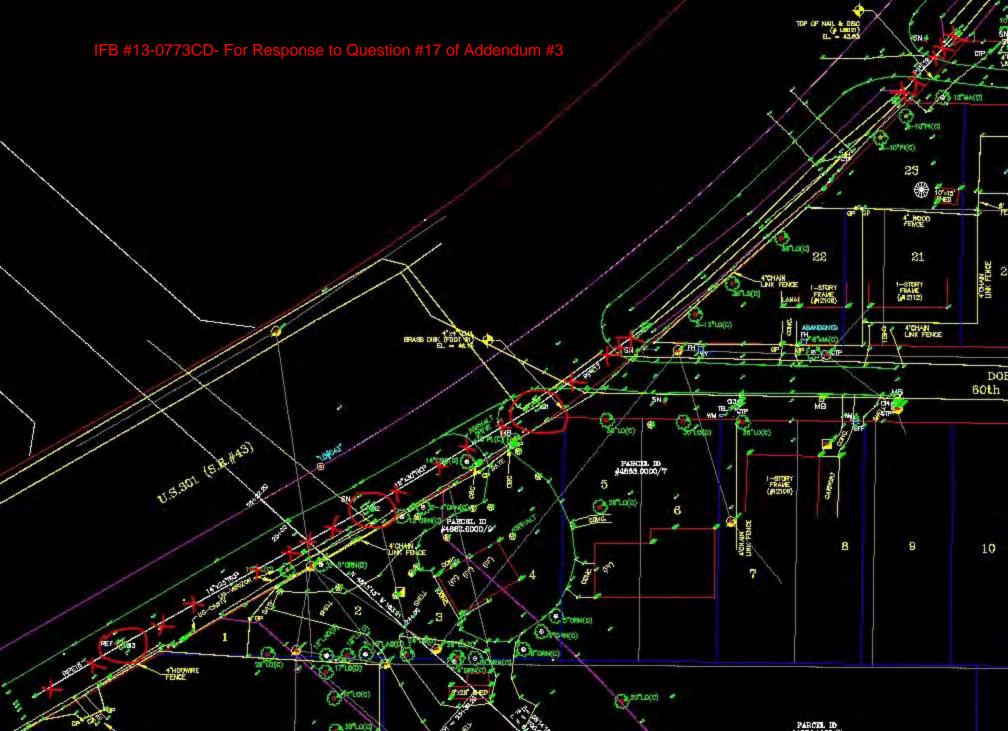
15

15


15

15

15


15

LEGEND

Google earth

feet 1000 meters 300

Limited Phase II Environmental Site Assessment

for the

Fort Hamer Road & US 301 Intersection Improvement Project Manatee County Project No. 6061960

prepared for:

Manatee County – Public Works Department

1022 26th Avenue East Bradenton, FL 34208

prepared by:

Shaping the Future

380 Park Place Boulevard, Suite 300 Clearwater, FL 33759 727-531-3505 Cardno TBE Project No. 00193-008-03

November 2010

TABLE OF CONTENTS

1.0	EXECUTIVE	E SUMMARY		1
2.1	Purpose			3
2.2 Scope of Services				3
2.3 Limitations /Exceptions of Assessment				
2.4 Limiting Conditions and Methodologies Used				
3.0	PHASE II E	SA ACTIVITIES		6
3.1	Scope of	Assessment		6
3.1.1 Supplemental Records Review				
			and dumping Flam	
	3.1.4 Deviati	ons from the Wo	ork Plan	6
3.2	Field Exp	lorations and Me	ethods	6
3.2.1 Test Pits				6
3.2.2 Soil Borings				
3			ns	
3.3 Sampling and Chemical Analyses 3.3.1 Soil 3.3.2 Groundwater				
4.1 Analytical Data				
4.1.1 Soil				
	, 100 - 100 - 100			
5.0	CONCLUSI	ON		10
6.0	STATEMEN	IT OF QUALITY	AND PROFESSIONAL CERTIFICATION	11
Tables:		Table 1	Soil Analytical Results	
		Table 2	Groundwater Analytical Results	
Figures		Figure 1	USGS / Site Location Map	
		Figure 2	Study Area Map	
		Figure 3	Sampling Location Map - North	
		Figure 4	Sampling Location Map - South	
Appendices		Appendix A	Field Sampling Logs and Notes	
		Appendix B	Laboratory Analyses Results	

1.0 EXECUTIVE SUMMARY

Cardno TBE has completed a Limited Phase II Environmental Site Assessment of the study area identified as the "US 301 and Ft. Hamer Road Intersection Improvements (from Britt Road to US 301) in Parrish, Manatee County, Florida; subsequently referred in this report as the "study area" or "subject site." This assessment was prepared in general accordance with the American Society of Testing and Materials (ASTM) Standard Practices for Environmental Site Assessments: Phase II ESA Process (ASTM Designation: E1903-97, Re-approved 2002).

The purpose of the Limited Phase II ESA was to evaluate the potential for environmental impacts from identified contaminants found within the proposed roadway rights-of-way, as well as the proposed pond sites. The specific purpose of this limited environmental assessment activities was to determine if current or former arsenic, pesticide or petrochemical storage/handling have the potential to impact either soil or groundwater quality as a result of historical releases of these materials.

This assessment included the installation of sixteen (16) soil borings and three (3) temporary groundwater monitor wells (as well as collection of groundwater samples from three existing monitor wells) within the study area site boundaries for the assessment of soil and groundwater to determine the presence of metals, petroleum and pesticide constituents.

This assessment has revealed the following:

Soil Impacts:

• Total Recoverable Petroleum Hydrocarbons (TRPH) was detected in shallow soils above the State's direct-exposure criteria within the proposed roadway improvement area located in the west portion of the Herrera Property (Parcel ID No. 48341007). TRPH was also encountered in shallow soil collected near the west corner of the Herrera garage structure located within the proposed improvement area. This detection was below cleanup criteria, but indicative of the potential for wide-spread petroleum impacts to shallow soils within this parcel (Parcel ID No. 486200009).

Groundwater Impacts:

Isopropylbenzene (a/k/a cumene) was detected above State cleanup target levels in
the groundwater collected from one of the existing monitor wells (MW-4R) located within
the Herrera property. Cumene, an aromatic hydrocarbon, is a constituent of refined
fuels. It's presence above regulatory criteria indicates dissolved-phase petroleum
impacts to groundwater in the vicinity of the former underground diesel fuel storage

tanks west of the garage/storage structure located on the Herrera property (and within the proposed roadway improvement location).

• Low-level impacts of TRPH, Naphthalenes and Benzenes were encountered in MW-4R, MW-7 and TMW-1 above laboratory analysis detection limits, but below cleanup target levels. While these detections do not require remedial efforts for regulatory compliance, they do indicate wide-spread dissolved-phase impacts to groundwater within the Herrera property which could influence subsurface activity anticipated during the roadway improvement project (such as dewatering, soil excavation/disposal, etc.).

Other Potential Environmental Concerns:

- Hydraulic Lift Removal: Prior to the anticipated demolition of the Herrera garage structure, any remaining hydraulic lifts within the structure would require removal per the Chapter 62-761 Rule.
- Asbestos and Lead-based Paint: Based on the recorded age(s) of the on-site structure(s) anticipated to be impacted by the proposed roadway improvements, asbestos and lead-based paint surveys would be required prior to any demolition activity.

Conclusion

This limited assessment has revealed soil and groundwater impacts within the Herrera properties which will require consideration during the proposed roadway improvement project. These considerations will likely include:

- Applicable materials handling plan(s) for soil and groundwater impacts encountered during construction
- Screening for asbestos-containing materials and lead-based paint (as part of the anticipated demolition plan) of the on-site structure(s)
- Hydraulic lift removal per Chapter 62-761 criteria

2.0 INTRODUCTION

Cardno TBE was retained by the Manatee County Public Works to perform a Limited Phase II Environmental Site Assessment (ESA) for the study area located in Parrish, Florida. For reference purposes, a USGS vicinity map for the site is provided on **Figure 1** and the approximate study area boundaries are depicted on **Figure 2**.

2.1 Purpose

The primary purpose of environmental assessment activities at this site was to determine if current or former arsenic, pesticide or petrochemical storage and handling have impacted either soil or groundwater quality as a result of historical releases of these materials. The scope for this Phase II ESA was designed based on the above criteria.

2.2 Scope of Services

The scope of work for this assessment was in general accordance with the American Society of Testing and Materials (ASTM) Standard Practices for Environmental Site Assessments: Phase II ESA Process (ASTM Designation: E1903-97). These methodologies are described as representing good commercial and customary practice for conducting a Phase II ESA of a property for the purpose of evaluating recognized environmental conditions.

This investigation has been identified as a "limited" investigation as its purpose is to identify impacts related to known current and/or historical land use, and included just the portions of the parcels anticipated to be impacted by the proposed roadway improvement project.

2.2.1 Soil Assessment

- Advancement of soil borings via direct-push technology at sixteen (16) locations within the proposed ROW and pond sites.
- Collection of soil samples from three discrete depth intervals from each boring location (0.5', 2' and 4' bls) and screened using an Organic Vapor Analyzer utilizing a flame lonization detector as specified in Rule 62-770.200(2), FAC, to determine if volatile compounds are present.
- Laboratory analysis of six (6) samples exhibiting organic vapor concentrations above background readings, or in areas most likely to intercept contaminants. Samples analyzed by an accredited laboratory to evaluate the potential soil impacts above FDEP soil cleanup target levels utilizing the following parameters:

For samples collected from areas suspected of petroleum impacts:

- EPA Method 8260 for volatile organic compounds (BTEX/MTBE)
- EPA Method 8270 for polynuclear aromatic hydrocarbons (PAHs)
- FLPRO for total recoverable hydrocarbons

For samples collected from areas suspect of petroleum and herbicide/pesticide impacts:

- The above-listed methods
- EPA Method 8081 for organochlorine pesticides
- EPA Method 8321 for chlorinated herbicides

2.2.2 Groundwater Assessment

- Installation and sampling of three (3) temporary, small-diameter monitor wells in the areas most likely to contain subsurface impacts. Wells were installed to a depth between 14 and 15 feet below land surface for collection of groundwater samples.
- Upon review of available agency data related to the Herrera Property located within the north portion of the study area, Cardno TBE personnel were able to utilize three existing permanent groundwater monitor wells installed on the property as part of the FDEP Bureau of Petroleum Storage Systems cleanup program.
- Samples were submitted for laboratory analysis of the following parameters:

For samples collected from areas suspected of petroleum impacts:

- EPA Method 8260 for volatile organic compounds
- EPA Method 8270 for polynuclear aromatic hydrocarbons (PAHs)
- FLPRO for total recoverable hydrocarbons
- EPA Method 6010 for lead
- EPA Method 8011 for EDB

For samples collected from areas suspect of petroleum and herbicide/pesticide impacts:

- The above-listed methods
- EPA Method 8081 for organochlorine pesticides
- EPA Method 8321 for chlorinated herbicides

2.3 Limitations /Exceptions of Assessment

The conclusions and recommendations contained within this report are based on the data developed during the Limited Phase II ESA investigation. This report was prepared for the Client, and is intended solely for their use. This report is not intended for third-party use without the expressed written consent of the Client and Cardno TBE. This report has been prepared in general accordance with 40 CFR Part 312 Standards and Practices for All Appropriate Inquiries and ASTM E 1903-97 Standard Guide for Environmental Site Assessments: Phase II Environmental Site Assessment Process. No other warranty, expressed or implied, is made.

2.4 Limiting Conditions and Methodologies Used

No ESA can eliminate all uncertainty. Furthermore, any sample, either surface or subsurface, taken for chemical analysis may or may not be representative of a larger population. Professional judgment and interpretation are inherent in the process and uncertainty is inevitable. Additional assessment may be able to reduce the uncertainty. Even when Phase II ESA work is executed with an appropriate site-specific standard of care, certain conditions present especially difficult detection problems. Such conditions may include, but are not limited to, complex geological settings, the fate and transport characteristics of certain hazardous substances and petroleum products, the distribution of existing contamination, physical limitations imposed by the location of utilities and other man-made objects, and the limitations of assessment technologies.

Phase II ESAs do not generally require an exhaustive assessment of environmental conditions on a property. There is a point at which the cost of information obtained and the time required to obtain it outweigh the usefulness of the information and, in fact, may be a material detriment to the orderly completion of transactions. If hazardous substance or petroleum releases are confirmed on a parcel of property, the extent of further assessment is related to the degree of uncertainty that is acceptable to the user with respect to the real estate transaction. Measurements and sampling data only represent the site conditions at the time of data collection. Therefore, the usability of data collected as part of this Phase II ESA may have a finite lifetime depending on the application and use being made of the data. An environmental professional should evaluate whether the generated data are appropriate for any subsequent use beyond the original purpose for which it was collected.

3.0 PHASE II ESA ACTIVITIES

3.1 Scope of Assessment

3.1.1 Supplemental Records Review

No supplement records review was conducted for this assessment.

3.1.2 Conceptual Site Model and Sampling Plan

The conceptual site model takes into consideration the potential distributions of contaminants with respect to the properties and anticipated fate and transport characteristics of contaminants in a setting such as that being assessed. The sampling plan was designed to provide for the collection of potentially contaminated environmental media, if they occur, at locations and depths where the highest concentrations are likely to occur. The sampling plan developed for this project was based on the proximity of potential environmental concerns (including on-site activities).

3.1.3 Chemical Testing Plan

The chemical testing plan was designed to detect the contaminants suspected to be present in the samples collected. This testing plan included tests which provide quality assurance (QA) and techniques that provide quality control (QC) over the chemical analysis. A completed chain of custody record accompanied each sample shipment to the analytical laboratory. Chain of custody records provide written documentation regarding sample collection and handling, identify the persons involved in the chain of sample possession, and a written record of requested analytical parameters.

3.1.4 Deviations from the Work Plan

There were no significant deviations from the work plan.

3.2 Field Explorations and Methods

3.2.1 Test Pits

No test pits were excavated as part of this Phase II ESA.

3.2.2 Soil Borings

Fifteen (15) borings were excavated to the water table within the boundaries of the study area depicted on **Figure 2**. At the time of this assessment, the water table was encountered approximately four feet below land surface.

Samples were recovered at approximate two-foot increments using direct-push technology (Geoprobe™) for screening of combustible vapors via a Flame Ionization Detector (FID). Copies of the field sampling logs are included in **Appendix A.**

3.2.3 Monitor Well Installations

Three (3) temporary shallow groundwater monitor wells were installed in soil boring excavations in areas deemed most likely to intercept migrating contaminants related to current and/or historic land uses. These wells consisted of one-inch PVC pipe with 10 feet of slotted screen per FDEP Standard Operating Procedures. All wells were installed to a depth of between 14 and 15 feet below land surface.

3.3 Sampling and Chemical Analyses

3.3.1 Soil

Due to lack of FID readings within the vadose zone (area between the surface and the water table) indicating significant petroleum impacts, soil samples were collected from borings anticipated to offer a characterization of on-site shallow soils. Samples were submitted to Sun Labs for laboratory analysis for the analyses listed in Section 2.2.1.

3.3.2 Groundwater

Groundwater samples collected from the three temporary and three existing permanent monitor wells were submitted to Sun Labs for the laboratory analyses listed in Section 2.2.2.

3.3.3 Other

No other chemical analyses were performed as part of this Limited Phase II ESA.

4.0 EVALUATION AND PRESENTATION OF RESULTS

4.1 Analytical Data

4.1.1 Soil

Comparison of the laboratory analysis results to Chapter 62-777 Cleanup Target Levels (CTLs) of the collected soil samples revealed the following:

Total Petroleum Recoverable Hydrocarbons (TRPH) was detected in shallow soils
above the State's direct-exposure criteria within the proposed roadway
improvement area located in the west portion of the Herrera Property (Parcel ID
No. 48341007). TRPH was also encountered in shallow soil collected near the
west corner of the Herrera garage structure located within the proposed
improvement area. This detection was below cleanup criteria, but indicative of
relatively wide-spread petroleum impacts to shallow soils within this parcel
(Parcel ID No. 486200009).

Organochlorine pesticides and chlorinated herbicides:

Laboratory analysis of the two soil samples collected in areas suspect of these impacts revealed no detections above CTLs and/or the analyses detection limits.

4.2.1 Groundwater

Comparison of the laboratory analysis results to Chapter 62-777 Cleanup Target Levels (CTLs) of the six collected groundwater samples revealed the following:

Petroleum constituents (VOC, PAH's and TRPH):

MW-4R (existing monitor well located within the Herrera property) exhibited levels of VOCs (ethylbenzene, isopropylbenzene and trimethylbenzenes) above analysis detection limits. With the exception of isopropylbenzene, the levels of these constituents were below the applicable CTLs.

Isopropylbenzene (a/k/a cumene), an aromatic hydrocarbon, is a constituent of refined fuels. It's presence above regulatory criteria indicates dissolved-phase petroleum impacts to groundwater in the vicinity of the former underground diesel fuel storage tanks on the Herrera Property west of the on-site garage/storage structure (and within the proposed roadway improvement location).

Similar constituents were encountered in MW-7, but well below CTLs. However, the detection of these constituents indicates the potential for horizontal migration of contaminants.

Organochlorine pesticides and chlorinated herbicides:

Laboratory analysis of the two soil samples collected in areas suspect of these impacts revealed no detections above CTLs and/or the analyses detection limits.

A copy of the laboratory analyses reports is included as Appendix B.

5.0 CONCLUSION

This limited assessment has revealed soil and groundwater impacts within the Herrera properties which will require consideration during the proposed roadway improvement project. These considerations will likely include:

- Applicable materials handling plan(s) for soil and groundwater impacts encountered during construction
- Screening for asbestos-containing materials and lead-based paint (as part of the anticipated demolition plan) of the on-site structure(s)
- Hydraulic lift removal per Chapter 62-761 criteria

6.0 STATEMENT OF QUALITY AND PROFESSIONAL CERTIFICATION

I declare that I have the specific qualifications based on education, training and/or experience to assess a property of the nature, history and setting of the subject property.

CARDNO TBE

Shawn Lasseter

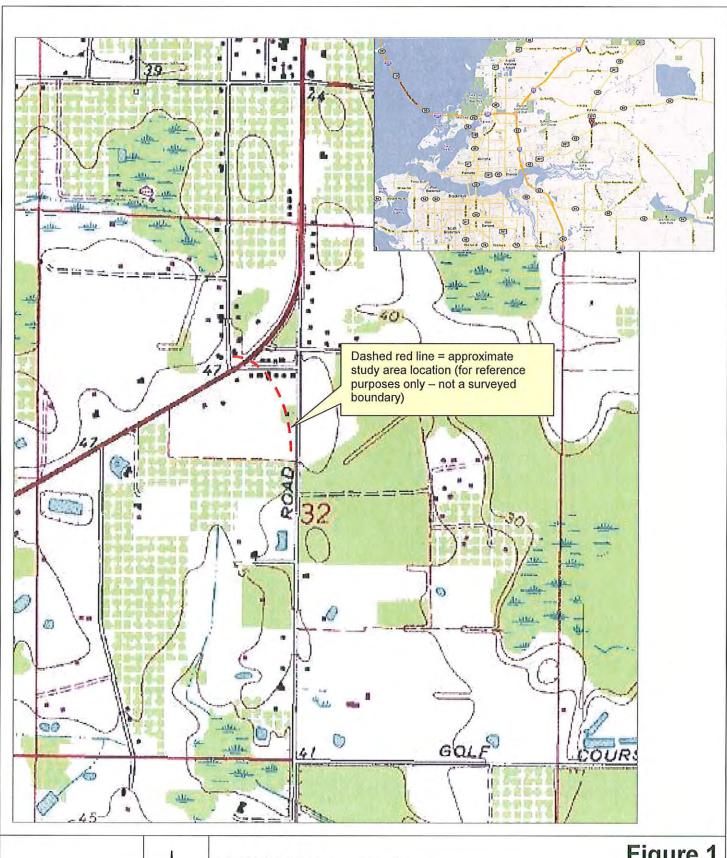
Environmental Specialist

Date: _____11/12/2010

I declare that I meet the definition of Environmental Professional as defined in 40 CFR Part 312.10 and that I have the specific qualifications based on education, training and experience to assess a property of the nature, history and setting of the subject property. I further certify that, in my professional judgment, this report meets the general requirements of ASTM Method E 1903-97, Standard Guide for Environmental Site Assessments: Phase II Environmental Site Assessment Process, and was prepared by me or under my direct responsible charge.

CARDNO TBE

Richard L. Hagberg, PG


Director

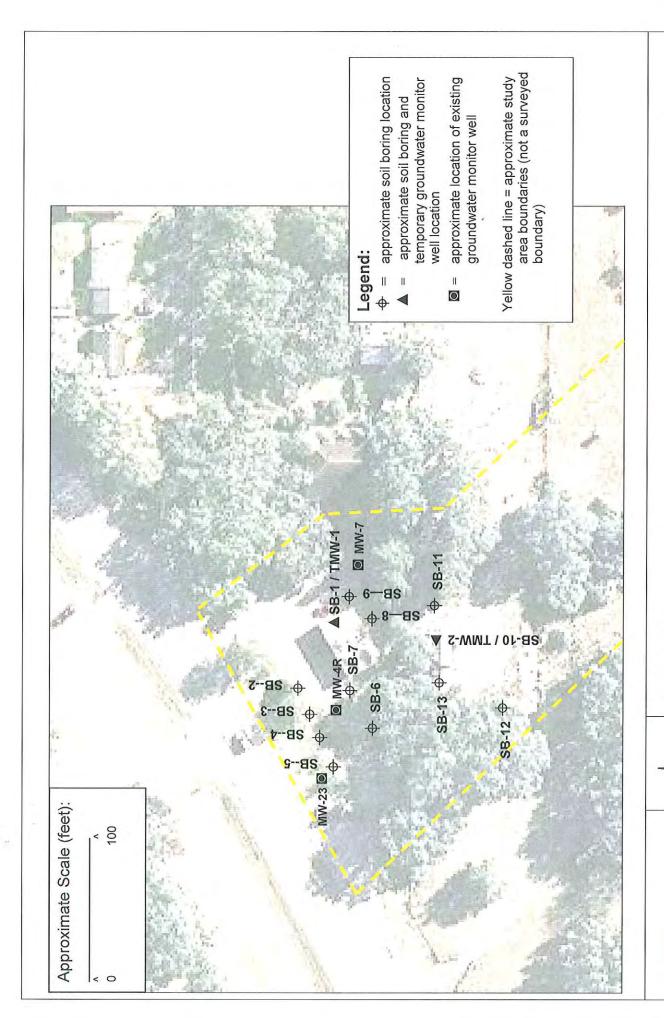
Date: _____11/12/2010

Figures



US 301 & Ft Hamer RoadProposed Intersection Improvements
Parrish, Manatee County, Florida

Figure 1 USGS/Site Vicinity Map



US 301 & Ft Hamer Road

Proposed Intersection Improvements Parrish, Manatee County, Florida

Figure 2 Study Area Map

Figure 3 Sampling Location Map - North

US 301 & Ft Hamer Road
Proposed Intersection Improvements
Parrish, Manatee County,

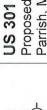

Cardno TBE

Figure 4 Sampling Location Map - South

US 301 & Ft Hamer Road
Proposed Intersection Improvements
Parrish, Manatee County,

Cardno TBE

Tables

Table 1 Soil Analytical Summary

Fort Hamer Road & US 301 Roadway Improvements

Method	Parameter	Units	DE- Residential	DE- Comm/Indust	Leach-GW	SS-1 (SB-7 @ 0.5 - 2 feet bls)	2 SS-2 (SB-10 @ 0.5 - 2 feet bls)) @ 0.5 - 2 ols)	SS-3 (SB-11@0.5 - 2 feet bls)	90.5-2	SS-4 (SB-12 @ 0.5 - 2 feet bls)		SS-5 (SB-14 @ 0.5 - 2 feet bis)		SS-6 (SB-16 @ 0.5 - 2 feet bls)	0.5-2
	Date Collected					10/7/2010 Result Qual		10/7/2010 Result Qual	10/11/2010 Result C	010 Qual	10/11/2010 Result Qual	Qual	10/11/2010 Result C	Oual	10/8/2010 Result	Qual
Volatile O	Volatile Organic Compounds (BTEX/MTBE)															
8260	Benzene	mg/kg	1.2	1.7	0.007	0.00053 U	0.00058	ח	0.00055	D	0.00056	כ	0.00076	n	0.00056	n
8260	Ethylbenzene	mg/kg	1500	9200	9.0	0.00061 U	0.00066	ם .	0.00062	ח	0.00064	כ	0.00087	n	0.00064	כ
8260	MTBE	mg/kg	4400	24000	60.0	0.0015 U	0.0017	כ	0.0016	כ	0.0016	D	0.0022	ם	0.0016	ם
8260	Toluene	mg/kg	7500	00009	0.5	0.0023 U	0.0025	ס	0.0024	ס	0.0024	n	0.0033	n	0.0024	D
8260	Total Xylenes	mg/kg	130	700	0.2	0.0023 U	0.0025)	0.0024	כ	0.0024	ר	0.0033	ח	0.0024	ס
Polynucle	Polynuclear Aromatic Hydrocarbons (PAHs)						J									
8270	Acenaphthene	mg/kg	2400	20000	2.1	0.0024 U	0.0044)	0.0022	ס	0.0022	כ	0.0023	ס	0.0022	כ
8270	Acenaphthylene	mg/kg	1800	20000	27	0.0025 U	0.0046	n	0.0023	D	0.0023	n	0.0024	D	0.0023	ס
8270	Anthracene	mg/kg	21000	300000	2500	0.002 U	0.0036	D	0.0018	>	0.0018	כ	0.0018	כ	0.0018	כ
8270	Benzo(a)anthracene	mg/kg	#	#	0.8	0.0017 U	0.0032	כ	0.0016	D	0.0015	ם	0.0016	ם	0.0016	כ
8270	Benzo(a)pyrene	mg/kg	0.1	0.7	89	0.0023 U	0.0042	D	0.0021	Э	0.0021	n	0.0022	ס	0.0021	D
8270	Benzo(b)fluoranthene	mg/kg	#	#	2.4	0.0031 U	0.0056	כ	0.0028	ב	0.0028	ב	0.0029	ס	0.0029	ס
8270	Benzo(g,h,i)perylene	mg/kg	2500	52000	32000	0.0079 U	0.014	D	0.0071	ם	0.0071	ס	0.0075	D	0.0073	ס
8270	Benzo(k)fluoranthene	mg/kg	#	#	24	0.0022 U	0.004)	0.002	Э	0.002	כ	0.0021	ס	0.002	כ
8270	Chrysene	mg/kg	#	#	77	0.0014 U	0.0024	D	0.0012	Э	0.0012	כ	0.0013	D	0.0013	ס
8270	Dibenzo(a,h)anthracene	mg/kg	#	#	0.7	0.0084 U	0.015	ם	0.0075	כ	0.0075	ם	0.0079	כ	0.0078	Þ
8270	Fluoranthene	mg/kg	3200	29000	1200	0.018	0.0048	ם	0.0024	ס	0.0024	ב	0.0025	Э	0.0024	Э
8270	Fluorene	mg/kg	2600	33000	160	0.0021	0.0038	כ	0.0019	Э	0.0019	כ	0.002	D	0.0019	D
8270	Indeno(1,2,3-cd)pyrene	mg/kg	#	#	9.9	0.0083 U	0.015	כ	0.0074	ב	0.0074	כ	0.0078	ס	0.0077	Э
8270	Methylnaphthalene, 1-	mg/kg	200	1800	3.1	0.0038 U	0.0068	Þ	0.0034	כ	0.0034	כ	0.0036	ם	0.0035	Э
8270	Methylnaphthalene, 2-	mg/kg	210	2100	8.5	0.0032 U	0.0058	ב	0.0029	⊃	0.0029	כ	0.003	ס	0.003	כ
8270	Naphthalene	mg/kg	55	300	1.2	0.0063 U	0.011	כ	0.0057	Þ	0.0057	כ	900'0	ס	0.0059	Э
8270	Phenanthrene	mg/kg	2200	36000	250	0.0032 U	0.0058)	0.0029	Э	0.0029	5	0.003	ס	0.003	כ
8270	Pyrene	mg/kg	2400	45000	880	0.026	0.014	כ	0.0071	>	0.0071	כ	0.0075	ס	0.0073	ר
Florida Pe	Florida Petroleum Range Organics															
FLPRO	ТКРН	mg/kg	460	2700	340	150	840		4.9	כ	4.9	ם	6.1	-	5.1	ס
Organoch	Organochlorine Pesticides											l d				
8081	Aldrin	mg/kg	90.0	0.3	0.2		0.0023	D					0.0024	ם		
8081	BHC, a-	mg/kg	1.0	9.0	0.0003		0.003	כ				Ò	0.0032	ח		
8081	BHC, b-	mg/kg	0.5	2.4	0.001		0.0019)					0.002	ס		
8081	BHC, d-	mg/kg	24	490	0.2		0.0023)					0.0024	ס		
8081	Chlordane, a-	mg/kg	NE	NE	N.		0.0024	ח				ī	0.0025	כ		

Table 1 Soil Analytical Summary

Fort Hamer Road & US 301 Roadway Improvements

Method	Parameter	Units	DE- Residential	DE- DE- Residential Comm/Indust Leach-GW	Leach-GW	SS-1 (SB-7 @ 0.5 - 2 feet bls)	SS-2 (SB-10 @ 0.5 - 2 feet bls)	2 SS-3 (SB-11 @ 0.5 - 2 feet bls)	SS-4 (SB-12 @ 0,5 - 2 feet bls)	SS-5 (SB-14 @ 0.5 - 2 feet bls)	SS-6 (SB-16 @ 0.5 - 2 feet bls)
	Date Collected					10/7/2010 Result Qual	10/7/2010 Result Qual	10/11/2010 al Result Qual	10/11/2010 Result Qual	10/11/2010 Result Qual	10/8/2010 Result Qual
8081	Chlordane, g-	mg/kg	NE	N N	NE		O.0018 U			O.0018	
8081	DDD, 4,4'-	mg/kg	4.2	22	5.8		U.0019			0.002 U	
8081	DDE, 4,4'-	mg/kg	2.9	15	18		0.0018 U			0.0018 U	
8081	DDT, 4,4'-	mg/kg	2.9	15	11		0.00067 U			U 7000.0	
8081	Dieldrin	mg/kg	90.0	0.3	0.002		0.0017 U			0.0017 U	
8081	Endosulfan I (alpha)	mg/kg	NE NE	NE	NE		0.0017 U			0.0017 U	
8081	Endosulfan II (beta)	mg/kg	NE	NE	NE		0.0017 U			0.0017 U	
8081	Endosulfan sulfate	mg/kg	NE	NE	NE		0.0012 U			0.0013 U	
8081	Endrin	mg/kg	25	510	5		0.0018 U			0.0018 U	
8081	Endrin aldehyde	mg/kg	NE	NE	NE		0.0017 U			0.0017 U	
8081	Endrin ketone	mg/kg	NE	NE	NE		0.0014 U			0.0014 U	
8081	Heptachlor	mg/kg	0.2	•	23		0.002 U			0.0021 U	
8081	Heptachlor epoxide	mg/kg	0.1	0.5	9.0		0.0018 U			0.0018 U	
8081	Lindane	mg/kg	0.7	2.5	600.0		0.00062 U			0.00065 U	
8081	Methoxychlor	mg/kg	420	8800	160		0.002			0.0021 U	
8081	Mirex	mg/kg	NE	NE	NE		0.0067 U			0.007	
8081	Toxaphene	mg/kg	6.0	4.5	31		U 770.0			0,08	
Chlorinate	Chlorinated Herbicides										
8321	D, 2,4-	mg/kg	770	13000	0.7		0.033			0.035 U	
8321	DB, 2,4-	mg/kg	NE	NE	NE		0.0092 U			0.0096 U	
8321	Dicamba	mg/kg	2300	40000	2.6		0.021 U			0.022 U	
8321	Dichlorprop	mg/kg	370	5300	0.3		0.0074 U			U 7700.0	
8321	MCPA	mg/kg	35	200	0.02		0.003			0.0032 U	
8321	MCPP	mg/kg	64	800	0.03		O.0093			U 7600.0	
8321	Picloram	mg/kg	NE	NE	NE		0.023 U			0.024 U	
8321	T 245-	ma/ka	069	9500	0.4		0.0074			U 7700.0	

FGFND.

U = Compound was analyzed for, but not detected above analysis detection limits

I = Reported value is between the Iaboratory method detection limit and the Iaboratory practical quantitation limit

This summary is provided for the convenience of our clients. The signed, hardcopy report is the official report.

Table 2 Groundwater Analytical Summary Fort Hamer Road & US 301 Roadway Improvements

Lead Lead Acetone Benzene Benzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Chloroform Chloroform Chloropenzene Chloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Dichlorobenzene, 1,2- Dichlorobenzene, 1,1- Dichloropethane, 1,1- Dichloropethane, 1,2- Dichloropethane, 1,3- Ettylbenzene Hexanone, 2- Methylene Chloride MTBE isopropylbenzene Styrene Tretrachloroethane, 1,1,2,2-				AT ANIM	/- MIM		MW-23		I-WWI		TMW-2		O A INI	
Lead Acetone Benzene Bromochloromethane Bromochloromethane Bromochloromethane Bromoform Bromomethane Bromoform Bromomethane Carbon disulfide Carbon disulfide Chlorobenzene Chlorobenzene Chloromethane Dibromomethane Dibromomethane Dibromomethane Dibromomethane Dichlorobenzene, 1,2- Dichlorobenzene, 1,4- Dichlorothane, 1,1- Dichlorothane, 1,1- Dichlorothane, 1,1- Dichlorothene, trans-1,2- Dichlorothene, trans-1,2- Dichlorothene, trans-1,2- Dichlorophopane, 1,3- Ethylbenzene Hexanone, 2- Methylene Chloride MTBE isopropylbenzene Styrene Tetrachlorothane, 1,1,2,2-			10/8/2010	2010	10/8/2010	0	10/8/2010	0	10/11/2010	10	3/10/2010	0	3/10/2010	0
Lead Acetone Benzene Benzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Carbon disulfide Carbon disulfide Carbon tetrachloride Chloroethane Chloroethane Dichlorobenzene, 1,2- Dichlorobenzene, 1,3- Dichloroethane, 1,1- Dichloroethane, 1,1- Dichloroethane, 1,1- Dichloroethane, 1,2- Dichloroethene, trans-1,2- Dichloroethene, trans-1,2- Dichloroethene, trans-1,2- Dichloroethene, 1,3- Ethylbenzene Hexanone, 2- Methyl-2-pentanone, 4- Methylene Chloride MTBE isopropylbenzene Styrene Tetrachloroethane, 1,1,2,2-			Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Gual
Acetone Benzene Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Butanone, 2- Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorobenzene Chloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Dichlorobenzene, 1,2- Dichlorobenzene, 1,1- Dichlorothane, 1,1- Dichlorothane, 1,1- Dichlorothene, trans-1,2- Dichlorothene, trans-1,2- Dichloropthane, 1,3- Ettylbenzene Hexanone, 2- Methyl-2-pentanone, 4- Methyl-2-pentanone, 4- Methylene Chloride MTBE Isopropylbenzene Styrene Tetrachloroethane, 1,1,2,2-		15 150	4.4	כ	4.4	כ	4.4	Э	4.4	5	4.4	5	4.4	5
Acetone Benzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane Butanone, 2- Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorobenzene Chloromethane Dibromochloromethane Dibromochloromethane Dichlorobenzene, 1,2- Dichlorobenzene, 1,1- Dichlorothane, 1,1- Dichlorothane, 1,1- Dichlorothane, 1,2- Dichlorothane, 1,2- Dichlorothene, trans-1,2- Dichloropene, 1,3- Ettylbenzene Hexanone, 2- Mettyl-2-pentanone, 4- Mettylene Chloride MTBE isopropylbenzene Styrene Tetrachloroethane, 1,1,2,2- Tetrachlorothane, 1,3- Ettylbenzene Hexanone, 2- Mettylene Chloride Styrene						1								
Benzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane Butanone, 2- Carbon tetrachloride Carbon tetrachloride Carbon tetrachloride Chloroethane Chloroethane Chloromethane Dibromochloromethane Dibromochloromethane Dichlorobenzene, 1,2- Dichlorobenzene, 1,1- Dichloroethane, 1,1- Dichloroethane, 1,1- Dichloroethane, 1,2- Dichloroethene, 1,3- Dichloropene, 1,3- Dichloropene, 1,3- Dichloropene, 1,3- Ettylbenzene Hexanone, 2- Mettylene Chloride MTBE isopropylbenzene Styrene Tetrachloroethane, 1,1,2,2- Tetrachloroethane, 1,2- Tetrachloroethane, 1,3- Ettylbenzene Styrene		6300 63000		ח	4.9	1	9.0	b	3.4	_	8.5		2.2	-
Bromochloromethane Bromodichloromethane Bromoform Bromomethane Butanone, 2- Carbon disulfide Carbon tetrachloride Chloroethane Chloroethane Chloromethane Dibromochloromethane Dibromochloromethane Dischlorobenzene, 1,3- Dichlorobenzene, 1,4- Dichloroethane, 1,1- Dichloroethane, 1,1- Dichloroethane, 1,1- Dichloroethene, 1,1- Dichloroethene, 1,3- Dichloroethene, 1,3- Dichloropene, 1,3- Ethylbenzene Hexanone, 2- Methylene Chloride MTBE isopropylbenzene Styrene Tetrachloroethane, 1,1,2- Dichloroethane, 1,3- Ethylbenzene Hexanone, 2- Methylene Chloride Styrene Tetrachloroethane, 1,1,2,2- Tetrachloroethane, 1,1,2,2- Tetrachloroethane, 1,2- Tetrachloroethane, 1,2- Tetrachloroethane, 1,3- Ethylbenzene Styrene	ng/L	1 100		כ	0.1	כ	0.1	5	0.1	ے ا	0.1	כ	0.1	b
Bromodichloromethane Bromoform Bromomethane Butanone, 2- Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorobenzene Chloromethane Dibromochloromethane Dibromochloromethane Dichlorobenzene, 1,2- Dichlorobenzene, 1,1- Dichlorothane, 1,1- Dichlorothane, 1,1- Dichlorothane, 1,2- Dichlorothane, 1,2- Dichlorothane, 1,3- Ethylbenzene Hexanone, 2- Methyl-2-pentanone, 4- Methylene Chloride MTBE isopropylbenzene Styrene Tetrachloroethane, 1,1,2,2- Dichlorothane, 1,3- Ethylbenzene Hexanone, 2- Methylene Chloride Styrene Tetrachloroethane, 1,1,2,2- Tetrachloroethane, 1,1,2- Tetrachloroethane, 1,2- Tetrachloroethane, 1,3- Ethylbenzene Styrene		91 910		כ	0.2	כ	0.2	>	0.2	5	0.2	ח	0.2	5
Bromoform Bromomethane Butanone, 2- Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorobenzene Chloromethane Chloromethane Dibromomethane Dibromomethane Dichlorobenzene, 1,2- Dichlorothane, 1,1- Dichlorothane, 1,1- Dichlorothane, 1,2- Dichlorothane, 1,2- Dichlorothene, is-1,2- Dichlorothene, trans-1,2- Dichlorothene, trans-1,2- Dichloropene, 1,3- Ethylbenzene Hexanone, 2- Methyl-2-pentanone, 4- Methylene Chloride MTBE isopropylbenzene Styrene Tetrachloroethane, 1,1,2,2-		0.6 60		n	0.1	ח	0.1	ם	0.1	ח	0.1	ח	0.1	כ
Bromomethane Butanone, 2- Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorothane Chloromethane Dibromomethane Dibromomethane Dichlorobenzene, 1,2- Dichlorobenzene, 1,4- Dichlorothane, 1,1- Dichlorothane, 1,1- Dichlorothane, 1,1- Dichlorothane, 1,1- Dichlorothane, 1,2- Dichlorothene, trans-1,2- Dichlorothene, trans-1,2- Dichlorothene, trans-1,2- Dichloropene, 1,3- Ethylbenzene Hexanone, 2- Methyl-2-pentanone, 4- Methyl-2-pentanone, 4- Methylene Chloride isopropylbenzene Styrene Tetrachloroethane, 1,1,2,2-				n	0.3	n	0.3)	0.3	n	0.3	ח	0.3	b
Butanone, 2- Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorothane Chloromethane Chloromethane Dibromochloromethane Dibromochloromethane Dichlorobenzene, 1,2- Dichlorobenzene, 1,4- Dichlorothane, 1,1- Dichlorothane, 1,1- Dichlorothane, 1,1- Dichlorothene, 1,1- Dichlorothene, 1,1- Dichlorothene, 1,1- Dichlorothene, 1,1- Dichlorothene, 1,1- Dichlorothene, 1,3- Ethylbenzene Hexanone, 2- Methyl-2-pentanone, 4- Methylene Chloride isopropylbenzene Styrene Tetrachloroethane, 1,1,2,2- Tetrachlorothane, 1,1,2,2- Tetrachlorothane, 1,2- Tetrachlorothane, 1,1,2,2-		9.8		Ω	0.4	ם	0.4	5	0.4	ם	9.0	ח	0.4	b
Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloromethane Dibromochloromethane Dichlorobenzene, 1,2- Dichlorobenzene, 1,4- Dichloroethane, 1,1- Dichloroethane, 1,1- Dichloroethene, 1,1- Dichloroethene, 1,1- Dichloroethene, 1,2- Dichloroethene, 1,3- Ethylbenzene Hexanone, 2- Methyl-2-pentanone, 4- Methyler Chloride MTBE isopropylbenzene Styrene Tetrachloroethane, 1,1,2,2- Tetrachloroethane, 1,3- Ethylbenzene Hexanone, 2- Methyler Chloride Styrene Tetrachloroethane, 1,1,2,2- Tetrachloroethane, 1,1,2,2- Tetrachloroethane, 1,1,2,2- Tetrachloroethane, 1,1,2,2- Tetrachloroethane, 1,1,2,2-				ח	3.3	-	0.4	D	3.3	-	3.8	_	4.1	-
Carbon tetrachloride Chlorobenzene Chloroethane Chloromethane Dibromochloromethane Dichlorobenzene, 1,2- Dichlorobenzene, 1,3- Dichloroethane, 1,1- Dichloroethane, 1,1- Dichloroethane, 1,2- Dichloroethene, 1,2- Dichloroethene, 1,2- Dichloroethene, 1,3- Ethylbenzene Hexanone, 2- Methyl-2-pentanone, 4- Methylene Chloride MTBE isopropylbenzene Styrene Tetrachloroethane, 1,1,2,2- Tetrachloroethane, 1,3- Ethylbenzene Hexanone, 2- Methylene Chloride Styrene		700 7000		כ	0.25	D	0.25	5	0.25	>	0.25	כ	0.25	5
Chlorobenzene Chloroethane Chloroethane Chloromethane Dibromochloromethane Dichlorobenzene, 1,2- Dichlorobenzene, 1,3- Dichloroethane, 1,1- Dichloroethane, 1,1- Dichloroethene, 1,2- Dichloroethene, 1,2- Dichloroethene, 1,2- Dichloroethene, 1,3- Ethylbenzene Hexanone, 2- Methyl-2-pentanone, 4- Methylene Chloride MTBE isopropylbenzene Styrene Tetrachloroethane, 1,1,2,2-		3 300		D	0.2	כ	0.2	b	0.2	כ	0.2	ے ا	0.2	b
Chloroethane Chloromethane Chloromethane Dibromochloromethane Dichlorobenzene, 1,2- Dichlorobenzene, 1,3- Dichloroethane, 1,1- Dichloroethane, 1,1- Dichloroethene, 1,1- Dichloroethene, 1,2- Dichloroethene, 1,3- Dichloroptopane, 1,2- Dichloroptopane, 1,3- Ethylbenzene Hexanone, 2- Methyl-2-pentanone, 4- Methylene Chloride MTBE isopropylbenzene Styrene Tetrachloroethane, 1,1,2,2-		100 1000)	0.2	כ	0.2	D	0.2	Э	0.2	ח	0.2	b
Chloroform Chloromethane Dibromoethane Dichlorobenzene, 1,2- Dichlorobenzene, 1,3- Dichlorobenzene, 1,4- Dichlorothane, 1,1- Dichloroethane, 1,1- Dichloroethene, 1,2- Dichloroethene, 1,2- Dichloroptopane, 1,2- Dichloroptopane, 1,3- Ethylbenzene Hexanone, 2- Methyl-2-pentanone, 4- Methylene Chloride MTBE isopropylbenzene Styrene Tetrachloroethane, 1,1,2,2-				ח	0.3	כ	0.3	ח	0.3	ר	0.3	ח	0.3	b
Chloromethane Dibromochloromethane Dichlorobenzene, 1,2- Dichlorobenzene, 1,3- Dichlorobenzene, 1,4- Dichlorotenane, 1,1- Dichlorothane, 1,1- Dichlorothane, 1,1- Dichlorothene, 1,1- Dichlorothene, 1,1- Dichlorothene, 1,3- Ethylbenzene Hexanone, 2- Methyl-2-pentanone, 4- Methyl-2-pentanone, 4- Methylene Chloride MTBE isopropylbenzene Styrene Tetrachloroethane, 1,1,2,2-				>	0.1	כ	0.1	b	0.1	כ	0.1	n	0.1	b
Dibromochloromethane Dichlorobenzene, 1,2- Dichlorobenzene, 1,3- Dichlorodifluoromethane Dichlorodifluoromethane Dichloroethane, 1,1- Dichloroethane, 1,1- Dichloroethene, 1,1- Dichloroethene, 1,2- Dichloroptopane, 1,2- Dichloroptopane, 1,3- Ethylbenzene Hexanone, 2- Methyl-2-pentanone, 4- Methylene Chloride MTBE isopropylbenzene Styrene Tetrachloroethane, 1,1,2,2-		2.7 270	0.1	ח	0.1	כ	0.1	כ	0.1	כ	0.1	ח	0.1	b
Dibromomethane Dichlorobenzene, 1,2- Dichlorobenzene, 1,3- Dichlorobenzene, 1,4- Dichlorocthane, 1,1- Dichlorocthane, 1,1- Dichlorocthene, 1,1- Dichlorocthene, 1,2- Dichlorocthene, 1,2- Dichloroptopane, 1,2- Dichloroptopane, 1,2- Dichloroptopane, 1,3- Ethylbenzene Hexanone, 2- Methyl-2-pentanone, 4- Methylene Chloride isopropylbenzene Styrene Tetrachloroethane, 1,1,2,2-		0.4 40		n	0.15	ח	0.15	ם	0.15	ח	0.15	5	0.15	כ
Dichlorobenzene, 1,2- Dichlorobenzene, 1,3- Dichlorobenzene, 1,4- Dichlorocthane, 1,1- Dichlorocthane, 1,1- Dichlorocthene, 1,2- Dichlorocthene, 1,2- Dichlorocthene, 1,2- Dichlorocthene, 1,2- Dichloroptopane, 1,2- Dichloroptopane, 1,2- Dichloroptopane, 1,2- Dichloroptopane, 1,2- Dichloroptopane, 1,2- Methyl-2-pentanone, 4- Methylene Chloride MTBE isopropylbenzene Styrene Tetrachlorocthane, 1,1,2,2-				n	0.1	n	0.1	\supset	0.1	n	0.1	ר	0.1	b
Dichlorobenzene, 1,3- Dichlorobenzene, 1,4- Dichloroethane, 1,4- Dichloroethane, 1,2- Dichloroethene, 1,1- Dichloroethene, 1,1- Dichloroethene, 1,1- Dichloroethene, 1,3- Ethylbenzene Hexanone, 2- Methyl-2-pentanone, 4- Methylene Chloride isopropylbenzene Styrene Tetrachloroethane, 1,1,2,2-				n	0.2	n	0.2	n	0.2	n	0.2	n	0.2	b
Dichlorobenzene, 1,4- Dichlorodifluoromethane Dichloroethane, 1,1- Dichloroethane, 1,2- Dichloroethene, 1,1- Dichloroethene, 1,1- Dichloroptopane, 1,2- Dichloropropane, 1,2- Dichloropropane, 1,3- Ethylbenzene Hexanone, 2- Methyl-2-pentanone, 4- Methylene Chloride isopropylbenzene Styrene Tetrachloroethane, 1,1,2,2-		210 2100	-	n	0.3	n	0.3	n	0.3	n	0.3	n	0.3	כ
Dichlorodifluoromethane Dichloroethane, 1,1- Dichloroethane, 1,1- Dichloroethene, 1,1- Dichloroethene, 1,1- Dichloroptopane, 1,2- Dichloropropane, 1,2- Dichloropropene, 1,3- Ethylbenzene Hexanone, 2- Methyl-2-pentanone, 4- Methylene Chloride isopropylbenzene Styrene Tetrachloroethane, 1,1,2,2-		75 750		n	0.4	n	0.4	D	0.4	ח	0.4	ח	0.4	5
Dichloroethane, 1,1- Dichloroethane, 1,2- Dichloroethene, 1,2- Dichloroethene, 1,1- Dichloroptopane, 1,2- Dichloropropane, 1,2- Dichloropropane, 1,3- Ethylbenzene Hexanone, 2- Methyl-2-pentanone, 4- Methylene Chloride MTBE isopropylbenzene Styrene Tetrachloroethane, 1,1,2,2-		0		n	0.3	n	0.3	n	0.3	n	0.3	n	0.3	b
Dichloroethane, 1,2- Dichloroethene, 1,1- Dichloroethene, 1,1- Dichloroethene, ris-1,2- Dichloropropane, 1,2- Dichloropropane, 1,3- Ethylbenzene Hexanone, 2- Methyl-2-pentanone, 4- Methylene Chloride MTBE isopropylbenzene Styrene Tetrachloroethane, 1,1,2,2-		70 700		n	0.1	n	0.1	n	0.1	n	0.1	ח	0.1	b
Dichloroethene, 1,1- Dichloroethene, cis-1,2- Dichloroethene, trans-1,2- Dichloropropane, 1,2- Dichloropropene, 1,3- Ethylbenzene Hexanone, 2- Methyl-2-pentanone, 4- Methylene Chloride MTBE isopropylbenzene Styrene Tetrachloroethane, 1,1,2,2-		3 30		n	0.2	n	0.2	ס	0.2	ח	0.2	ח	0.2	b
Dichloroethene, cis-1,2- Dichloroethene, trans-1,2- Dichloropropane, 1,2- Dichloropropene, 1,3- Ethylbenzene Hexanone, 2- Methyl-2-pentanone, 4- Methylene Chloride MTBE isopropylbenzene Styrene Tetrachloroethane, 1,1,2,2-		H		n	0.15	n	0.15	n	0.15	n	0.15	n	0.15	כ
Dichloroethene, trans-1,2- Dichloropropane, 1,2- Dichloropropene, 1,3- Ethylbenzene Hexanone, 2- Methyl-2-pentanone, 4- Methylene Chloride MTBE isopropylbenzene Styrene Tetrachloroethane, 1,1,2,2-		70 700		n	0.2	n	0.2	n	0.2	n	0.2	n	0.2	n
Dichloropropane, 1,2- Dichloropropene, 1,3- Ethylbenzene Hexanone, 2- Methyl-2-pentanone, 4- Methylene Chloride MTBE isopropylbenzene Styrene Tetrachloroethane, 1,1,2,2-		100 1000		n	0.2	n	0.2	n	0.2	n	0.2	n	0.2	\supset
Dichloropropene, 1,3- Ethylbenzene Hexanone, 2- Methyl-2-pentanone, 4- Methylene Chloride MTBE isopropylbenzene Styrene Tetrachloroethane, 1,1,2,2-		5 50		n	0.1	n	0.1	n	0.1	n	0.1	n	0.1	⊃
Ethylbenzene Hexanone, 2- Methyl-2-pentanone, 4- Methylene Chloride MTBE isopropylbenzene Styrene Tetrachloroethane, 1,1,2,2-	_			n	0.2	n	0.2	n	0.2	n	0.2	n	0.2	D
Hexanone, 2- Methyl-2-pentanone, 4- Methylene Chloride MTBE isopropylbenzene Styrene Tetrachloroethane, 1,1,2,2-					0.2	n	0.2	n	0.2	-	0.2	n	0.2	-
Methyl-2-pentanone, 4- Methylene Chloride MTBE isopropylbenzene Styrene Tetrachloroethane, 1,1,2,2-				n	0.2	n	0.2	n	0.2	n	0.2	n	0.2	n
Methylene Chloride MTBE isopropylbenzene Styrene Tetrachloroethane, 1,1,2,2-		560 5600		n	0.2	n	0.2	ם	0.2	ח	0.2	5	0.2	>
MTBE isopropylbenzene Styrene Tetrachloroethane, 1,1,2,2-				n	1.7	n	1.7	b	1.7	ח	1.7	5	1.7	5
isopropylbenzene Styrene Tetrachloroethane, 1,1,2,2-		20 200		n	0.05	n	0.05	n	0.05	n	0.05	n	0.05	b
Styrene Tetrachloroethane, 1,1,2,2-					0.2	n	0.2	n	0.2	n	0.2	n	0.2	b
Tetrachloroethane, 1,1,2,2-		100 1000		n	0.1	n	0.1	D	0.1	n	0.1	n	0.1	b
Total		0.1	0.2	n	0.2	n	0.2	n	0.2	n	0.2	n	0.2	כ
8260 letrachloroethene ug/L	ng/L	-		n	0.25	n	0.25	n	0.25	n	0.25	n	0.25	>

Table 2
Groundwater Analytical Summary
S260 | Table 2

8260	Tolliene	1/011	40	400	0.3	=	0.3	=	0.3	Ξ	0.3	=	0.3	=	80	=
8260	Trichloroethane, 1.1.1-	na/L	200	2000	0.1		0.1		0.1	=	0.1	=	0.0	5 =	0.1	=
8260	Trichloroethane, 1,1,2-	ng/L	2	200	0.7	ס	0.7) >	0.7))	0.7) >	0.7	ס	0.7)
8260		ng/L	က	30	0.2	כ	0.2	כ	0.2	b	0.2	ח	0.2	n	0.2	n
8260	Trichlorofluoromethane	ng/L	2100	21000	0.2	כ	0.2	D	0.2	5	0.2	D	0.2	D	0.2	כ
8260	Trimethylbenzene, 1,2,4-	ng/L	10	100	1.1		0.2	כ	0.2	_D	0.84		0.2	ח	0.2	כ
8260	Trimethylbenzene, 1,3,5-	ng/L	10	100	2.7		0.2	n	0.2)	0.32	-	0.2	n	0.2	n
8260	Vinyl acetate	ng/L	88	880	0.25	ם	0.25	כ	0.25	5	0.25	D	0.25	n	0.25	ר
8260	Vinyl chloride	ng/L	1	10	0.09	D	0.09	ח	0.09	>	0.09	n	0.09	n	0.09	n
8260	Total Xylenes	ng/L	20	200	0.4	כ	0.4	כ	0.4	D	0.4	D	0.4	n	0.4	ח
Petrole	Petroleum Range Organics															
FLPRC	FLPRO Petroleum Range Organics	ng/L	2000	20000	830		46	כ	46	n	46	n	46	n	46	כ
EDB																
8011	1,2-Dibromoethane	ng/L	0.05	2	0.006	n	900.0	n	900.0	n	900.0	n	900'0	n	900.0	ח
Petrole	Petroleum Range Organics															
8270	Acenaphthene	ng/L	20	200	1.6		0.028	n	0.028	_ _	0.028	_ 	0.028	ח	0.028	כ
8270	Acenaphthylene	ng/L	210	2100	0.022	ם	0.022	כ	0.022	ם	0.022	כ	0.022	כ	0.022	כ
8270	Anthracene	T/Bn	2100	21000	0.21		0.02	ח	0.02	_	0.02	n	0.02	n	0.02	ח
8270	Benzo(a)anthracene	ng/L	0.05	5	0.011	ח	0.011	כ	0.011	ח	0.011	כ	0.011	n	0.011	ח
8270	Benzo(a)pyrene	ng/L	0.2	20	0.009	D	0.009	כ	0.009	5	600.0	ח	0.009	n	0.009	כ
8270	Benzo(b)fluoranthene	ng/L	0.05	5	0.007	D	0.007	כ	0.007	>	0.007	כ	0.007	ח	0.007	ר
8270	Benzo(g,h,i)perylene	ng/L	210	2100	0.012	n	0.012	ח	0.012	b	0.012	כ	0.012	n	0.012	ח
8270	Benzo(k)fluoranthene	ng/L	0.5	20	0.017	n	0.017	ח	0.017	n	0.017	n	0.017	n	0.017	n
8270	Chrysene	ng/L	4.8	480	0.01	n	0.01	n	0.01	n	0.01	n	0.01	n	0.01	n
8270	Dibenzo(a,h)anthracene	ng/L	0.005	0.5	0.011	n	0.011	n	0.011	n	0.011	n	0.011	n	0.011	n
8270	Fluoranthene	ng/L	280	2800	0.02	n	0.02	n	0.02	n	0.02	n	0.02	n	0.02	ר
8270	Fluorene	ng/L	280	2800	2.5		0.03	ח	0.03	n	0.03	n	0.03	n	0.03	n
8270	Indeno(1,2,3-cd)pyrene	ng/L	0.05	5	0.011	n	0.011	n	0.011	n	0.011	n	0.011	n	0.011	n
8270	Methylnaphthalene, 1-	ng/L	28	280	13		0.16		0.028	n	0.028	n	0.028	n	0.028	n
8270	Methylnaphthalene, 2-	ng/L	28	280	8.9		0.21		0.025	ס	0.025	n	0.025	n	0.025	ם
8270	Naphthalene	ng/L	14**	140	4.3		0.031	כ	0.031	כ	0.031	n	0.031	ם	0.031	כ
8270	Phenanthrene	ng/L	210	2100	2.6		0.15		0.026	⊃	0.026	n	0.026	n	0.026	n
8270	Pyrene	ng/L	210	2100	0.022	D	0.022	n	0.022)	0.022	n	0.022	n	0.022)
Chlori	Chlorinated Herbicides															
8321	DB, 2,4-	ng/L	99	260									1.1	n	1.1	b
8321	Dicamba	ng/L	210	2100									0.35	ח	0.35	כ
8321	Dichlorprop	ng/L	35	350									0.32	n	0.32	כ
8321	Dinoseb	ng/L	7	70									0.18	n	0.18	b
8321	MCPA	ng/L	3.5	35									0.21	n	0.21	ח
8321	MCPP	ng/L	7	70									0.15	Ω	0.15	n
8321	T, 2,4,5-	ng/L	70	700									0.23	ח	0.23)
8321	TP, 2,4,5 (Silvex)	ng/L	20	200									0.28	n	0.28	ס

Page 3 of 3

Groundwater Analytical Summary Table 2 Fort Hamer Road & US 301 Roadway Improvements

Organo	Organochlorine Pesticides							Г
8081	Aldrin	ng/L 0.	0.002	0.2	0.002)2 U	0.002	כ
8081	BHC, a-	ng/L 0.	900.0	0.6	0.0023	23 U	0.0023	כ
8081	BHC, b-	ng/L 0	0.02	2	0.003)3 U	0.003	כ
8081	BHC, d-	ng/L 2	2.1	21	0.0023	23 U	0.0023	n
8081	Chlordane, a-	ug/L 2	2***	NE	0.0019	19 U	0.0019	ח
8081	Chlordane, g-	ng/L 2	2***	NE	00:0	21 U	0.0021	כ
8081	DDD, 4,4'-	ng/L (0.1	10	0.0016	16 U	0.0016	כ
8081	DDE, 4,4'-	ng/L (0.1	10	0.0017	17 U	0.0017	כ
8081	DDT, 4,4'-	ng/L (0.1	10	0.002)2 U	0.002	ח
8081	Dieldrin	_	0.002	0.2	0.0014	14 U	0.0014	ח
8081	Endosulfan I	ng/L N	NE	NE	0.0019	19 U	0.0019	כ
8081	Endosulfan II	ng/L N	NE	NE	0.0018	18 U	0.0018	n
8081	Endosulfan sulfate	ng/L	NE	NE	0.0027	27 U	0.0027	כ
8081	Endrin	ng/L	2	20	0.00	18 U	0.0018	ח
8081	Endrin aldehyde	ng/L	NE	NE	0.0019	19 U	0.0019	כ
8081	Endrin ketone	ng/L	NE	NE NE	0.0016	16 U	0.0016	n
8081	Heptachlor	ng/L (0.4	4	0.0024	24 U	0.0024	ר
8081	Heptachlor epoxide	ng/L (0.2	20	0.0022	22 U	0.0022	כ
8081	Lindane	ng/L (0.2	2	0.0024	24 U	0.0024	כ
8081	Methoxychlor	ng/L	40	400	0.0018	18 U	0.0018	כ
8081	Mirex	ng/L	1.4	14	0.015	15 U	0.015	כ
8081	Toxaphene	ng/L	3	300	0.044	14 U	0.044	b

LEGEND:

U = Compound was analyzed for, but not detected above analysis detection limits
 I = Reported value is between the laboratory method detection limit and the laboratory practical quantitation limit

NOTES:

This summary is provided for the convenience of our clients. The signed, hardcopy report is the official report.

Unless noted by g , units have been converted to ug/L (water) or mg/kg (solids) for ease of comparison with Chapter 62-770 Cleanup Target Levels.

Appendix A Field Logs

SITE NAME()	5 30/ 1	ff,	Harny	Rd		TE DCATION:	Pomsh,		545.5 J.		
WELL NO:	Alu	42		SAMPLE	ID: M	V-42			DATE: /	1-8-10	
						SING DA	ΓA	A			
WELL DIAMETER	(inches): 2	TUBIN	TER (inches):	14 DEP	L SCREEN TH: Y, X) Te	et to 14.8 te	et TO WATE	ER (feet):	20 OR	RGE PUMP T BAILER:	DO .
	UME PURGE: if applicable)	1 WELL VO	LUME = (TOT)	tel VI	TH - STA feet -	TIC DEPTH TO	O WATER) X feet) X	WELL CAPACI	TY gallons/fo	$ot = \int_{c} \int$	gallon:
	NT VOLUME PL if applicable)	JRGE: 1 EQI	JIPMENT VOL.	. = PUMP VOL	UME + (TUE	BING CAPACIT	Y X TI	JBING LENGTH)	+ FLOW CE	LL VOLUME gallons	
			T		llons + (ns/foot X	feet)		TOTAL VO	LIBAC
	MP OR TUBIN WELL (feet):	7		IP OR TUBING WELL (feet):	7	PURGING	DAT: (, 5, 5)	PURGING ENDED AT: DISSOLVED	16:19	PURGED (
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or µS/cm)	OXYGEN (circle units) (mg/L or % saturation	TURBIDIT (NTUs)	(descri	be) (describe
16:10	1.5	15	.10	557	5.54	25.51	373	,14	y. 99	des	SI. Petr
16:13	130	1.8	./0	5,57	5,56	25.53	379	.13	4,77	1	
16:16	130	2.1	10	5.57	5.57	2552	38/	,13	4,75		
16:19	130	7.1	1/0	5.57	5,57	75,52	380	1/2	4.7	-	- 0
											-
		0									
		-	-								
WELL CAP	ACITY (Gallon SIDE DIA. CAF	s Per Foot):	0.75" = 0.02; Et): 4/8" = 0.0	1" = 0.04;	1.25" = 0.0	6; 2" = 0.16		The second secon	5" = 1.02; .006: 1/2	6" = 1.47; " = 0.010;	12" = 5.88 5/8" = 0.016
To the second second	EQUIPMENT C	A DC - 10 DC A RELL - 1		3P = Bladder P	ump; E	SP = Electric S	Submersible Pu		eristaltic Purr	p; 0 = 0	ther (Specify)
						LING DA	TA			<u> </u>	
1	BY (PRINT) /A	Cardao		SAMPLER(S)	SIGNATUR	E(\$):		SAMPLING INITIATED	16:20	SAMPLIN ENDED	
PUMP OR		7		TUBING MATERIAL CO	DDE:	PE_		-FILTERED: Y on Equipment Ty	pe:	FILTER S	SIZE: µm
IELD DEC	ONTAMINATIO	N: PUN	IP Y (N	>	TUBING	Y (N (res	olaced	DUPLICATE:	Y	(B)	
SAMP	LE CONTAINE	R SPECIFICA	NOITA		SAMPLE PF	RESERVATION		INTENDE ANALYSIS AN		SAMPLING QUIPMENT	SAMPLE PUM FLOW RATE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED		TOTAL VOL D IN FIELD (m		METHO	D	CODE	(mL per minute
Th-4R	3	CG	4021	Hol			-	\$760		RFA	50
1	3	66	46/1	Hel			-	EOL		RFPP	50
		AG	16th	- weep			~	PAI		APP	400
11	1	19	501.7/	Hel		~	5	FLY		288	400
4	1	P	750/1	Nus 3			-	Cen	(Aff	400
DEMARKS.						-		1			
REMARKS:			KAG								
MATERIAL	CODES:	AG = Amber	Glass; CG =	Clear Glass;	PE = Poly	ethylene; F	PP = Polypropyl	ene; S = Silico	ne; T=Te	flon; $O = 0$	Other (Specify)
SAMPLING	EQUIPMENT		APP = After Per RFPP = Reverse		B = Bai ic Pump;	ler, BP = 8 SM = Straw N	Bladder Pump; Method (Tubing	ESP = Electri Gravity Drain);	c Submersib O = Other		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. Stabilization Criteria for range of variation of Last three consecutive readings (see FS 2212, section 3)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 rng/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

SITE NAME: 110	30/4	Ft.	Janes	Ld.	SI	TE CATION:	Par	wsh , IFC			
WELL NO:			2 (3. 7	SAMPLE ID:		Mbv.	7	,	n. 1 - F	-8-10	
100000	10100	1			PURG	ING DA					
WELL	(inches):	2 TUBI	FTER (inches)	WELLS	SCREEN (fe	INTERVAL et to M. C.	STATIC eet TO WAT	ER (feet): 4, 0	/ C/ OR B	SE PUMP T AILER:	YPEPP
(only fill out	if applicable)		= (14.65 fee L. = PUMP VOLUM	et - l	1.44	feet) X	,/6 UBING LENGTH	gallons/foot	= /. VOLÚME	6 gallons
	if applicable)	J. 102.			ns + (ons/foot X	feet) +	gallons	= gallons
	MP OR TUBIN	G G		IMP OR TUBING WELL (feet):	7	PURGIN		PURGING ENDED AT:	14:57	TOTAL VO PURGED (LUME gallons)えず
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGEL (gallons)	PURGE RATE	MATER (S	pH standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDITY (NTUs)	COLO (descri	
14:48	66	1,6	,10	601 5	5,94	25,71	2210	,41	3,2	Cla	Nume
14451	, 30	1.9	10	6.01	5,96	25,72	22/3	,42	3./	9	1
14154	, 30	2.2	110	601	5,96	25,73	2714	141	3.1		
14:57	130	2.5	110	6.01	5.97	25.73	22/4	,40	3,/	1	4
				1							
TUBING IN	ACITY (Gallon SIDE DIA, CAF EQUIPMENT C	PACITY (Gal	0.75" = 0.02; //Ft.): 1/8" = 0 B = Bailer;	BP = Bladder Pum	0.0014; np; E	1/4" = 0.002	Submersible Pu	.004; 3/8" = 0		" = 1.47; = 0.010; O = 0	12" = 5.88 5/8" = 0.016 Other (Specify)
1. 1	BY (PRINT) / A		duotes	SAMPLER(S) SIG				SAMPLING INITIATED A	T: 15:00)	SAMPLIN ENDED	NG AT: 1511
PUMP OR		17	V. 157	TUBING MATERIAL CODE	E:	PE	Filtrat	O-FILTERED: Y ion Equipment Ty	pe:		SIZE:μm
FIELD DEC	OITAMINATIO	ON: PU	MP Y	D T	UBING	A (N (LE	eplaced)	DUPLICATE:		N	1 5 0 5 7 5 1 5 C C C C
SAMPLE	LE CONTAINE # CONTAINERS			PRESERVATIVE USED		ESERVATIO OTAL VOL D IN FIELD (I	FINAL	ANALYSIS A METHO	ND/OR EQL	MPLING JIPMENT CODE	FLOW RATE (mL per minute
MW-7	3	66	40.01	4401	1,000			8240	e	HP	50
100	3	69	4001	1+c/		_	-	E06		FFF	50
	1	AG	16rts			155	-	PAH		PP	900
1	1	AG	5wm/	1401			_	FL-PP		788	400
-	1	P	25001	14433		/		Lead	1	APP	400
REMARKS:	Ľ,	A-G									
MATERIAL	CODES:	AG = Ambe	r Glass; CG	= Clear Glass; F	PE = Poly	ethylene;	PP = Polypropy	lene; S = Silico	one; T = Tefic	on; O = 0	Other (Specify)
SAMPLING	EQUIPMENT	CODES:		eristaltic Pump; se Flow Peristaltic I	B = Bail Pump;	er; BP = SM = Straw	Bladder Pump; Method (Tubing	ESP = Electr Gravity Drain);	ic Submersible O = Other (S		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

SITE NAME: (45 301	1 A F	t. Ha	wr Cl.	LC	TE OCATION:		ish, FC			
WELL NO:		W-23		SAMPLE	ID: /	MW-2)	3	,	DATE: /	10-8-10	
	1				PURG	SING DA	TA				
WELL DIAMETER	R (inches):	2 TUBIN	TER (inches)	// DEP	L SCREEN TH: 4, 7 fe	et to N 7 fe	STATIC I	ER (feet): 1/ X	7 01	URGE PUMP T R BAILER:	PP
(only fill out	t if applicable)		= (14,70	feet -	4.87	feet) X	WELL CAPACI	gallons/f		€ gallons
	NT VOLUME PL t if applicable)	JRGE: 1 EQ	UIPMENT VOL	= PUMP VOLU	JME + (TUB llons + (ry X T	UBING LENGTH)		CELL VOLUME gallons	
And the second of	IMP OR TUBIN	G G		MP OR TUBING WELL (feet):	-	DURCIN		PURGING		TOTAL VO PURGED (LUME gallons): 2, 5
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm	DISSOLVED OXYGEN (circle units) mg/L os % saturation	TURBID (NTUs	OITY COLO	R ODOR
15;32	1.6	1.6	1/0	5.38	6.04	24.33	593	421	10,8	(led	rene
15:35	130	1.9	1/0	5,38	607	26.32	592	120	9,7		1
15:38	130	7.2	110	C.38	6.06	26,33	591	, ZU	9,7	6	
15:41	130	7-5	110	5,38	6.06	26,33	591	,21	9,7		4
TUBING IN PURGING	PACITY (Gallon ISIDE DIA. CAF EQUIPMENT C	PACITY (Gal.	/Ft.): 1/8" = 0 B = Bailer,	1" = 0.04; .0006; 3/16" : BP = Bladder Pt	SAMP	1/4" = 0.0026 SP = Electric : LING DA	6; 5/16" = 0 Submersible Pu	.004; 3/8" = 0	eristaltic Pu	- SAMPLIN	12" = 5.88 5/8" = 0.016 other (Specify)
	16 KNS)	Cordus		11	100		Lesere	INITIATED A		/ ENDED	AT: 15:52
PUMP OR TOP	TUBING / WELL (feet):		6	MATERIAL CO		PE	Filtrati	o-FILTERED: Y		(+	SIZE: µm
FIELD DEC	OITAMINATIO	ON: PUI	MP Y	D	TUBING	Y N (re	placed	DUPLICATE:	Y	Q	15.791 32147
SAMPLE	PLE CONTAINE #	MATERIAL	ATION VOLUME	PRESERVATIV	/E 7	RESERVATION	FINAL	INTENDE ANALYSIS AI METHO	ND/OR	SAMPLING EQUIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)
ID CODE	CONTAINERS	CODE	,	USED	ADDE	D IN FIELD (n	nL) pH	\$260		RFPP	50
nh-23	3	CG	4unl	1401				-		0-00	50
	3	CG	4VM	14c/			_	ERB	. /	1000 -02	a merchanic management
	1,	49	16rter		-1-	_		PAH		1.00	400
	1	1467	500/	Hc/			-	FC-A		AR	
1	/	Ρ	25UM/	Huiz				Lea	2	APP	400
REMARKS		KA	6								
MATERIAL	CODES:	AG = Amber	Glass; CG	Clear Glass;	PE = Poly	rethylene;	PP = Polypropy		-	1390000 357	Other (Specify)
SAMPLING	EQUIPMENT		APP = After Pe RFPP = Revers	eristaltic Pump; se Flow Peristalt	B = Bai ic Pump;	ler; BP = I SM = Straw I	Bladder Pump; Method (Tubing	ESP = Electri Gravity Drain);		ible Pump; er (Specify)	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

NAME: U	5 30/ +	Ft. D.	wer for	d	SF LC	TE DCATION:	Par	ysh , F	(***
WELL NO:	TML	1-1		SAMPLE ID:		7MW-1	/	/ /		-1170	
					PURG	SING DA	TA				
WELL DIAMETER	(inches):	TUBING	ER (inches):	// DEPTH	: 11 fe	INTERVAL et to 14 fe	STATIC D	R (feet): 5	53 OR	RGE PUMP T BAILER:	PP
(only fill out	if applicable)		= 1	AL WELL DEPTH	et –	5.53	feet) X	. 04	gallons/for	ot = , 34	gallons
	IT VOLUME PU if applicable)	JRGE: 1 EQU	IPMENT VOL	. = PUMP VOLUM = gallor			ry X Tu ns/foot X	BING LENGTH)		gallons	= gallons
	MP OR TUBINO WELL (feet):	7		MP OR TUBING WELL (feet):	8	PURGIN		PURGING ENDED AT:	10:06	TOTAL VOI PURGED (LUME gallons): / 、ん
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)		pH tandard units)	TEMP. (°C)	COND. (circle units) µmhos/cm er 4S/cm	OXYGEN (circle units) mg/L or % saturation	TURBIDIT (NTUs)	Y COLO (descrit	
09:57	134	.34	.08	7.80	C.11	28.35	411	55,	7.77		St. Petro
10100	124	. 58	108	7.80	6.12	24.37	414	,73	7.51		
10:03	,24	,82	108	7.80	6.12	16.36	415	,23	7,57		
10:06	,24	1.06	,08	7.80 0	5.12	26,36	414	,24	7,51	+	- 4
TUBING INS	ACITY (Gallons SIDE DIA. CAP EQUIPMENT C	ACITY (Gal./F	L): $1/8" = 0$.	1" = 0.04; 1.2 0006; 3/16" = 0 BP = Bladder Pum	.0014; p; E	1/4" = 0,0026 SP = Electric S	5; 5/16" = 0.0 Submersible Pun	004; 3/8" = 0.			12" = 5.88 5/8" = 0.016 ther (Specify)
		and transit				LING DA	TA			1	
John	EVESS /	Certus.	TBE	SAMPLER(S) SIG	NATURE	:(8):		SAMPLING INITIATED AT	10:08)		T:10,23
PUMP OR T		8		TUBING / MATERIAL CODE		PE		FILTERED: Y	De:	FILTERS	IZE:μm
FIELD DEC	ONTAMINATIO	N: PUM	Y	7	UBING	Y N (re	placed)	DUPLICATE:	Y	CA	
SAMPLE	LE CONTAINE #	MATERIAL		PRESERVATIVE	Т		FINAL	INTENDE ANALYSIS AN METHOI	ND/OR EC	AMPLING QUIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)
1	CONTAINERS	CG	,	USED LJC/	ADDE	D IN FIELD (m	nL) pH	8250		RFPP	50
MW-1	(X) 3	CG	40 Ml	Hc/				EDE		REPP	50
++	AZ I	49	lite	- HU	1	_		PAT		200	400
	X I	1 - 1	TWM/	ilc/				FC-A		400	400
+1	XI	4	75UM	Hno3		اشرا		1.00		APP	400
REMARKS:	QC	Sam	ple								
MATERIAL		AG = Amber 0	lass; CG =	Clear Glass; F	E = Poly	ethylene; F	PP = Polypropyle	ene; S = Silico	ne; T = Te	flon; $O = C$	ther (Specify)
SAMPLING	EQUIPMENT (ristaltic Pump; e Flow Peristaltic F	B = Bail Pump;		Bladder Pump; Method (Tubing (ESP = Electri Gravity Drain);	c Submersibl O = Other		

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. Stabilization Criteria for range of variation of Last three consecutive readings (see FS 2212, section 3)

SITE NAME:	38/4	Ft. H	lamer f	d,		TE DCATION:	Pa	MSh, F	(
WELL NO:	TMA			SAMPLE	ID:	TML	1-2		DATE: /d	-11-10	
					PURC	ING DA					
WELL DIAMETER	(inches); /	TUBIN DIAME	TER (inches):	1/4 DEP	L SCREEN TH: 4 fe	et to /4 fi	STATIC D	DEPTH ER (feet): 5,/ WELL CAPACI	SOR	RGE PUMP T BAILER:	PP
(only fill out	if applicable) T VOLUME PI		= 1		feet -	515	feet) X	.1	gallons/foo		gallons
(only fill out	if applicable)			= qa	llons + (gallo	ns/foot X	feet)	+	gallons	= gallons
INITIAL PUN DEPTH IN V	MP OR TUBIN VELL (feet):	G 7	The state of the s	MP OR TUBING WELL (feet):	-	PURGIN	G DAT:/0:43	PURGING ENDED AT:	11:02	TOTAL VO PURGED (LUME gallons):/ed7
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or µS/cm	OXYGEN (circle units) (mg/L or % saturation	TURBIDIT (NTUs)	Y COLC (descri	
10:53	135	, 35	108	6.20	6,27	26,36	299	.18	5.91	Class	- None
10:56	124	.59	108	6.20	6.23	26,37	297	117	5.9	1 5	1
10:59	124	.83	108	6.20	6.23	26,37	796	118	5,91		
11:02	, 24	1,07	108	6.20	6.23	26,38	297	117	5,9	U +	1
TUBING INS	ACITY (Gallon BIDE DIA. CAF QUIPMENT C BY (PRINT) / A	PACITY (Gal. ODES: E	/Ft): 1/8" = 0. 3 = Bailer,	1" = 0.04; 0006; 3/16" BP = Bladder P	= 0.0014; ump; E SAMP	1/4" = 0.002 SP = Electric LING DA	6; 5/16" = 0. Submersible Pur	004; 3/8" = 0.		6" = 1.47; " = 0.010; p; O = 0	12" = 5.88 5/8" = 0.016 ther (Specify)
3/ 1	Ficss /	Cardin		1/	1/6			INITIATED AT			T: ////5
PUMP OR T	UBING /		7	TUBING / MATERIAL CO	NDE-	DE		FILTERED: Y		FILTER S	IZE: μm
DEPTH IN V	ONTAMINATIO	ON: PUM	AP Y (N		TUBING	Y (N (re	placed)	DUPLICATE:	Y	(1)	
	E CONTAINE	77	-		SAMPLE PR	ESERVATION		INTENDE	D S	AMPLING	SAMPLE PUMP
SAMPLE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATION USED		OTAL VOL D IN FIELD (r		ANALYSIS AN METHOL		CODE	(mL per minute)
1/1/42	3	CF	40ml	4/c/			_	8760		CFFF	50
1	3	CG	Yuml	Hel		-		EDB		RFR	20
	1	29	1coes	-		-	الهذرا	PAH		APP	400
	1	49	soum/	(10)		-		FC-Plo		APP	400
	1		250 m/	H103		~		Had	/	APP	960
REMARKS:	2	AG 1	lines			<u></u>		Fest/Her	6 1	400	900
MATERIAL	CODES:	AG = Amber	Glace: CG-	Clear Glass;	PE = Poly	ethylene.	PP = Polypropyle	ene; S = Silico	ne; T=Te	fion: O = 0	Other (Specify)
MATERIAL (EQUIPMENT	CODES:	APP = After Pe	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	B = Bail	er, BP=1	Bladder Pump; Method (Tubing)	ESP = Electri		e Pump;	(-120.1)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

WELL NO:			Hamer L	- The state of the same		CATION:	Porsh,		DATE:	11 11	
	TM	W-3		SAMPLE II		Tribe			DATE.	10-11-10	
WELL DIAMETER	(inches):	TUBING	TER (inches):	1/4 DEPT	SCREEN I	et to 14 fe	STATIC D	DEPTH ER (feet): 4, 50 WELL CAPACI	ORE	GE PUMP T BAILER:	PP
(only fill out				/\frac{\(\frac{\(\)}{\(\)} \) fi . = PUMP VOLU				JBING LENGTH)	gallons/foot	L VOLUME	37 gallons
ST KANNED			T		ons + (ns/foot X	feet)	+	gallons	
	MP OR TUBIN WELL (feet):	G G	The state of the state of the state of	MP OR TUBING WELL (feet):	7	PURGING	DAT:/21:22	PURGING ENDED AT: DISSOLVED	124.21	PURGED (g	gallons): / U 9
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm er µS/cm	OXYGEN (circle units) mg/L or % saturation	TURBIDITY (NTUs)	(describ	
12,33	.37	,37	,08	6.16	6,21	26,3/	599	,41	4,77	Clear	- Balpha
121.36	,74	:61	108	6.16	6123	76.33	601	141	4.71	1	1
(2:39	, 24	185	.08	6.16	6.27	76.34	603	142	4.69		
12:42	124	1.09	(0)	6.16	6,22	76,34	602	142	4,68	1	1
	ACITY (Callon										
PURGING E	SIDE DIA, CAP EQUIPMENT C BY (PRINT) / A	PACITY (Gal./F	Et): 1/8" = 0.0 = Bailer, E	0006; 3/16" = 3P = Bladder Pu	0.0014; mp; ES SAMPI	1/4" = 0,0026 SP = Electric S LING DA	Submersible Pur	004; 3/8" = 0. mp; PP = Pe SAMPLING	006; 1/2" eristaltic Pump	= 0.010; ; O = 0	
PURGING E	EQUIPMENT C BY (PRINT) / A	PACITY (Gal./F	Ft): 1/8" = 0.0 = Bailer, E	SAMPLER(S), S	D.0014; mp; ES SAMPI IGNATURE	1/4" = 0,0026 SP = Electric S LING DA	5; 5/16" = 0.0 Submersible Pur	SAMPLING INITIATED AT	006; 1/2" ristaltic Pump	= 0.010; ; O = 0 SAMPLIN ENDED A	5/8" = 0.016 ther (Specify)
SAMPLED E	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / A LUCSS/ TUBING	PACITY (Gal./FODES: B	T3C	SAMPLER(S), S TUBING MATERIAL COL	D.0014; mp; ES SAMPI IGNATURE	1/4" = 0.0026 SP = Electric S LING DA (S):	5; 5/16" = 0.0 Submersible Pur	np; PP = Pe SAMPLING INITIATED AT	006; 1/2" ristaltic Pump	= 0.010; ; O = 0 SAMPLIN ENDED A	5/8" = 0.016 ther (Specify) G T: / 3!03
PURGING E SAMPLED E Jahr PUMP OR T DEPTH IN V	SIDE DIA. CAPEQUIPMENT C BY (PRINT) / A LICES VELL (feet): ONTAMINATIO	PACITY (Gal./FODES: B	E): 1/8" = 0.0 = Bailer, E T/3C P Y ()	SAMPLER(S) S TUBING MATERIAL COL	DE: 0.0014; mp; ES SAMPI GNATURE TUBING	1/4" = 0.0026 SP = Electric S LING DA (S):	Submersible Pur TA FIELD- Filtratic	SAMPLING INITIATED AT FILTERED: Y on Equipment Typ DUPLICATE: INTENDE	oo6; 1/2" ristaltic Pump	SAMPLIN ENDED A	5/8" = 0.016 ther (Specify) G T: / 3 / σ/3 IZE: μm
SAMPLE SAMPLE	SIDE DIA. CAPEQUIPMENT C BY (PRINT) / A LICES VELL (feet): ONTAMINATIO	PACITY (Gal./FODES: B FILIATION: CVIA; ON: PUMI R SPECIFICA	T/3C P Y (N) TION	SAMPLER(S) S TUBING MATERIAL COL	O.0014; mp; ES SAMPI IGNATURE TUBING AMPLE PRI E TO	1/4" = 0.0026 SP = Electric S LING DA (S): Y (representation)	Submersible Pur TA FIELD- Filtratic blaced)	SAMPLING INITIATED AT FILTERED: Y on Equipment Typ DUPLICATE:	oo6; 1/2" ristaltic Pump	SAMPLIN ENDED A	SAMPLE PUMP
PURGING E SAMPLED E PUMP OR T DEPTH IN V FIELD DECC SAMPLE ID CODE	SIDE DIA. CAPEQUIPMENT C BY (PRINT) / A LICS / TUBING WELL (feet): ONTAMINATIO LE CONTAINE CONTAINERS	PACITY (Gal./F ODES: B FILIATION: CYLIN ON: PUMI R SPECIFICA MATERIAL CODE	TISC P Y (N)	SAMPLER(S) S TUBING MATERIAL COL SPRESERVATIVI	O.0014; mp; ES SAMPI IGNATURE TUBING AMPLE PRI E TO	1/4" = 0.0026 SP = Electric S LING DA (S): Y (representation) OTAL VOL	Submersible Pur TA FIELD- Filtratic blaced)	SAMPLING INITIATED AT FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN	oo6; 1/2" ristaltic Pump (2/45) be: Y D SA RD/OR D SA	SAMPLING MPLING CODE	SAMPLE PUMP
PURGING E SAMPLED E PUMP OR T DEPTH IN V FIELD DECC SAMP SAMPLE ID CODE	EQUIPMENT C BY (PRINT) / A LiCS / TUBING WELL (feet): ONTAMINATIC LE CONTAINE # CONTAINERS	PACITY (Gal./F ODES: B FILIATION: CYLIN ON: PUMI R SPECIFICA MATERIAL CODE	E): 1/8" = 0.0 = Bailer, E T/3C P Y (N) TION VOLUME	SAMPLER(S) S TUBING MATERIAL COL SRESERVATIVI USED	O.0014; mp; ES SAMPI IGNATURE TUBING AMPLE PRI E TO	1/4" = 0.0026 SP = Electric S LING DA (S): Y (representation) OTAL VOL	FIELD-Filtratic placed) FINAL pH	SAMPLING INITIATED AT FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN METHOI	oo6; 1/2" ristaltic Pump (2/45) be: Y D SA RD/OR D SA	SAMPLIN ENDED A FILTER S MPLING UIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)
PURGING E SAMPLED E PUMP OR T DEPTH IN V FIELD DECC SAMPLE ID CODE	SIDE DIA. CAPEQUIPMENT C BY (PRINT) / A LICS / TUBING WELL (feet): ONTAMINATIO LE CONTAINE CONTAINERS	PACITY (Gal./F ODES: B FILIATION: CV./AC ON: PUM R SPECIFICA MATERIAL CODE CG	73C P Y D TION VOLUME 40 M	SAMPLER(S) S TUBING MATERIAL COL SRESERVATIVI USED	O.0014; mp; ES SAMPI IGNATURE TUBING AMPLE PRI E TO	1/4" = 0.0026 SP = Electric S LING DA (S): Y (representation) OTAL VOL	FIELD-Filtratic pH	SAMPLING INITIATED AT FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN METHOD \$760	oo6; 1/2" ristaltic Pump (2/45) De: Y DD SA ND/OR DO (A) (A) (A) (A) (A) (A) (A) (A	SAMPLING MPLING CODE	SAMPLE PUMP FLOW RATE (mL per minute)
PURGING E SAMPLED E PUMP OR T DEPTH IN V FIELD DECC SAMPLE ID CODE	SIDE DIA. CAPEQUIPMENT C BY (PRINT) / A LICS / TUBING WELL (feet): ONTAMINATIO LE CONTAINE CONTAINERS	PACITY (Gal./FODES: B FILIATION: CVIA; ON: PUMI R SPECIFICA MATERIAL CODE CG A A F	TISC P Y (N) TION VOLUME 40 m 1	SAMPLER(S) S TUBING MATERIAL COL SRESERVATIVI USED	O.0014; mp; ES SAMPI IGNATURE TUBING AMPLE PRI E TO	1/4" = 0.0026 SP = Electric S LING DA (S): Y (representation) OTAL VOL	FIELD-Filtratic placed) FINAL pH	SAMPLING INITIATED AT Equipment Typ DUPLICATE: INTENDE ANALYSIS AN METHOD (276)	oo6; 1/2" ristaltic Pump (12/45) be: Y D SA ND/OR EQ	SAMPLING UIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)
SAMPLE SAMPLE	SIDE DIA. CAPEQUIPMENT C BY (PRINT) / A LICS / TUBING WELL (feet): ONTAMINATIO LE CONTAINE CONTAINERS	PACITY (Gal./FODES: B PFILIATION: CYLAG ON: PUMI R SPECIFICA MATERIAL CODE CG AG AG AG AG AG CONTROL OF THE PROPERTY OF THE PROPE	TISC P Y CU TION VOLUME YUM Use I	SAMPLER(S) S TUBING MATERIAL COL SIPPRESERVATIVI USED LL C LL C	O.0014; mp; ES SAMPI IGNATURE TUBING AMPLE PRI E TO	1/4" = 0.0026 SP = Electric S LING DA (S): Y (representation) OTAL VOL	FIELD-Filtratic placed) FINAL pH	SAMPLING INITIATED AT FILTERED: Y on Equipment Type DUPLICATE: INTENDE ANALYSIS AN METHOL & A C C C C C C C C C C C C C C C C C C	oo6; 1/2" ristaltic Pump (2/45) De: Y DD SA ND/OR EQ	SAMPLING UIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)
PURGING E SAMPLED E PUMP OR T DEPTH IN V FIELD DECC SAMPLE ID CODE	SIDE DIA. CAPEQUIPMENT C BY (PRINT) / A LICS / TUBING WELL (feet): ONTAMINATIO LE CONTAINE CONTAINERS	PACITY (Gal./FODES: B PFILIATION: CYLAG ON: PUMI R SPECIFICA MATERIAL CODE CG AG AG AG AG AG CONTROL OF THE PROPERTY OF THE PROPE	TION VOLUME 40 m (Lreey 50 m	SAMPLER(S) S TUBING MATERIAL COL SI PRESERVATIVI USED LIC LIC LIC	O.0014; mp; ES SAMPI IGNATURE TUBING AMPLE PRI E TO	1/4" = 0.0026 SP = Electric S LING DA (S): Y (rep ESERVATION OTAL VOL D IN FIELD (m	FIELD Filtratic placed) FINAL pH	SAMPLING INITIATED AT FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN METHOD 8260 CPB PA H F-C-PLU	oo6; 1/2" ristaltic Pump (2/45) De: Y DD SA ND/OR EQ	SAMPLING UIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)
SAMPLE ID CODE	EQUIPMENT C BY (PRINT) / A LUCS / TUBING WELL (feet): CONTAINE CONTAINERS 3	PACITY (Gal./FODES: B FILIATION: CSYLA; ON: PUMI R SPECIFICA MATERIAL CODE CG CG AG AG AG AG AG AG AG AG	TISC PY (N) TION VOLUME YUM (Lreer TOW)	SAMPLER(S) S TUBING MATERIAL COL SI PRESERVATIVI USED LIC LIC LIC	O.0014; mp; ES SAMPI IGNATURE TUBING AMPLE PRI E TO	1/4" = 0.0026 SP = Electric S LING DA (S): Y (rep ESERVATION OTAL VOL D IN FIELD (m	FIELD-Filtratio	SAMPLING INITIATED AT FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN METHOI 8260 CPB PAH F-C-PLU Leal	oo6; 1/2" ristaltic Pump (2/45) De: Y DD SA ND/OR EQ	SAMPLING UIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute) SO YOU YOU YOU
SAMPLE ID CODE	SIDE DIA. CAPEQUIPMENT C BY (PRINT) /A LUBING VELL (feet): ONTAMINATIO LE CONTAINE CONTAINERS 3 1 1 1 1 6	PACITY (Gal./FODES: B FILIATION: CV./A; ON: PUM: R SPECIFICA MATERIAL CODE CG AG AG AG AG AG AG AG AG AG	TISC P Y D TION VOLUME YUM (Lrey TOM)	SAMPLER(S) S TUBING MATERIAL COL SRESERVATIVI USED LAC LAC LAC LAC LAC LAC LAC LAC LAC LA	O.0014; mp; ES SAMPI IGNATURE TUBING AMPLE PRI E TO	Y (rep ESERVATION OTAL VOL D IN FIELD (m	FIELD-Filtratio	SAMPLING INITIATED AT FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN METHOD RAGO CAB PAH FC-PRO Lend Uter b Pe	oo6; 1/2" ristaltic Pump (2/45) De: Y DD SA ND/OR EQ	SAMPLING UIPMENT CODE	SAMPLE PUMF FLOW RATE (mL per minute) SO YUGO YUGO

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

											Pag	ge 1 of	1
Borin	g/Well l	Number	1			Permit	Number:			FDEP Facili	ty Iden	tificati	on Number:
	5	6-1											
Site N	Jame:					Boreho	le Start D	ate: 10 - 770	Borehole Start	Time: /0, 40)	IX /	AM F PM
115	301	4 F	t. Ha	ALLE L	1		End Da	ite: 10-776	End	Time: 11:16		X A	AM PM
Envir	onmenta	l Contr	t. Ha,	7.00		Geolog	ist's Nam	e:		Environmen	al Tec	1 .	
(Pardi	10 T	BE								one-	Kre	
1	ng Com		n 11		Paveme	_	kness (inc	hes): Borehole Dia	meter (inches):	Boi	ehole	Deptn	(feet):
	ng Meth		Dr. 110	Kanara	nt Boreho	5 le DTW /	in feet .	Measured Well DTV	/	OVA (list m	odel ar	nd chec	k type):
	HA		Ť	from s	oil moist	ire conter	nt): 5	Measured Well DTV water recharges in	well): AA	Photovac Mi			FID PID
			Cuttings [rum Spread		☐ Stock	cpile	Г	Other
			multiple i										
			(check			Well	☐ Gro	ut	W Backf	ill I (Other (describ	e)
Boici	iole Con	присион	(CHECK	one).	,	rr ch	1 0.0	,	E. Carre		,		
		100		Τ.								Z	Lab Soil and
Sai	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filt	z	De	Compl	le Description		USCS Symbol	Moisture Content	Groundwater
Sample Type	aple	(inches)	six	tere	Filtered OVA	Net OVA	Depth (feet)	(include grain size ba			SSy	ire (Samples (list
Ty	Dep I (fee	les)	low	0 0	VO	VA	feet	and o	other remarks)		m bo	ont	and depth or
pe	et)	very	es)	X	>						2	ent	temporary screen interval)
-							1	10	,	les		b	
				21	-	11	(501)	F.G.S., DK-	Brown	vo color		D	
												Lot	
				11	-	41	(2)	F.G.S., Bro	wn- Ta	nino		6	
				2			(6.3		odor	11 5		
						(b)	_ 3						
							4.	- 1 - 11	.1			p	
				11	-	41	(1)	F.G.S., DK.	Brown,	No odor			
							5						
							- 1					60	
				100			6	Soudy clay, sl. petro	Gray - 0	srown,		w	
	1	3-		121	-	C1	1	2044	+ (007				
							7	21. p-2410	,				
				1									
	1			24	1	21	8	Sandy clay Gray - Green	, med. 5+	141		M	
				07	1	21	(Gray-Greet	- Tani F	utro odov			
							_ 9	Car					
	1						1	1 1 1	d c.	C+			
	1			730	374		H 10	Sand-1 clax	1 Men. 30	o lac		M	
							11	Gray- brow	in, petro	a war			
-							- 11	Sl. dayey san					
	4			121	-	41	60	Sharyry suc	NOTA L	. ?		iv	

Page 2 of 2

3orin	g/Well	Numbe	r:	FDEP Facility Identification Number: Site Name:								Borehole Start Date:							
	SB	-1		(4530/ + Ft. Hamer Rd.						End Date:				
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)	Sample Description (include grain size based on USCS, odors, staining, and other remarks)			ing,	USCS Symbol	Moisture Content	Lab Soil and Groundwate Samples (list sample number and depth or temporary screen interval)					
		γ		21		<1		51.	- cl. 1. 4	loyi Pe	y 3 400	san e	1, 6 m 3,	ή /¤~/	- 74	n,		<i>w w</i>	interval)
							26 27												
							28												
							29												
	1						30												

Page 1 of FDEP Facility Identification Number: Boring/Well Number: Permit Number: Borehole Start Time: 14:14 K AM | PM Borehole Start Date: 10-7-10 End Time: ///, 3/ X AM PM End Date: 10 - 7-10 US 30/ of Ft. Haver Kol Environmental Contractor: Environmental Technician's Name: Geologist's Name: Cording TSE

Drilling Company: Pavement Thickness (inches): Borehole Diameter (inches): Preferred prollin OVA (list model and check type): Apparent Borehole DTW (in feet Measured Well DTW (in feet after Drilling Method(s): from soil moisture content): 4-5K FID | PID water recharges in well): NA Photovac MicroFiD K Backfill | Stockpile T Other ☐ Drum ☐ Spread Disposition of Drill Cuttings [check method(s)]: (describe if other or multiple items are checked): ■ Backfill T Other (describe) ☐ Grout ☐ Bentonite ☐ Well Borehole Completion (check one): Lab Soil and Moisture Content Sample Recovery (inches) Sample Depth Interval (feet) Unfiltered OV USCS Symbol Groundwater (per six inches) Filtered OV, Sample Type Depth (feet SPT Blows Net OVA Sample Description Samples (list (include grain size based on USCS, odors, staining, sample number and other remarks) and depth or temporary screen interval) F.G.S., Brown - Tan, wo 0 I.G.S., Tan-Brown, No oder 0 M/u 21 She day-by sand, Brown-Gray, St. petro odor? M/4 M/a 1-1 Mu 72 117

Page 1 of FDEP Facility Identification Number: Boring/Well Number: Permit Number: Borehole Start Time: 11:33 K AM PM Borehole Start Date: 10-7-10 TK AM F PM End Time: 11.46 End Date: /0-7-10 45 301 + Ft. Hamer Rd. Environmental Contractor: Environmental Technician's Name: Geologist's Name: Cardui TBE Dana Kress Pavement Thickness (inches): Borehole Diameter (inches): Borehole Depth (feet): Drilling Company: OVA (list model and check type): Apparent Borehole DTW (in feet Measured Well DTW (in feet after Drilling Method(s): water recharges in well): NA Photovac MicroFiD K FID F PID from soil moisture content): U-SHA IDIT T Stockpile T Other ☐ Drum ☐ Spread Z Backfill Disposition of Drill Cuttings [check method(s)]: (describe if other or multiple items are checked): **▼** Backfill T Other (describe) ☐ Grout T Bentonite T Well Borehole Completion (check one): Lab Soil and Sample Recovery (inches) Moisture Content Sample Depth Interval (feet) Unfiltered OVA USCS Symbo (per six inches) Groundwater Filtered OVA Sample Type Depth (feet) SPT Blows Net OVA Sample Description Samples (list (include grain size based on USCS, odors, staining, sample number and other remarks) and depth or temporary screen interval) F.G. S., Tan- Brenn, wooder 11 tiles, Gray- Brown, no odor 0 FG.S., Isrown, we ador M/h Sandy clay, red, stiff, Gray -Brunn, St. petro ola .41/W 21 Mla 316 313 MIN

									Page 1 of					
Borin	g/Well l		3-4			Permit	Number:	1000 1000	FDEP Facility Identification Number:					
Site N	Jame:	11-		-	_	Boreho	le Start Da	ite: 167-7-10	Time: /// / X AM T			АМ ГРМ		
			- 11					te: 10-7-10	Time: 12:03 AM 12 PM					
US	30/	+ F	f. Hai	ne 1	A.	Genlag	ist's Name		Environmental Technician's Name: Compared Fore 5 Section					
	Corela					GCOTOS	,ist s i vanie	*						
Drilli	ng Com	pany:			Pavem	ent Thic	kness (incl	nes): Borehole Dian						
	Drefen		Dr. 11.	In:			MA		3/4	/0				
	ng Meth		PINIT	Appare	nt Boreh	ole DTW	(in feet	Measured Well DT\	OVA (list model and check type):					
	HA	100	T	from s	oil moist	ure conter	nt): 4-5	water recharges in	Photovac MicroFiD X FID FID					
Dispo	sition o	f Drill (Cuttings	check n	nethod(s	s)]:	T D	rum Spread	Backfill	Stock	cpile	Г	Other	
(desci	ribe if ot	her or	multiple i	items ar	e checke	ed):								
Borel	nole Con	npletion	ı (check	one):	T	Well	☐ Grou	nt T Bentonite	Backt		Other ((describ	e)	
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)	(include grain size ba	le Description ased on USCS, oc other remarks)		USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)	
				21	1	21	(01)	F.G.S., Tan	- Brunn	wooder		В		
				21	-	۷1	$ \begin{pmatrix} 2 \\ 3 \end{pmatrix}$	F.G. S., Tal	n-Gray 1	vo odar		Ю		
				21	-	21		IG.S., DK.	Gray - DK edor	. Brown,		NW		
	÷	ş		Zi	1	21	-6) -7	I.G. S. 1 Ton	- Brown,	nuoder		45		
	X			Z1	-	21	-(8) 9	sh dayty so	ad, Bray	- Tan,		M		
				21	1	۷1		}	J			M		
1	12.8	1					10							

Page 1 of FDEP Facility Identification Number: Boring/Well Number: Permit Number: Borehole Start Time: 12:45 ☐ AM 下 PM Borehole Start Date: 10-7-70 □ AM ▼ PM End Time: 13:03 US 301 + Ft. Hanse & A Environmental Contractor: Environmental Technician's Name: Geologist's Name: Carlow TAC Pavement Thickness (inches): Borehole Diameter (inches): Drilling Company: Apparent Borehole DTW (in feet OVA (list model and check type): Measured Well DTW (in feet after FID F PID water recharges in well): NA Photovac MicroFiD from soil moisture content): 4-1 ☐ Stockpile ☐ Other | Backfill ☐ Drum ☐ Spread Disposition of Drill Cuttings [check method(s)]: (describe if other or multiple items are checked): Backfill ☐ Grout ☐ Bentonite T Other (describe) | Well Borehole Completion (check one): Lab Soil and Moisture Content Sample Recovery (inches) Sample Depth Interval (feet) Unfiltered OVA USCS Symbo Groundwater (per six inches) Filtered OVA Sample Type Depth (feet Net OVA Sample Description Samples (list (include grain size based on USCS, odors, staining, sample number and other remarks) and depth or temporary screen interval) 11 M/k

Page 1 of FDEP Facility Identification Number: Boring/Well Number: Permit Number: 56-6 Borehole Start Date: 10-7-16 Borehole Start Time: [3:07 Site Name: I AM X PM □ AM ▼ PM US 30 / F. Han Rd. Environmental Contractor: End Time: 13!17 End Date: 14-7-10 Geologist's Name: Environmental Technician's Name: Carling TSE

Drilling Company: Pavement Thickness (inches): Borehole Diameter (inches): Preferred Ars/ling Apparent Borehole DTW (in feet Measured Well DTW (in feet after OVA (list model and check type): Drilling Method(s): from soil moisture content): 4-5 water recharges in well): NA Photovac MicroFiD FID F PID X Backfill ☐ Drum ☐ Spread T Other [Stockpile Disposition of Drill Cuttings [check method(s)]: (describe if other or multiple items are checked): [Well [Grout | Bentonite ▼ Backfill Other (describe) Borehole Completion (check one): Lab Soil and Sample Recovery (inches) Moisture Content Sample Depth Interval (feet) Unfiltered OVA USCS Symbo (per six inches) Groundwater Sample Type Filtered OVA Depth (feet SPT Blows Net OVA Sample Description Samples (list (include grain size based on USCS, odors, staining, sample number and other remarks) and depth or temporary screen interval) T.G.S., Dr. Brown, small F.G.S., white, no oder 10 21 File. S., Tan - Brown, No oder .m M

Page 1 of FDEP Facility Identification Number: Boring/Well Number: Permit Number: Borehole Start Time: 13/25 Site Name: Borehole Start Date: 10-7-10 [AM T AM X PM End Time: 13,45 End Date: 10-7-10 Environmental Technician's Name: Geologist's Name: Carly TBE Pavement Thickness (inches): Borehole Diameter (inches): Apparent Borehole DTW (in feet Measured Well DTW (in feet after OVA (list model and check type): from soil-moisture content): 4-5 water recharges in well): NA Photovac MicroFiD K FID | PID HAIDPT [Other ☐ Drum ☐ Spread K Backfill Disposition of Drill Cuttings [check method(s)]: (describe if other or multiple items are checked): ▼ Backfill Other (describe) ☐ Grout □ Bentonite T Well Borehole Completion (check one): Lab Soil and Sample Recovery (inches) Moisture Content Sample Depth Interval (feet) SPT Blows (per six inches) Unfiltered OVA USCS Symbo Groundwater Filtered OVA Sample Type Depth (feet Net OVA Sample Description Samples (list (include grain size based on USCS, odors, staining, sample number and other remarks) and depth or temporary screen interval) F.G. S., DK. Brown - Brown, .501-21 92 €16:05 41 IGS, Brown - Gray, Stipleto oder? 5/, 11 5 F.G.S., Brown, perso odir 134 255 iv (10) stiday ey sand, Gray - Tan, petro color

Page 1 of FDEP Facility Identification Number: Permit Number: Boring/Well Number: Borehole Start Date: 10-770 Borehole Start Time:13! 47 T AM K PM Site Name: T AM X PM End Time: 13! 59 End Date: 10-7-10 11530/ + Ft. Haver ld. Environmental Technician's Name: Geologist's Name: Environmental Contractor: Cordino TSE Pavement Thickness (inches): Borehole Diameter (inches): Drilling Company; OVA (list model and check type): Measured Well DTW (in feet after Apparent Borehole DTW (in feet Drilling Method(s): TX FID | PID water recharges in well): NA Photovac MicroFiD from soil moisture content): 4-5 ■ Backfill Other Stockpile ☐ Drum ☐ Spread Disposition of Drill Cuttings [check method(s)]: (describe if other or multiple items are checked): ■ Backfill ☐ Grout ☐ Bentonite Other (describe) ☐ Well Borehole Completion (check one): Lab Soil and Moisture Content Sample Recovery (inches) SPT Blows (per six inches) Sample Depth Interval (feet) USCS Symbo Unfiltered OVA Groundwater Filtered OV Sample Type Depth (feet Net OVA Sample Description Samples (list (include grain size based on USCS, odors, staining, sample number and other remarks) and depth or temporary screen interval) F.G. S, Black, No odor 0 21 F.G. S., Ton-white, wooder 0 M/n M st. dayey soul, Gray - Tan, No oder M 11

Page 1 of FDEP Facility Identification Number: Boring/Well Number: Permit Number: Borehole Start Time: 14'04 ☐ AM X PM Site Name: Borehole Start Date: 10-710 Γ AM ≯ PM End Time: 14120 45 301 + Ft. Henr Rd Environmental Contractor: End Date: 10 -7-10 Environmental Technician's Name: Geologist's Name: Jana Kros Condus TBE Borehole Depth (feet): Drilling Company: Pavement Thickness (inches): Borehole Diameter (inches): Drilling Method(s): Measured Well DTW (in feet after Apparent Borehole DTW (in feet OVA (list model and check type): from soil moisture content): 4-5 water recharges in well): NA Photovac MicroFiD F FID F PID HA/DPT ☐ Drum ☐ Spread ☐ Backfill Stockpile C Other Disposition of Drill Cuttings [check method(s)]: (describe if other or multiple items are checked): K Backfill [Grout □ Bentonite Other (describe) ☐ Well Borehole Completion (check one): Lab Soil and Sample Recovery (inches) Moisture Content Sample Depth Interval (feet) SPT Blows (per six inches) Unfiltered OVA USCS Symbo Groundwater Filtered OV Sample Type Depth (feet Net OVA Sample Description Samples (list (include grain size based on USCS, odors, staining, sample number and other remarks) and depth or temporary screen interval) F.G.S., Black, wo oder 10 0 F.G.S., DK. Gray, wooder M/W Mu

Page 1 of FDEP Facility Identification Number: Permit Number: Boring/Well Number: Borehole Start Time: 14:24 Borehole Start Date: 10-7 10 T AM IX PM 「AM ▼ PM 115 301 + Ff. Humer Rol. Environmental Contractor: End Date: 10-7-10 End Time: 14'.38 Environmental Technician's Name: Geologist's Name: Cadho TBE Drilling Company: Pavement Thickness (inches): Borehole Diameter (inches): Preferred Orillin OVA (list model and check type): Apparent Borehole DTW (in feet Measured Well DTW (in feet after Drilling Method(s): Photovac MicroFiD K FID F PID HA / DAT from soil moisture content): 4-5 water recharges in well): NA T Stockpile ☐ Other ☐ Drum ☐ Spread Disposition of Drill Cuttings [check method(s)]: (describe if other or multiple items are checked): X Backfill □ Bentonite T Other (describe) [Well [Grout Borehole Completion (check one): Lab Soil and Sample Recovery (inches) Moisture Content Sample Depth Interval (feet) SPT Blows (per six inches) Unfiltered OVA USCS Symbo Groundwater Filtered OVA Sample Type Depth (feet Net OVA Sample Description Samples (list (include grain size based on USCS, odors, staining, sample number and other remarks) and depth or temporary screen interval) F.G. S., Tan- whree, no oda .501-21 C14:45 F.G.S., OK. Brown, wooder (organic oder) 270 103 m/w w Fog. S., Sl. hard pan, Brown, Mh

Page 1 of FDEP Facility Identification Number: Boring/Well Number: Permit Number: Borehole Start Time: 19:42 F AM Borehole Start Date: 10-7-10 End Time: 15: 02 T AM TVPM C15301 & Ff. Hame fl.
Environmental Contractor: End Date: (U-7-10 Environmental Technician's Name: Geologist's Name: Cardus TSE Drilling Company: Borehole Diameter (inches): Pavement Thickness (inches): Apparent Borehole DTW (in feet Measured Well DTW (in feet after OVA (list model and check type): Drilling Method(s): K FID F PID from soil moisture content): 4-5 water recharges in well): NA-Photovac MicroFiD Stockpile T Other Backfill Disposition of Drill Cuttings [check method(s)]: ☐ Drum ☐ Spread (describe if other or multiple items are checked): X Backfill T Other (describe) ☐ Grout F Bentonite Well Borehole Completion (check one): Lab Soil and Sample Recovery (inches) Moisture Content SPT Blows (per six inches) Sample Depth Interval (feet) Unfiltered OVA USCS Symbo Groundwater Filtered OVA Sample Type Depth (feet Net OVA Sample Description Samples (list (include grain size based on USCS, odors, staining, sample number and other remarks) and depth or temporary screen interval) F.G.S. Gray, wooder F.G.S., White, wooder 4) F.G.S., Brown , organice oda m/a 6 F.G.S., 31. hard pan, M Brown, organic odar 8 Sandy clay, med. Stiff,

Gray - 7 an - Gren, no odar

O sandy clay, soft-med.,

Gray, No odar M

FDEP Facility Identification Number: Permit Number: Boring/Well Number: Borehole Start Time: /5:106 T AM Borehole Start Date: 10-7-10 End Time: 15; 15 T AM TYPM US 30/ + Ft. Hammer Re Environmental Contractor: End Date: (U-7-10 Environmental Technician's Name:

Oano-Kress

Borehole Depth (feet): Geologist's Name: Cardino TBE Pavement Thickness (inches): Borehole Diameter (inches): Measured Well DTW (in feet after OVA (list model and check type): Apparent Borehole DTW (in feet Drilling Method(s): water recharges in well); NA Photovac MicroFiD FID F PID from soil moisture content): 4-5 HA/DP X Backfill T Stockpile Other ☐ Drum ☐ Spread Disposition of Drill Cuttings [check method(s)]: (describe if other or multiple items are checked): ▼ Backfill ☐ Bentonite T Other (describe) T Well [Grout Borehole Completion (check one): Lab Soil and Sample Recovery (inches) Moisture Content Sample Depth Interval (feet) SPT Blows (per six inches) Unfiltered OVA **USCS** Symbo Groundwater Filtered OVA Sample Type Depth (feet Net OVA Sample Description Samples (list (include grain size based on USCS, odors, staining, sample number and other remarks) and depth or temporary screen interval) F.G.S., Whose - Tan, 11 F.G.S., DK. Gray I No odar M/W G. dayey sand, Gray-Brown, 21 Gray- Green - Tan , wo odar M

										A service and	Pa	age I of	
Borin	g/Well	Numbe SB-	_			Permit	t Number:	- All History		FDEP Facili	ty Ide	ntificati	ion Number:
Site N						Boreh	ole Start D	Date: 10-7-10	Borehole Star	t Time: /5/ 2	20	T.	AM T PM
115	30/	1 1	t. Ha		01			ate: 10_770	End	Time: 15.3	4	Г.	ам ГУРМ
Envir	onmenta	al Cont	ractor:	MUY E	CM.	Geolog	gist's Nam			Environmen			
(Caroli	4.d 7	BE							Da	10	Kies	5
Drilli	ng Com	pany:			Paven	ent Thio	ckness (inc	ches): Borehole Dia	ameter (inches):	Boi	ehole	Depth	(feet):
	efen		Pulla	12	<u> </u>	/	NA	he inture	3/4	OVA (list m		10	als to make
Drilli	ng Meth					ole DTW	ent): 4~5	Measured Well DT water recharges i		Photovac Mi			FID PID
Diana		(p)	Cuttings	1				Drum Spread	Backfill	T Stock			Other
							į l	Jiuni i Spicau	I/ - Dackini	j bloci	cpnc	,	Other
			multiple				Г.	. I name	EZ D. J.	en 17 7	V-1 /	(1) 1	,
Borel	iole Cor	npletio	n (check o	one):	1	Well	☐ Gro	ut Γ Bentonite	e K Backi	m , (Iner ((describ	e)
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)	(include grain size b	le Description ased on USCS, oc other remarks)		USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)
				21		21	(801)	F.G.S., Ga	ray-Snw	n, no oder		0	
				21	-	21	3	F.G.S., Tar	1 - White	Noda-	à	Ø	
				21	-	<1	4 5	F.G.S., Bru	wn, organ	ite odar		m/r	
				21	-	41	(6) - 7	F.G. S.1 :		1 Brown,		1/4	/
	1			21		- </td <td>8 9</td> <td></td> <td></td> <td></td> <td></td> <td>M</td> <td></td>	8 9					M	
		ē		<i>L</i> (_	<i>د</i> ا			+			M	
	8,911						12	K - L					

Page 1 of FDEP Facility Identification Number: Boring/Well Number: Permit Number: Borehole Start Time: 15.57 Borehole Start Date: /U-7-10 End Time: 16:11 End Date: 14-7-70 US 301 + Ft. Hamer Rd. Environmental Technician's Name: Geologist's Name: Environmental Contractor: Cordni TBG Borehole Diameter (inches): Pavement Thickness (inches): Drilling Company: Preferred Dis //an Measured Well DTW (in feet after OVA (list model and check type): Drilling Method(s): Apparent Borehole DTW (in feet Photovac MicroFiD K FID | PID water recharges in well): NA from soil moisture content): $\dot{\mathcal{U}} - \mathcal{S}$ W Backfill T Stockpile T Other ☐ Drum ☐ Spread Disposition of Drill Cuttings [check method(s)]: (describe if other or multiple items are checked): **⊠** Backfill T Other (describe) ☐ Bentonite ☐ Well [Grout Borehole Completion (check one): Lab Soil and Moisture Content Sample Recovery (inches) Sample Depth Interval (feet) Unfiltered OVA USCS Symbo Groundwater (per six inches) Filtered OVA Sample Type Depth (feet Net OVA Sample Description Samples (list (include grain size based on USCS, odors, staining, sample number and other remarks) and depth or temporary screen interval) 55-5 (50) F.G.S., Gray, in odor ,501-21 F.G.S., Brewn-Ok. Brown, wooda 11 F.G.S., Tan-Brown, woode M 11 F.G.S., Sl. Clayey, Brown, M/W 5 10 F.G.S., Gray - Tan, sl.

											Pa	age 1 of	
Borin	g/Well]	Number	r:			Permit	Number:			FDEP Facili	ty Ide	ntificati	on Number:
1	13-	15											
Site N	lame:					Boreho	ole Start Da	ate: 10-7-10	Borehole Star	t Time: 16,1	7	T.	AM X PM
113	301.	+ A	Hones	- Ld.			End Da	ite: 10-7-10	End	Time:/6:3	3		AM PM
Envir	onmenta	al Contr	- Higher ractor:	7.41	-	Geolog	gist's Name):		Environmen	tal Tee		
C	vilai	75	E								ano		
Drilli	ng Com	pany:	1 11		Paven		kness (incl	nes): Borehole Dia	ameter (inches):	Bo	rehole	Depth	(feet):
Pr	ng Meth	1	Dri/1	12	Desek	ole DTW	NA (in fact	Measured Well DT		OVA (list m	odel a	nd chec	k tyne):
Driin	0	100(8):		from s	oil moist	hire conte	nt): 4-5	The state of the s	and the same of th	Photovac Mi			FID T PID
Diene	1.47	110	Cuttings					rum Spread		☐ Stock			Other
							, 2	ium į opieus	1(*	
-	_		multiple				Ε α	nt Bentonit	e Ĵ Backt	cii F /) (h)	(describ	۵)
Borel	ole Cor	npletio	ı (check	one):	1	Well	Grou	it j Bentonit	e J/ Backi	im 1 (Jiner ((describ	e)
-		1 00			Г	T						13	Lab Soil and
Sar	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filt	z	De	Comr	ole Description		USCS Symbol	Moisture Content	Groundwater
Sample Type	ple	iple Reco	SPT Blows er six inche	tere	Filtered OVA	Net OVA	Depth (feet)	(include grain size b			SS	ire (Samples (list
Ty	Dep (fee	ecov es)	lows	0 b	00	VA	feet	and	other remarks)		mb	Cont	and depth or
эе	th C	ery	es)	X	A						10	ent	temporary screen interval)
) - 1 1 1		Jan		D	
				11	_	c1 (150	F. G. S., 6	ray, 200	i			
							-	1					
				1		41	(2)	4	1	+		0	
				61			(-						
							`3						
							4-	Land St.					
				11	-	<1	10	F.G.S., Tu	4-Brun	1 NO		MM	
						1	5			0.00			
			9	2.5		7.1	6	EG.S. SI.	clare 6	" Are		1.50	
		ŧ		7		121	7	F.G.S., SI.				w	
		8 1					7	Tan, no	odor				
		1						1		ĺ			
	1			11	-	-21	8=	$\perp L$				M/U	
				2			(4	4			1	
							_ 9				-		P
								410	-				
				21	-	0	(10)	t. H. S. 17	an- Aray 1	no oda		w	
				1		1							
1							- 11						1 1
- 2			4		1		10						

Page 1 of FDEP Facility Identification Number: Boring/Well Number: Permit Number: Borehole Start Time: 10 ' 5-8 Borehole Start Date: 10-8-10 X AM | PM K AM | PM (1530) + Ft. Hansy Rd. Environmental Contractor: End Time: //; OF End Date: 10-8/0 Environmental Technician's Name: Geologist's Name: Dana Kress Corduo TBE Pavement Thickness (inches): Borehole Diameter (inches): Drilling Company: MA Measured Well DTW (in feet after Apparent Borehole DTW (in feet OVA (list model and check type): Drilling Method(s): Photovac MicroFiD FID FID from soil moisture content): 4-5 water recharges in well): NA HA 10PT Stockpile T Other ☐ Drum ☐ Spread M Backfill Disposition of Drill Cuttings [check method(s)]: (describe if other or multiple items are checked): A Backfill ☐ Bentonite T Other (describe) T Grout ☐ Well Borehole Completion (check one): Lab Soil and Sample Recovery (inches) Moisture Content Sample Depth Interval (feet) SPT Blows (per six inches) Unfiltered OVA USCS Symbo Groundwater Filtered OVA Sample Type Depth (feet Net OVA Sample Description Samples (list (include grain size based on USCS, odors, staining, sample number and other remarks) and depth or temporary screen interval) F.G.S., Tan, worder ,501-21 @11:15 F.G.S., Tan-Brunn - Dil. 0 Brown, No oder FG.S., Brown, not dor 11/4 [.G.S., 3/. daypy, Tauscu/< F.G.S., Sl. clayey, Bray-W m

WELL CONSTRUCTION AND DEVELOPMENT LOG

	WELL CONSTR	UCTION DATA		
Well Number: Site Name: 30/ + 1	t. Hamir Rd.	FDEP Fac	cility I.D. Number:	Well Install Date(s): /U-8-/U
Well Location and Type (check appropriate box On-Site Right-of-Way Off-Site Private Property Above Grade (AG) Flush-to-Grad If AG, list feet of riser above land surface:	Well Purpose:	Perched Monitoring Shallow (Water-Table) M Intermediate or Deep Mo Remediation or Other (des	lonitoring nitoring	Il Install Method: I) [] face Casing Install Method: A A
	rehole Diameter Manhole Di	ameter Well Pad	Size: NA	
	ches): (inches): /		Size: NA	feet
Riser Diameter and Material: Riser/S.	4	Riser Len	gth: $\frac{\checkmark}{O}$ feet from $\frac{O}{O}$ fe	eet to <u>'</u> feet
Screen Diameter and Material:	Screen Slot Size:		ngth:	eet to <u>///</u> feet
1st Surface Casing Material:	1 st Surface Casing I.I		e Casing Length:	feet
also check: Permanent Tempo	orary		from 0 fe	eet to feet
2 nd Surface Casing Material:	2 nd Surface Casing J	D. (inches): 2 nd Surfac	e Casing Length:	feet
also check: Permanent Tempo	отату		from 0 fe	eet tofeet
3 rd Surface Casing Material: also eleck: Permanent Tempo	3 rd Surface Casing I.I		e Casing Length:	feet
	lter Around Screen (check on	e): Filter Paci	k Length:	
20/30 XYes	∏ No		from 4 fe	eet to // feet
Filter Pack Seal Material and Size: Fine	Sond SAI	Filter Pac	k Seal Length: 3, J	feet .
Surface Seal Material:		Surface So	eal Length:	FO feet
31:	at		from O fe	et to
,				PROPERTY OF THE PARTY OF THE PA
	WELL DEVELO	PMENT DATA		
	ell Development Method (chec Other (describe)			
Development Pump Type (check): Cer Submersible Other (describe)	ntrifugal Peristaltic	Depth to Groundwater (6,77	
Pumping Rate (gallons per minute):	Maximum Drawdown of O Development (feet):	Groundwater During Z	Well Purged Dry (o	check one):
	evelopment Water ed (gallons):	Development Duration (minutes): 3 3	Development Wate (check one):	☐ Yes ► No
Water Appearance (color and odor) At Start of Cloudy - Brown,		Water Appearance (colo	or and odor) At End o	of Development:
WELL CO	NSTRUCTION OR	DEVELOPMENT	REMARKS	

WELL CONSTRUCTION AND DEVELOPMENT LOG

WELL CONST	TRUCTION DATA
Well Number: Site Name: TMW-2 US 36/+ Ft. Hamer	FDEP Facility I.D. Number: Well Install Date(s):
Well Location and Type (check appropriate boxes): Well Purpose: ☐ Right-of-Way	Perched Monitoring Note
Borehole Depth Well Depth Borehole Diameter Manhole	D' 4 W-11 D-4 C'
	e Diameter Well Pad Size: MA feet feet feet feet
Riser Diameter and Material: Riser/Screen Flush-Threaded Connections: Other (describe	
Screen Diameter and Material: Screen Slot Size:	Screen Length: 10 feet Pre-Pack from 4 feet to 14 feet
1 st Surface Casing Material: 1 st Surface Casing also check: Permanent Temporary	g I.D. (inches): 1st Surface Casing Length:feet from 0 feet to feet
2 nd Surface Casing Material: 2 nd Surface Casing Material: 2 nd Surface Casin	
3 rd Surface Casing Material: also check: Permanent Temporary	
Filter Pack Material and Size: Prepacked Filter Around Screen (check	fone): Filter Pack Length: /0 feet from / feet to // feet
Filter Pack Seal Material and	Filter Pack Seal Length: 3.5 feet from 50 feet to 4 feet
Size: Fint Sand San San Surface Seal Material:	Surface Seal Length:
	LOPMENT DATA
Well Development Date: Well Development Method (/U-8-/U ☐ Other (describe)	check one):
Development Pump Type (check): Centrifugal Peristaltic Submersible Other (describe)	Depth to Groundwater (before developing in feet): G_{ϵ} & \mathcal{F}
Pumping Rate (gallons per minute): Maximum Drawdown Development (feet):	of Groundwater During 7-3 Well Purged Dry (check one): Yes No
Pumping Condition (check one): Continuous	Development Duration (minutes): 3 3 Development Water Drummed (check one): Yes No
Water Appearance (color and odor) At Start of Development: Cloudy - Brown, No odor	Water Appearance (color and odor) At End of Development:
	R DEVELOPMENT REMARKS

WELL CONSTRUCTION AND DEVELOPMENT LOG

	W	ELL CONSTR	UCTION	DATA		
Well Number: S TMW-3 Well Location and Type (check app	ite Name: 15 30/4 F	t. Havner Ed	7	FDEP Faci	lity I.D. Numbe	10-8-10
[[일] [[일] [[일] [[일] [[일] [[] [[] [[] [[]	ght-of-Way lush-to-Grade	T Z	Perched Moni Shallow (Wate Intermediate of Remediation of	er-Table) Mo or Deep Mon	onitoring itoring -	Well Install Method: OPT Surface Casing Install Method AA
Borehole Depth (feet): / C/ (feet):	oth Borehole I	Diameter Manhole Di (inches):	iameter NA	Well Pad S	ize: feet	MA- by feet
Riser Diameter and Material:	Riser/Screen Connections:	Flush-Threaded Other (describe)		Riser Leng		eet feet to <u>4</u> feet
Screen Diameter and Material:	Park	Screen Slot Size:	Petk			feet to 14 feet
1 st Surface Casing Material: also check: Permanent	Temporary	1 st Surface Casing I.I	D. (inches):			feet to feet
2 nd Surface Casing Material: also check: Permanent	Temporary	2 nd Surface Casing 1.	D. (inches):		Casing Length:	feet tofeet
3 rd Surface Casing Material: also eleck: Permanent	Temporary	3 rd Surface Casing I.	D. (inches):	Land American	Casing Length:	feet feet tofeet
Filter Pack Material and Size: Programme 70/30	repacked Filter Arc	ound Screen (check on	e):	Filter Pack		
Filter Pack Seal Material and	lue Sand	Seal (from <u>, Sc!</u>	feet to <u>\forall feet</u>
Surface Seal Material:	we Soud			Surface Se	al Length:	feet to SOfeet
		VELL DEVELO	PMENT	DATA		
Well Development Date:	Well Deve	lopment Method (che er (describe)	ck one):	Surge/P	amp 🗀 Pu	mp [] Compressed Air
Development Pump Type (check): Submersible Other (descri	- Comerning	Peristaltic	Depth to Gro	oundwater (b	efore developin	g in feet):
Pumping Rate (gallons per minute		kimum Drawdown of G elopment (feet):	Groundwater I	During —	Well Purged Dr	y (check one): No
Pumping Condition (check one): Continuous Intermittent	Total Developr Removed (galle		Developmen (minutes):	33	Development W (check one):	T Yes No
Water Appearance (color and odor Cloudy - 7		opment:	Water Appea	arance (color		nd of Development:
W	ELL CONST	RUCTION OR	DEVELO	PMENT	REMARK	S

DEP-SOP-001/01 FT 1000 General Field Testing and Measurement

INSTRUM	F 72 16 5 35		-8: FIEL FL#)	DINSTRUME Micro FID/Phi	NT CALI	BRATION R	RECORDS MENT# (*2	5F 3/3
PARAME				16.14.1.0//				
	IPERATUR		CONDUC	TIVITY S	ALINITY	□рН	ORP	
☐ TUR			RESIDUAI		00	⊠ OTH	IER 500	ppm Met
values, and	the date th	ne standards	were prep	ndards used for ca ared or purchased	alibration, i			
Standa	ard A	0.00	Ambren	t Arr			20	
Standa Standa		300 pps	n Met	hove Petersun	EUV. ; &	xp. 5-13-	n.	
DATE	TIME	STD	STD	INSTRUMENT		CALIBRATED	TYPE	SAMPLER
(yy/mm/dd)	(hr:min)	(A, B, C)	VALUE	RESPONSE	% DEV	(YES, NO)	(INIT, CONT)	INITIALS
10/10/07	10:00	B	0.0	0.0		yes	Inst	PLAC
4	7	O	SciV	499.7		445		puk
10/10/07	1 1	A	0.0	0.0		yes	Couf	OUR
4	4	B	SCU	499,6		yes	lon-	pulc
10/10/08	10:30	AB	0.0	0.0		yes	hud	DUK
4	1	15	200	499,7		yes	lary	
M.								
		L						
		1						

Revision Date: February 1, 2004

Appendix B
Laboratory Analyses Reports

October 25, 2010

Rick Hagberg Cardno TBE, Inc. 380 Park Place Blvd. Suite 300 Clearwater, FL 33759

Re: SunLabs Project Number:

101011.02

Client Project Description:

Manatee

Dear Mr. Hagberg:

Enclosed is the report of laboratory analysis for the following samples:

Sample Number	Sample Description	Date Coll	Date Received	
110331	MW-4R	10/08/10	16:20	10/08/10
110332	MW-7	10/08/10	15:00	10/08/10
110333	MW-23	10/08/10	15:42	10/08/10
110334	SS-1	10/08/10	16:05	10/08/10
110335	SS-2	10/08/10	14:45	10/08/10
110336	SS-6	10/08/10	11:15	10/08/10
110478	TMW-1	10/11/10	10:08	10/12/10
110479	TMW-2	10/11/10	11:05	10/12/10
110480	TMW-3	10/11/10	12:45	10/12/10
110481	SS-3 .50'-2'	10/11/10	11:38	10/12/10
110482	SS-4 .50'-2'	10/11/10	11:56	10/12/10
110483	SS-5 .50'-2'	10/11/10	13:20	10/12/10

Narrative:

Unless otherwise noted below or in the report and where applicable:

- · Samples were received at the proper temperature and analyzed as received.
- · Sample condition upon receipt is recorded on the chain-of-custody attached to this report.
- · Results for all solid matrices are reported on a dry weight basis.
- · Appropriate calibration and QC criteria were satisfactorily met.
- · All applicable holding times for analytes have been met.
- · Copies of the chains-of-custody, if received, are attached to this report.

QC Batch D6248 had a few exceptions for VOC's on the MS and MSD. The LCS and LCSD were acceptable, so the out of control was attributed to matrix. Results were also biased high on the MS and MSD and all the samples were non-detect for these analytes.

If you have any questions or comments concerning this report, please do not hesitate to contact us.

Sincerely,

Michael W. Palmer

Vice President, Laboratory Operations

Enclosures

5460 Beaumont Center Blvd., Suite 520 Tampa, Florida 33634

Unless Otherwise Noted and Where Applicable:

The results herein relate only to the items tested or to the samples as received by the laboratory • This report shall not be reproduced except in full, without the written approval of SunLabs • All samples will be disposed of within 60 days of the date of receipt of the samples • All results meet the requirements of the NELAC standards • Uncertainty values are available upon request

SunLabs Project Number

101011.02

Cardno TBE, Inc.

Project Description

Manatee

October 25, 2010

SunLabs Sample Number Sample Designation 110331 MW-4R Matrix

Groundwater

Date Collected Date Received 10/08/10 16:20 10/08/10 17:40

Parameters	Method	Units	Results	Dil Facto	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Volatile Organic Compounds By E	PA Method 8260							KONONA AUGE	
Date Analyzed			10/12/10	1			Carratura	10/12/10 16:55	
4-Bromofluorobenzene (66-125)	8260	%	110	1	11511	-	DEP-SURR-	10/12/10 16:55	
Dibromofluoromethane (61-137)	8260	%	93	1			186-85-37	10/12/10 16:55	
Toluene-d8 (69-128)	8260	%	109	1			DEP-SURR-	10/12/10 16:55	
Acetone	8260	ug/L	0.6 U	1	0.6	5	67-64-1	10/12/10 16:55	
Benzene	8260	ug/L	0.1 U	1	0.1	0.5	71-43-2	10/12/10 16:55	
Bromochloromethane	8260	ug/L	0.2 U	1	0.2	0.8	74-97-5	10/12/10 16:55	
Bromodichloromethane	8260	ug/L	0.1 U	1	0.1	0.5	75-27-4	10/12/10 16:55	
Bromoform	8260	ug/L	0.3 U	1	0.3	1.2	75-25-2	10/12/10 16:55	
Bromomethane	8260	ug/L	0.4 U	1	0.4	1.6	74-83-9	10/12/10 16:55	
2-Butanone	8260	ug/L	0.4 U	1	0.4	5	78-93-3	10/12/10 16:55	
Carbon disulfide	8260	ug/L	0.25 U	_1	0.25	5	75-15-0	10/12/10 16:55	
Carbon tetrachloride	8260	ug/L	0.2 U	1	0.2	0.8	56-23-5	10/12/10 16:55	
Chlorobenzene	8260	ug/L	0.2 U	1	0.2	0.8	108-90-7	10/12/10 16:55	
Chloroethane	8260	ug/L	0.3 U	1	0.3	1.2	75-00-3	10/12/10 16:55	
Chloroform	8260	ug/L	0.1 U	1	0.1	0.5	67-66-3	10/12/10 16:55	
Chloromethane	8260	ug/L	0.1 U	1	0.1	0.5	74-87-3	10/12/10 16:55	
Dibromochloromethane	8260	ug/L	0.15 U	1	0.15	0.6	124-48-1	10/12/10 16:55	
Dibromomethane	8260	ug/L	0.1 U	1	0.1	0.5	74-95-3	10/12/10 16:55	
1,2-Dichlorobenzene	8260	ug/L	0.2 U	1	0.2	0.8	95-50-1	10/12/10 16:55	
1,3-Dichlorobenzene	8260	ug/L	0.3 U	1	0.3	1.2	541-73-1	10/12/10 16:55	
1,4-Dichlorobenzene	8260	ug/L	0.4 U	1	0.4	1.6	106-46-7	10/12/10 16:55	
Dichlorodifluoromethane	8260	ug/L	0.3 U	1	0.3	1.2	75-71-8	10/12/10 16:55	
1,1-Dichloroethane	8260	ug/L	0.1 U	1	0.1	0.5	75-34-3	10/12/10 16:55	
1,2-Dichloroethane	8260	ug/L	0.2 U	1	0.2	0.8	107-06-2	10/12/10 16:55	
1,1-Dichloroethene	8260	ug/L	0.15 U	1	0.15	0,6	75-35-4	10/12/10 16:55	
cis-1,2-Dichloroethene	8260	ug/L	0.2 U	1	0.2	0.8	156-59-2	10/12/10 16:55	
trans-1,2-Dichloroethene	8260	ug/L	0.2 U	1	0.2	0.8	156-60-5	10/12/10 16:55	
1,2-Dichloropropane	8260	ug/L	0.1 U	1	0.1	0.5	78-87-5	10/12/10 16:55	
1,3-Dichloropropene	8260	ug/L	0.2 U	1	0.2	0.8	542-75-6	10/12/10 16:55	
Ethylbenzene	8260	ug/L	8.9	1	0.2	0.5	100-41-4	10/12/10 16:55	
2-Hexanone	8260	ug/L	0.2 U	1	0.2	5	591-78-6	10/12/10 16:55	1.2
Carried Control of the Control of th	8260	ug/L	0.2 U	1	0.2	5	108-10-1	10/12/10 16:55	
4-Methyl-2-pentanone	8260	ug/L	1.7 U	1	1.7	6.8	75-09-2	10/12/10 16:55	
Methylene Chloride	8260	ug/L	0.05 U	1	0.05	0.5	1634-04-4	10/12/10 16:55	
MTBE	8260	ug/L	4.0	1	0.2	0.8	98-82-8	10/12/10 16:55	
isopropylbenzene	8260	ug/L	0.1 U	1	0.1	0.5	100-42-5	10/12/10 16:55	
Styrene	8260	ug/L	0.2 U	i	0.2	0.8	79-34-5	10/12/10 16:55	
1,1,2,2-Tetrachloroethane	8260	ug/L	0.25 U	1	0.25	1	127-18-4	10/12/10 16:55	
Tetrachloroethene	8260 8260	ug/L	0.3 U	1	0.3	0.5	108-88-3	10/12/10 16:55	
Toluene		4.00	0.1 U	1	0.1	0.5	71-55-6	10/12/10 16:55	
1,1,1-Trichloroethane	8260	ug/L	0,1 0	1		- 15	2.5	MANAGE STATES	

SunLabs Project Number Cardno TBE, Inc.

101011.02

Project Description

Manatee

October 25, 2010

SunLabs Sample Number Sample Designation 110331 MW-4R Matrix Date Collected Groundwater

Date Collected

Date Received

10/08/10 16:20 10/08/10 17:40

Zona de deservir									
Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Volatile Organic Compounds By EPA	Method 8260					64	44.4	464246 46.55	
1,1,2-Trichloroethane	8260	ug/L	0.7 U	1	0.7	2.8	79-00-5	10/12/10 16:55	
Trichloroethene	8260	ug/L	0.2 U	1	0.2	0.8	79-01-6	10/12/10 16:55	
Trichlorofluoromethane	8260	ug/L	0.2 U	1	0.2	0.8	75-69-4	10/12/10 16:55	
1,2,4-Trimethylbenzene	8260	ug/L	1.1	1	0.2	0.8	95-63-6	10/12/10 16:55	
1,3,5-Trimethylbenzene	8260	ug/L	2.7	1	0.2	0.8	108-67-8	10/12/10 16:55	
/inyl acetate	8260	ug/L	0.25 U	1	0.25	5	108-05-4	10/12/10 16:55	
/inyl chloride	8260	ug/L	0.09 U	1	0.09	0.5	75-01-4	10/12/10 16:55	
Fotal Xylenes	8260	ug/L	0.4 U	1	0.4	1.6	1330-20-7	10/12/10 16:55	
Petroleum Range Organics(C8-C40)									100c00 140
Date Extracted			10/15/10					Lankova and L	10/15/10 14:0
Date Analyzed			10/18/10	1		4		10/18/10 22:48	10/15/10 110
C-39 (40-140)	FLPRO	%	65	1		1		10/18/10 22:48	10/15/10 14:0
o-Terphenyl (40-140)	FLPRO	%	82	1		1	84-15-1	10/18/10 22:48	10/15/10 14:0
Petroleum Range Organics	FLPRO	ug/L	830	1	46	300	-	10/18/10 22:48	10/15/10 14:0
1,2-Dibromoethane by EPA Method	8011								
Date Extracted			10/14/10					All the second	10/14/10 12:0
Date Analyzed			10/15/10	1				10/15/10 00:16	
1,2-Dibromoethane	8011	ug/L	0.006 U	1	0.006	0.024	106-93-4	10/15/10 00:16	10/14/10 12:0
Polynuclear Aromatic Hydrocarbons	by Method 8270								10/14/10 11:3
	by Method 8270 3510		10/14/10					10/15/10 07:01	10/14/10 11:3
Date Extracted			10/15/2010	1			654 8792	10/15/10 07:01	
Date Extracted Date Analyzed	3510	%	10/15/2010 60	1			DEP-SURR-	10/15/10 07:01	10/14/10 11:
Date Extracted Date Analyzed Ferphenyl-d14 (3-130)	3510 8270	% ug/L	10/15/2010 60 1.6	1	0.028	0.11	83-32-9	10/15/10 07:01 10/15/10 07:01	10/14/10 11: 10/14/10 11:
Date Extracted Date Analyzed Ferphenyl-d14 (3-130) Acenaphthene	3510 8270 8270	%	10/15/2010 60 1.6 0.022 U	1 1 1	0.022	0.09	83-32-9 208-96-8	10/15/10 07:01 10/15/10 07:01 10/15/10 07:01	10/14/10 11: 10/14/10 11: 10/14/10 11:
Date Extracted Date Analyzed Ferphenyl-d14 (3-130) Acenaphthene Acenaphthylene	3510 8270 8270 8270	% ug/L	10/15/2010 60 1.6 0.022 U 0.21	1 1 1	0.022 0.02	0.09	83-32-9 208-96-8 120-12-7	10/15/10 07:01 10/15/10 07:01 10/15/10 07:01 10/15/10 07:01	10/14/10 11: 10/14/10 11: 10/14/10 11: 10/14/10 11:
Date Extracted Date Analyzed Ferphenyl-d14 (3-130) Acenaphthene Acenaphthylene Anthracene	3510 8270 8270 8270 8270	% ug/L ug/L	10/15/2010 60 1.6 0.022 U 0.21 0.011 U	1 1 1 1	0.022 0.02 0.011	0.09 0.08 0.044	83-32-9 208-96-8 120-12-7 56-55-3	10/15/10 07:01 10/15/10 07:01 10/15/10 07:01 10/15/10 07:01 10/15/10 07:01	10/14/10 11: 10/14/10 11: 10/14/10 11: 10/14/10 11: 10/14/10 11:
Date Extracted Date Analyzed Ferphenyl-d14 (3-130) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	3510 8270 8270 8270 8270 8270	% ug/L ug/L ug/L ug/L ug/L	10/15/2010 60 1.6 0.022 U 0.21 0.011 U 0.009 U	1 1 1 1 1	0.022 0.02 0.011 0.009	0.09 0.08 0.044 0.036	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8	10/15/10 07:01 10/15/10 07:01 10/15/10 07:01 10/15/10 07:01 10/15/10 07:01 10/15/10 07:01	10/14/10 11: 10/14/10 11: 10/14/10 11: 10/14/10 11: 10/14/10 11: 10/14/10 11:
Date Extracted Date Analyzed Ferphenyl-d14 (3-130) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	3510 8270 8270 8270 8270 8270 8270	% ug/L ug/L ug/L ug/L	10/15/2010 60 1.6 0.022 U 0.21 0.011 U	1 1 1 1	0.022 0.02 0.011 0.009 0.007	0.09 0.08 0.044 0.036 0.028	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2	10/15/10 07:01 10/15/10 07:01 10/15/10 07:01 10/15/10 07:01 10/15/10 07:01 10/15/10 07:01 10/15/10 07:01	10/14/10 11: 10/14/10 11: 10/14/10 11: 10/14/10 11: 10/14/10 11: 10/14/10 11: 10/14/10 11:
Date Extracted Date Analyzed Ferphenyl-d14 (3-130) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	3510 8270 8270 8270 8270 8270 8270 8270	% ug/L ug/L ug/L ug/L ug/L	10/15/2010 60 1.6 0.022 U 0.21 0.011 U 0.009 U	1 1 1 1 1	0.022 0.02 0.011 0.009 0.007 0.012	0.09 0.08 0.044 0.036 0.028 0.048	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2	10/15/10 07:01 10/15/10 07:01 10/15/10 07:01 10/15/10 07:01 10/15/10 07:01 10/15/10 07:01 10/15/10 07:01 10/15/10 07:01	10/14/10 11: 10/14/10 11: 10/14/10 11: 10/14/10 11: 10/14/10 11: 10/14/10 11: 10/14/10 11: 10/14/10 11:
Date Extracted Date Analyzed Ferphenyl-d14 (3-130) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene	3510 8270 8270 8270 8270 8270 8270 8270 827	% ug/L ug/L ug/L ug/L ug/L	10/15/2010 60 1.6 0.022 U 0.21 0.011 U 0.009 U 0.007 U	1 1 1 1 1 1 1 1	0.022 0.02 0.011 0.009 0.007 0.012 0.017	0.09 0.08 0.044 0.036 0.028 0.048 0.068	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9	10/15/10 07:01 10/15/10 07:01 10/15/10 07:01 10/15/10 07:01 10/15/10 07:01 10/15/10 07:01 10/15/10 07:01 10/15/10 07:01 10/15/10 07:01	10/14/10 11: 10/14/10 11: 10/14/10 11: 10/14/10 11: 10/14/10 11: 10/14/10 11: 10/14/10 11: 10/14/10 11: 10/14/10 11:
Date Extracted Date Analyzed Ferphenyl-d14 (3-130) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	3510 8270 8270 8270 8270 8270 8270 8270 827	% ug/L ug/L ug/L ug/L ug/L ug/L	10/15/2010 60 1.6 0.022 U 0.21 0.011 U 0.009 U 0.007 U 0.012 U	1 1 1 1 1 1 1	0.022 0.02 0.011 0.009 0.007 0.012 0.017	0.09 0.08 0.044 0.036 0.028 0.048 0.068	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9	10/15/10 07:01 10/15/10 07:01 10/15/10 07:01 10/15/10 07:01 10/15/10 07:01 10/15/10 07:01 10/15/10 07:01 10/15/10 07:01 10/15/10 07:01 10/15/10 07:01	10/14/10 11: 10/14/10 11: 10/14/10 11: 10/14/10 11: 10/14/10 11: 10/14/10 11: 10/14/10 11: 10/14/10 11: 10/14/10 11: 10/14/10 11:
Date Extracted Date Analyzed Ferphenyl-d14 (3-130) Accenaphthene Accenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	3510 8270 8270 8270 8270 8270 8270 8270 827	% ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10/15/2010 60 1.6 0.022 U 0.21 0.011 U 0.009 U 0.007 U 0.012 U 0.017 U	1 1 1 1 1 1 1 1 1 1	0.022 0.02 0.011 0.009 0.007 0.012 0.017 0.01 0.011	0.09 0.08 0.044 0.036 0.028 0.048 0.069 0.04	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3	10/15/10 07:01 10/15/10 07:01	10/14/10 11: 10/14/10 11:
Date Extracted Date Analyzed Ferphenyl-d14 (3-130) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene	3510 8270 8270 8270 8270 8270 8270 8270 827	% ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10/15/2010 60 1.6 0.022 U 0.21 0.011 U 0.009 U 0.007 U 0.012 U 0.017 U 0.01 U	1 1 1 1 1 1 1 1 1	0.022 0.02 0.011 0.009 0.007 0.012 0.017	0.09 0.08 0.044 0.036 0.028 0.048 0.068	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9	10/15/10 07:01 10/15/10 07:01	10/14/10 11: 10/14/10 11:
Date Extracted Date Analyzed Ferphenyl-d14 (3-130) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	3510 8270 8270 8270 8270 8270 8270 8270 827	% ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10/15/2010 60 1.6 0.022 U 0.21 0.011 U 0.009 U 0.007 U 0.012 U 0.017 U 0.011 U	1 1 1 1 1 1 1 1 1 1	0.022 0.02 0.011 0.009 0.007 0.012 0.017 0.01 0.011	0.09 0.08 0.044 0.036 0.028 0.048 0.069 0.04	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3	10/15/10 07:01 10/15/10 07:01	10/14/10 11: 10/14/10 11:
Date Extracted Date Analyzed Ferphenyl-d14 (3-130) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	3510 8270 8270 8270 8270 8270 8270 8270 827	% ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10/15/2010 60 1.6 0.022 U 0.21 0.011 U 0.009 U 0.007 U 0.012 U 0.017 U 0.011 U 0.011 U 0.011 U	1 1 1 1 1 1 1 1 1 1 1 1	0.022 0.02 0.011 0.009 0.007 0.012 0.017 0.01 0.011	0.09 0.08 0.044 0.036 0.028 0.048 0.068 0.04 0.044 0.08	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0	10/15/10 07:01 10/15/10 07:01	10/14/10 11: 10/14/10 11:
Date Extracted Date Analyzed Terphenyl-d14 (3-130) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	3510 8270 8270 8270 8270 8270 8270 8270 827	% ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10/15/2010 60 1.6 0.022 U 0.21 0.011 U 0.009 U 0.007 U 0.012 U 0.017 U 0.01 U 0.011 U 0.02 U 2.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.022 0.02 0.011 0.009 0.007 0.012 0.017 0.01 0.011 0.02 0.03	0.09 0.08 0.044 0.036 0.028 0.048 0.068 0.04 0.044 0.08	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7	10/15/10 07:01 10/15/10 07:01	10/14/10 11:3 10/14/10 11:3 10/14/10 11:3 10/14/10 11:3 10/14/10 11:3 10/14/10 11:3 10/14/10 11:3 10/14/10 11:3 10/14/10 11:3 10/14/10 11:3 10/14/10 11:3 10/14/10 11:3 10/14/10 11:3 10/14/10 11:3 10/14/10 11:3 10/14/10 11:3
Polynuclear Aromatic Hydrocarbons Date Extracted Date Analyzed Terphenyl-d14 (3-130) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene 2-Methylnaphthalene	3510 8270 8270 8270 8270 8270 8270 8270 827	% ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10/15/2010 60 1.6 0.022 U 0.21 0.011 U 0.009 U 0.007 U 0.012 U 0.017 U 0.011 U 0.011 U 0.02 U 2.5 0.011 U	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.022 0.02 0.011 0.009 0.007 0.012 0.017 0.01 0.011 0.02 0.03	0.09 0.08 0.044 0.036 0.028 0.048 0.063 0.04 0.044 0.08 0.12 0.044	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5	10/15/10 07:01 10/15/10 07:01	10/14/10 11:3 10/14/10 11:3

SunLabs **Project Number**

101011.02

Cardno TBE, Inc.

Project Description Manatee

October 25, 2010

SunLabs Sample Number Sample Designation

110331

MW-4R

Matrix

Groundwater

Date Collected Date Received

10/08/10 16:20 10/08/10 17:40

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Polynuclear Aromatic Hydroca	arbons by Method 8270								
Phenanthrene	8270	ug/L	2.6	1	0.026	0.1	85-01-8	10/15/10 07:01	10/14/10 11:30
Pyrene	8270	ug/L	0.022 U	1	0.022	0.088	129-00-0	10/15/10 07:01	10/14/10 11:30
RCRA Metals ppb									
Date Digested	3005		10/12/10						10/12/10 09:00
Date Analyzed	6010		10/14/10	1				10/14/10 18:49	Author Tries and
Lead	6010	ug/L	4.4 U	1	4.4	18	7439-92-1	10/14/10 18:49	10/12/10 09:00

Tampa, Florida 33634

SunLabs Project Number

101011.02

Cardno TBE, Inc.

Project Description

Manatee

October 25, 2010

SunLabs Sample Number Sample Designation 110332 MW-7 Matrix

Groundwater 10/08/10 15:00

Date Collected
Date Received

10/08/10 15:00 10/08/10 17:40

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
.0									
Volatile Organic Compounds By E	PA Method 8260								
Date Analyzed			10/12/10	1				10/12/10 17:16	
4-Bromofluorobenzene (66-125)	8260	%	113	1			DEP-SURR-	10/12/10 17:16	
Dibromofluoromethane (61-137)	8260	%	97	1			186-85-37	10/12/10 17:16	
Toluene-d8 (69-128)	8260	%	112	1			DEP-SURR-	10/12/10 17:16	
Acetone	8260	ug/L	4.9 1	1	0.6	5	67-64-1	10/12/10 17:16	
Benzene	8260	ug/L	0.1 U	1	0.1	0.5	71-43-2	10/12/10 17:16	
Bromochloromethane	8260	ug/L	0.2 U	1	0.2	8.0	74-97-5	10/12/10 17:16	
Bromodichloromethane	8260	ug/L	0.1 U	1	0.1	0.5	75-27-4	10/12/10 17:16	
Bromoform	8260	ug/L	0.3 U	1	0.3	1.2	75-25-2	10/12/10 17:16	
Bromomethane	8260	ug/L	0.4 U	1	0.4	1.6	74-83-9	10/12/10 17:16	
2-Butanone	8260	ug/L	3.3 I	1	0.4	5	78-93-3	10/12/10 17:16	
Carbon disulfide	8260	ug/L	0.25 U	1	0.25	5	75-15-0	10/12/10 17:16	
Carbon tetrachloride	8260	ug/L	0.2 U	1	0.2	8.0	56-23-5	10/12/10 17:16	
Chlorobenzene	8260	ug/L	0.2 U	1	0.2	8.0	108-90-7	10/12/10 17:16	
Chloroethane	8260	ug/L	0.3 U	1	0.3	1.2	75-00-3	10/12/10 17:16	
Chloroform	8260	ug/L	0.1 U	1	0.1	0.5	67-66-3	10/12/10 17:16	
Chloromethane	8260	ug/L	0.1 U	1	0.1	0.5	74-87-3	10/12/10 17:16	
Dibromochloromethane	8260	ug/L	0.15 U	1	0.15	0.6	124-48-1	10/12/10 17:16	
Dibromomethane	8260	ug/L	0.1 U	1	0.1	0.5	74-95-3	10/12/10 17:16	
1,2-Dichlorobenzene	8260	ug/L	0.2 U	1	0.2	8.0	95-50-1	10/12/10 17:16	
1,3-Dichlorobenzene	8260	ug/L	0.3 U	1	0.3	1.2	541-73-1	10/12/10 17:16	
1.4-Dichlorobenzene	8260	ug/L	0.4 U	1	0.4	1.6	106-46-7	10/12/10 17:16	
Dichlorodifluoromethane	8260	ug/L	0.3 U	1	0.3	1.2	75-71-8	10/12/10 17:16	
1,1-Dichloroethane	8260	ug/L	0.1 U	1	0.1	0.5	75-34-3	10/12/10 17:16	
1,2-Dichloroethane	8260	ug/L	0.2 U	1	0.2	0.8	107-06-2	10/12/10 17:16	
1,1-Dichloroethene	8260	ug/L	0.15 U	1	0.15	0.6	75-35-4	10/12/10 17:16	
cis-1,2-Dichloroethene	8260	ug/L	0.2 U	1	0.2	0.8	156-59-2	10/12/10 17:16	
trans-1,2-Dichloroethene	8260	ug/L	0.2 U	1	0.2	0.8	156-60-5	10/12/10 17:16	
1,2-Dichloropropane	8260	ug/L	0.1 U	1	0.1	0.5	78-87-5	10/12/10 17:16	-
1,3-Dichloropropene	8260	ug/L	0.2 U	1	0.2	0.8	542-75-6	10/12/10 17:16	
Ethylbenzene	8260	ug/L	0.2 U	1	0.2	0.5	100-41-4	10/12/10 17:16	
2-Hexanone	8260	ug/L	0.2 U	1	0.2	5	591-78-6	10/12/10 17:16	
4-Methyl-2-pentanone	8260	ug/L	0.2 U	1	0.2	5	108-10-1	10/12/10 17:16	
Methylene Chloride	8260	ug/L	1.7 U	1	1.7	6.8	75-09-2	10/12/10 17:16	
MTBE	8260	ug/L	0.05 U	1	0.05	0.5	1634-04-4	10/12/10 17:16	
Isopropylbenzene	8260	ug/L	0.2 U	1	0.2	8.0	98-82-8	10/12/10 17:16	
Styrene	8260	ug/L	0.1 U	1	0.1	0.5	100-42-5	10/12/10 17:16	
1,1,2,2-Tetrachloroethane	8260	ug/L	0.2 U	1	0.2	0.8	79-34-5	10/12/10 17:16	
Tetrachloroethene	8260	ug/L	0.25 U	1	0.25	1	127-18-4	10/12/10 17:16	
Toluene	8260	ug/L	0.3 U	1	0.3	0.5	108-88-3	10/12/10 17:16	
1,1,1-Trichloroethane	8260	ug/L	0.1 U	1	0.1	0.5	71-55-6	10/12/10 17:16	

SunLabs Project Number

101011.02

Cardno TBE, Inc.

Project Description

Manatee

October 25, 2010

SunLabs Sample Number Sample Designation 110332

MW-7

Matrix

Groundwater

Date Collected Date Received 10/08/10 15:00 10/08/10 17:40

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Tim Prep
Volatile Organic Compounds By	EPA Method 8260								
1,1,2-Trichloroethane	8260	ug/L	0.7 U	1	0.7	2.8	79-00-5	10/12/10 17:16	
Trichloroethene	8260	ug/L	0.2 U	1	0.2	0.8	79-01-6	10/12/10 17:16	
Frichlorofluoromethane	8260	ug/L	0.2 U	1	0.2	0.8	75-69-4	10/12/10 17:16	
1,2,4-Trimethylbenzene	8260	ug/L	0.2 U	1	0.2	0.8	95-63-6	10/12/10 17:16	
1,3,5-Trimethylbenzene	8260	ug/L	0.2 U	1	0.2	0.8	108-67-8	10/12/10 17:16	
/inyl acetate	8260	ug/L	0.25 U	1	0.25	5	108-05-4	10/12/10 17:16	
/inyl chloride	8260	ug/L	0.09 U	1	0.09	0.5	75-01-4	10/12/10 17:16	
Fotal Xylenes	8260	ug/L	0.4 U	1	0.4	1.6	1330-20-7	10/12/10 17:16	
Petroleum Range Organics(C8-	C40)								
Date Extracted			10/15/10					Samuel Control	10/15/10 14:0
Date Analyzed			10/18/10	1				10/18/10 22:57	
C-39 (40-140)	FLPRO	%	61	1		1		10/18/10 22:57	10/15/10 14:0
o-Terphenyl (40-140)	FLPRO	%	82	1		1	84-15-1	10/18/10 22:57	10/15/10 14:
Petroleum Range Organics	FLPRO	ug/L	46 U	1	46	300		10/18/10 22:57	10/15/10 14:
1,2-Dibromoethane by EPA Mel	thod 8011								100100 12
Date Extracted			10/14/10						10/14/10 12:
Date Analyzed			10/15/10	1			alternal	10/15/10 00:31	
1,2-Dibromoethane	8011	ug/L	0.006 U	1	0.006	0.024	106-93-4	10/15/10 00:31	10/14/10 12:
Polynuclear Aromatic Hydrocar			315.551						10/14/10 11:1
Date Extracted	3510		10/14/10					10/15/10 07:18	10/14/10 11
Date Analyzed	8270		10/15/2010	1			DEP-SURR-		10/14/10 11:
Terphenyl-d14 (3-130)	8270	%	68	1	0.000		83-32-9	10/15/10 07:18 10/15/10 07:18	10/14/10 11:
Acenaphthene	8270	ug/L	0.028 U	1	0.028	0.11	208-96-8	10/15/10 07:18	10/14/10 11:
Acenaphthylene	8270	ug/L	0.022 U	1	0.022			10/15/10 07:18	10/14/10 11:
Anthracene	8270	ug/L	0.02 U	1	0.02	0.08	120-12-7 56-55-3	10/15/10 07:18	10/14/10 11:
Benzo(a)anthracene	8270	ug/L	0.011 U	1	0.011	(200,00		10/15/10 07:18	10/14/10 11:
Benzo(a)pyrene	8270	ug/L	0.009 U	_ 1	0.009	0.036	50-32-8		10/14/10 11:
Benzo(b)fluoranthene	8270	ug/L	0.007 U	1	0.007	0.028	205-99-2	10/15/10 07:18	10/14/10 11:
Benzo(g,h,i)perylene	8270	ug/L	0.012 U	1	0.012	0.048	191-24-2	10/15/10 07:18	10/14/10 11:
Benzo(k)fluoranthene	8270	ug/L	0.017 U	1	0.017	0.068	207-08-9	10/15/10 07:18	
Chrysene	8270	ug/L	0.01 U	1	0.01	0.04	218-01-9	10/15/10 07:18	10/14/10 11:
Dibenzo(a,h)anthracene	8270	ug/L	0.011 U	1	0.011	0.044	53-70-3	10/15/10 07:18	10/14/10 11:
Fluoranthene	8270	ug/L	0.02 U	1	0.02	0.08	206-44-0	10/15/10 07:18	10/14/10 11:
Fluorene	8270	ug/L	0.03 U	1	0.03	0.12	86-73-7	10/15/10 07:18	10/14/10 11:
ndeno(1,2,3-cd)pyrene	8270	ug/L	0.011 U	1	0.011	0.044	193-39-5	10/15/10 07:18	10/14/10 11:
1-Methylnaphthalene	8270	ug/L	0.16	1	0.028	0.11	90-12-0	10/15/10 07:18	10/14/10 11:
2-Methylnaphthalene	8270	ug/L	0.21	1	0.025	0.1	91-57-6	10/15/10 07:18	10/14/10 11:
	8270	ug/L	0.031 U	1	0.031	0.12	91-20-3	10/15/10 07:18	10/14/10 11:

SunLabs Project Number

101011.02

Cardno TBE, Inc.

Project Description

Manatee

October 25, 2010

SunLabs Sample Number Sample Designation

110332

MW-7

Matrix

Groundwater

Date Collected Date Received 10/08/10 15:00 10/08/10 17:40

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Polynuclear Aromatic Hyd	drocarbons by Method 8270								136.166.17.20
Phenanthrene	8270	ug/L	0.15	1	0.026	0.1	85-01-8	10/15/10 07:18	10/14/10 11:30
Pyrene	8270	ug/L	0.022 U	1	0.022	0.088	129-00-0	10/15/10 07:18	10/14/10 11:30
RCRA Metals ppb									
Date Digested	3005		10/12/10						10/12/10 09:00
Date Analyzed	6010		10/14/10	1				10/14/10 18:51	
Lead	6010	ug/L	4.4 U	1	4.4	18	7439-92-1	10/14/10 18:51	10/12/10 09:00

SunLabs **Project Number**

101011.02

Cardno TBE, Inc.

Project Description Manatee

October 25, 2010

SunLabs Sample Number Sample Designation

110333

MW-23

Matrix

Groundwater

Date Collected

10/08/10 15:42

Date Received

10/08/10 17:40

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Volatile Organic Compounds By	EPA Method 8260								
Date Analyzed			10/12/10	1				10/12/10 17:36	
4-Bromofluorobenzene (66-125)	8260	%	110	1	***		DEP-SURR-	10/12/10 17:36	
Dibromofluoromethane (61-137)	8260	%	94	1			186-85-37	10/12/10 17:36	
Toluene-d8 (69-128)	8260	%	110	1	4-		DEP-SURR-	10/12/10 17:36	
Acetone	8260	ug/L	0.6 U	1	0.6	5	67-64-1	10/12/10 17:36	
Benzene	8260	ug/L	0.1 U	_ 1	0.1	0.5	71-43-2	10/12/10 17:36	
Bromochloromethane	8260	ug/L	0.2 U	1	0.2	0.8	74-97-5	10/12/10 17:36	
Bromodichloromethane	8260	ug/L	0.1 U	1	0.1	0.5	75-27-4	10/12/10 17:36	
Bromoform	8260	ug/L	0.3 U	1	0.3	1.2	75-25-2	10/12/10 17:36	
Bromomethane	8260	ug/L	0.4 U	1	0.4	1.6	74-83-9	10/12/10 17:36	
2-Butanone	8260	ug/L	4.3 I	1	0.4	5	78-93-3	10/12/10 17:36	
Carbon disulfide	8260	ug/L	0.25 U	1	0.25	5	75-15-0	10/12/10 17:36	
Carbon tetrachloride	8260	ug/L	0.2 U	1	0.2	0.8	56-23-5	10/12/10 17:36	
Chlorobenzene	8260	ug/L	0.2 U	1	0.2	0.8	108-90-7	10/12/10 17:36	
Chloroethane	8260	ug/L	0.3 U	1	0.3	1.2	75-00-3	10/12/10 17:36	
Chloroform	8260	ug/L	0,1 U	1	0.1	0.5	67-66-3	10/12/10 17:36	
Chloromethane	8260	ug/L	0.1 U	1	0.1	0.5	74-87-3	10/12/10 17:36	
Dibromochloromethane	8260	ug/L	0.15 U	1	0.15	0.6	124-48-1	10/12/10 17:36	
Dibromomethane	8260	ug/L	0.1 U	1	0.1	0.5	74-95-3	10/12/10 17:36	
1,2-Dichlorobenzene	8260	ug/L	0.2 U	1	0.2	0.8	95-50-1	10/12/10 17:36	
1,3-Dichlorobenzene	8260	ug/L	0.3 U	1	0.3	1.2	541-73-1	10/12/10 17:36	
1,4-Dichlorobenzene	8260	ug/L	0.4 U	1	0.4	1.6	106-46-7	10/12/10 17:36	
Dichlorodifluoromethane	8260	ug/L	0.3 U	1	0.3	1.2	75-71-8	10/12/10 17:36	
1,1-Dichloroethane	8260	ug/L	0.1 U	1	0.1	0.5	75-34-3	10/12/10 17:36	
1,2-Dichloroethane	8260	ug/L	0.2 U	1	0.2	0.8	107-06-2	10/12/10 17:36	
1,1-Dichloroethene	8260	ug/L	0.15 U	1	0.15	0.6	75-35-4	10/12/10 17:36	
cis-1,2-Dichloroethene	8260	ug/L	0.2 U	1	0.2	0.8	156-59-2	10/12/10 17:36	
trans-1,2-Dichloroethene	8260	ug/L	0.2 U	1	0.2	0.8	156-60-5	10/12/10 17:36	
1,2-Dichloropropane	8260	ug/L	0.1 U	1	0.1	0.5	78-87-5	10/12/10 17:36	
1,3-Dichloropropene	8260	ug/L	0.2 U	1	0.2	8.0	542-75-6	10/12/10 17:36	
Ethylbenzene	8260	ug/L	0.2 U	1	0.2	0.5	100-41-4	10/12/10 17:36	
2-Hexanone	8260	ug/L	0.2 U	1	0.2	5	591-78-6	10/12/10 17:36	
4-Methyl-2-pentanone	8260	ug/L	0.2 U	1	0.2	5	108-10-1	10/12/10 17:36	
Methylene Chloride	8260	ug/L	1.7 U	1	1.7	6.8	75-09-2	10/12/10 17:36	
MTBE	8260	ug/L	0.05 U	1	0.05	0.5	1634-04-4	10/12/10 17:36	
isopropylbenzene	8260	ug/L	0.2 U	1	0.2	0.8	98-82-8	10/12/10 17:36	
Styrene	8260	ug/L	0.1 U	1	0.1	0.5	100-42-5	10/12/10 17:36	
1,1,2,2-Tetrachloroethane	8260	ug/L	0.2 U	1	0.2	0.8	79-34-5	10/12/10 17:36	
Tetrachloroethene	8260	ug/L	0.25 U	1	0.25	1	127-18-4	10/12/10 17:36	
Toluene	8260	ug/L	0.3 U	1	0.3	0.5	108-88-3	10/12/10 17:36	
1,1,1-Trichloroethane	8260	ug/L	0.1 U	1	0.1	0.5	71-55-6	10/12/10 17:36	
1,1,1-IIICIIOIOEUIAIIE	0200	29/2	5.6.3	1.5					

SunLabs Project Number

101011.02

Cardno TBE, Inc.

Project Description

Manatee

October 25, 2010

SunLabs Sample Number Sample Designation 110333 MW-23 Matrix

Groundwater

Date Collected Date Received 10/08/10 15:42 10/08/10 17:40

Parameters	Method	Units	Results	Dil Factor		RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Volatile Organic Compounds By EP	A Method 8260								
1,1,2-Trichloroethane	8260	ug/L	0.7 U	1	0.7	2.8	79-00-5	10/12/10 17:36	
Trichloroethene	8260	ug/L	0.2 U	1	0.2	0.8	79-01-6	10/12/10 17:36	
Trichlorofluoromethane	8260	ug/L	0.2 U	1	0.2	0.8	75-69-4	10/12/10 17:36	
1,2,4-Trimethylbenzene	8260	ug/L	0.2 U	1	0.2	0.8	95-63-6	10/12/10 17:36	
1,3,5-Trimethylbenzene	8260	ug/L	0.2 U	1	0.2	0.8	108-67-8	10/12/10 17:36	
Vinyl acetate	8260	ug/L	0.25 U	1	0.25	5	108-05-4	10/12/10 17:36	
Vinyl chloride	8260	ug/L	0.09 U	1	0.09	0.5	75-01-4	10/12/10 17:36	
Total Xylenes	8260	ug/L	0.4 U	1	0.4	1.6	1330-20-7	10/12/10 17:36	
Petroleum Range Organics(C8-C40	1)								
Date Extracted			10/15/10						10/15/10 14:00
Date Analyzed			10/18/10	1				10/18/10 23:05	
C-39 (40-140)	FLPRO	%	62	1		1		10/18/10 23:05	10/15/10 14:0
o-Terphenyl (40-140)	FLPRO	%	82	1		1	84-15-1	10/18/10 23:05	10/15/10 14:0
Petroleum Range Organics	FLPRO	ug/L	46 U	1	46	300		10/18/10 23:05	10/15/10 14:0
1,2-Dibromoethane by EPA Method	8011								
Date Extracted			10/14/10					-	10/14/10 12:0
Date Analyzed			10/15/10	1				10/15/10 00:46	
1,2-Dibromoethane	8011	ug/L	0.006 U	1	0.006	0.024	106-93-4	10/15/10 00:46	10/14/10 12:00
Polynuclear Aromatic Hydrocarbon	s by Method 8270								description description
Date Extracted	3510		10/14/10					The second	10/14/10 11:30
Date Analyzed	8270		10/15/2010	1				10/15/10 07:36	
Terphenyl-d14 (3-130)	8270	%	71	1	34.3		DEP-SURR-	10/15/10 07:36	10/14/10 11:30
Acenaphthene	8270	ug/L	0.028 U	1	0.028	0.11	83-32-9	10/15/10 07:36	10/14/10 11:30
Acenaphthylene	8270	ug/L	0.022 U	1	0.022	0.09	208-96-8	10/15/10 07:36	10/14/10 11:30
Anthracene	8270	ug/L	0.02 U	1	0.02	0.08	120-12-7	10/15/10 07:36	10/14/10 11:30
Benzo(a)anthracene	8270	ug/L	0.011 U	1	0.011	0.044	56-55-3	10/15/10 07:36	10/14/10 11:30
Benzo(a)pyrene	8270	ug/L	0.009 U	1	0.009	0.036	50-32-8	10/15/10 07:36	10/14/10 11:3
Benzo(b)fluoranthene	8270	ug/L	0.007 U	1	0.007	0.028	205-99-2	10/15/10 07:36	10/14/10 11:3
Benzo(g,h,i)perylene	8270	ug/L	0.012 U	1	0.012	0.048	191-24-2	10/15/10 07:36	10/14/10 11:30
Benzo(k)fluoranthene	8270	ug/L	0.017 U	1	0.017	0.068	207-08-9	10/15/10 07:36	10/14/10 11:30
Chrysene	8270	ug/L	0.01 U	1	0.01	0.04	218-01-9	10/15/10 07:36	10/14/10 11:30
Dibenzo(a,h)anthracene	8270	ug/L	0.011 U	1	0.011	0.044	53-70-3	10/15/10 07:36	10/14/10 11:30
Fluoranthene	8270	ug/L	0.02 U	1	0.02	0.08	205-44-0	10/15/10 07:36	10/14/10 11:30
Fluorene	8270	ug/L	0.03 U	1	0.03	0.12	86-73-7	10/15/10 07:36	10/14/10 11:30
Indeno(1,2,3-cd)pyrene	8270	ug/L	0.011 U	1	0.011	0.044	193-39-5	10/15/10 07:36	10/14/10 11:30
1-Methylnaphthalene	8270	ug/L	0.028 U	1	0.028	0.11	90-12-0	10/15/10 07:36	10/14/10 11:30
2-Methylnaphthalene	8270	ug/L	0.025 U	1	0.025	0.1	91-57-6	10/15/10 07:36	10/14/10 11:30
Children Control of the Control of t	8270	ug/L	0.031 U	1	0.031	0.12	91-20-3	10/15/10 07:36	10/14/10 11:30

SunLabs Project Number

101011.02

Cardno TBE, Inc.

Project Description

Manatee

October 25, 2010

SunLabs Sample Number Sample Designation

110333

MW-23

Matrix

Groundwater

Date Collected

10/08/10 15:42

Date Received 10/08/10 17:40

MDL I	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
026 0.	0.1	85-01-8	10/15/10 07:36	10/14/10 11:30
022 0.	0.088	129-00-0	10/15/10 07:36	10/14/10 11:30
				10/12/10 09:00
			10/14/10 18:53	
4 1	18	7439-92-1	10/14/10 18:53	10/12/10 09:00
0	122	0.088	22 0.088 129-00-0	10/14/10 18:53

SunLabs Project Number

101011.02

Cardno TBE, Inc.

Project Description

Manatee

October 25, 2010

SunLabs Sample Number

110334

Sample Designation

SS-1

Matrix

Soil

Date Collected Date Received 10/08/10 16:05

10/08/10 17:40

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Tim Prep
Florida Petroleum Range Organ	nics(C8-C40)								
Date Extracted			10/14/10						10/14/10 16:4
Date Analyzed			10/18/10	1				10/18/10 18:34	
C-39 (40-140)	FLPRO	%	60	1		1.1		10/18/10 18:34	10/14/10 16:4
o-Terphenyl (40-140)	FLPRO	%	84	1		1.1	84-15-1	10/18/10 18:34	10/14/10 16:4
Petroleum Range Organics	FLPRO	mg/kg	150	1	5.5	22		10/18/10 18:34	10/14/10 16:4
Percent Moisture									
A CONTRACT OF A CONTRACT OF A	100 214	%	13			0.11		10/12/10	
% Moisture	160.3M	70	13			0.11		10/12/10	
Polynuclear Aromatic Hydroca	bons by Method 8270								STOCKER DAY
Date Extracted	3550		10/14/10					Sandada dilam	10/14/10 16:4
Date Analyzed	8270		10/15/2010	1				10/15/10 19:29	Section 2
Terphenyl-d14 (5-139)	8270	%	74	1			DEP-SURR-	10/15/10 19:29	10/14/10 16:4
Acenaphthene	8270	mg/kg	0.0024 U	1	0.0024	0.0097	83-32-9	10/15/10 19:29	10/14/10 16:4
Acenaphthylene	8270	mg/kg	0.0025 U	1	0.0025	0.01	208-96-8	10/15/10 19:29	10/14/10 16:4
Anthracene	8270	mg/kg	0.002 U	1	0.002	0.0078	120-12-7	10/15/10 19:29	10/14/10 16:4
Benzo(a)anthracene	8270	mg/kg	0.0017 U	1	0.0017	0.0069	56-55-3	10/15/10 19:29	10/14/10 16:4
Benzo(a)pyrene	8270	mg/kg	0.0023 U	1	0.0023	0.0092	50-32-8	10/15/10 19:29	10/14/10 16:4
Benzo(b)fluoranthene	8270	mg/kg	0.0031 U	1	0.0031	0.012	205-99-2	10/15/10 19:29	10/14/10 16:4
Benzo(g,h,i)perylene	8270	mg/kg	0.0079 U	1	0.0079	0.032	191-24-2	10/15/10 19:29	10/14/10 16:4
Benzo(k)fluoranthene	8270	mg/kg	0.0022 U	1	0.0022	0.0087	207-08-9	10/15/10 19:29	10/14/10 16:4
Chrysene	8270	mg/kg	0.0014 U	1	0.0014	0.0055	218-01-9	10/15/10 19:29	10/14/10 16:4
Dibenzo(a,h)anthracene	8270	mg/kg	0.0084 U	1	0.0084	0.033	53-70-3	10/15/10 19:29	10/14/10 16:4
Fluoranthene	8270	mg/kg	0.018	1	0.0026	0.011	206-44-0	10/15/10 19:29	10/14/10 16:4
Fluorene	8270	mg/kg	0.0021 U	1	0.0021	0.0083	86-73-7	10/15/10 19:29	10/14/10 16:4
Indeno(1,2,3-cd)pyrene	8270	mg/kg	0.0083 U	1	0.0083	0.033	193-39-5	10/15/10 19:29	10/14/10 16:4
1-Methylnaphthalene	8270	mg/kg	0.0038 U	1	0.0038	0.015	90-12-0	10/15/10 19:29	10/14/10 16:4
2-Methylnaphthalene	8270	mg/kg	0.0032 U	1	0.0032	0.013	91-57-6	10/15/10 19:29	10/14/10 16:4
Naphthalene	8270	mg/kg	0.0063 U	1	0.0063	0.025	91-20-3	10/15/10 19:29	10/14/10 16:4
Phenanthrene	8270	mg/kg	0.0032 U	1	0.0032	0.013	85-01-8	10/15/10 19:29	10/14/10 16:4
Pyrene	8270	mg/kg	0.026 1	. 1	0.0079	0.032	129-00-0	10/15/10 19:29	10/14/10 16:4
Volatile Organic Compounds (E	STEX/MTBE)								
Date Analyzed			10/12/10	_1				10/12/10 18:36	
Toluene-d8 (49-134)	8260	%	97	1			DEP-SURR-	10/12/10 18:36	
Benzene	8260	mg/kg	0.00053 U	1	0.00053	0.0038	71-43-2	10/12/10 18:36	
Ethylbenzene	8260	mg/kg	0.00061 U	1	0.00061	0.0038	100-41-4	10/12/10 18:36	
MTBE	8260	mg/kg	0.0015 U	1	0.0015	0.0061	1634-04-4	10/12/10 18:36	
Toluene	8260	mg/kg	0.0023 U	1	0.0023	0.0067	108-88-3	10/12/10 18:36	
Total Xylenes	8260	mg/kg	0.0023 U	1	0.0023	0.0094	1330-20-7	10/12/10 18:36	
Total VOA	8260	mg/kg	0.00053 U	1	0.00053	0.0038		10/12/10 18:36	

Laboratory ID Number - E84809

Phone: 813-881-9401 Fax: 813-354-4661 Email: Info@SunLabsInc.com

SunLabs Project Number

101011.02

Cardno TBE, Inc.

Project Description

Manatee

October 25, 2010

SunLabs Sample Number Sample Designation

110335 SS-2 Matrix

Soil

Date Collected Date Received 10/08/10 14:45 10/08/10 17:40

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
				,			scrinings	4110m1 # 3350	
Organochlorine Pesticides by EPA M	ethod 8081								
Date Extracted	3545a		10/12/10						10/12/10 17:1
Date Analyzed			10/21/2010	1				10/21/10 08:46	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	72	1		1	DEP-SURR-	10/21/10 08:46	10/12/10 17:1
Aldrin	8081	mg/kg	0.0023 U	1	0.0023	0.0092	309-00-2	10/21/10 08:46	10/12/10 17:1
a-BHC	8081	mg/kg	0.003 U	1	0.003	0.012	319-84-6	10/21/10 08:46	10/12/10 17:1
b-BHC	8081	mg/kg	0.0019 U	1	0.0019	0.0075	319-85-7	10/21/10 08:46	10/12/10 17:1
d-BHC	8081	mg/kg	0.0023 U	1	0.0023	0.0092	319-86-8	10/21/10 08:46	10/12/10 17:1
a-Chlordane	8081	mg/kg	0.0024 U	1	0.0024	0.0096	5103-71-9	10/21/10 08:46	10/12/10 17:1
g-Chlordane	8081	mg/kg	0.0018 U	1	0.0018	0.0071	5103-74-2	10/21/10 08:46	10/12/10 17:1
4,4'-DDD	8081	mg/kg	0.0019 U	1	0.0019	0.0075	72-54-8	10/21/10 08:46	10/12/10 17:1
4,4'-DDE	8081	mg/kg	0.0018 U	1	0.0018	0.0071	72-55-9	10/21/10 08:46	10/12/10 17:1
4,4'-DDT	8081	mg/kg	0.00067 U	1	0.00067	0.0027	50-29-3	10/21/10 08:46	10/12/10 17:1
Dieldrin	8081	mg/kg	0.0017 U	1	0.0017	0.0067	60-57-1	10/21/10 08:46	10/12/10 17:1
Endosulfan I	8081	mg/kg	0.0017 U	1	0.0017	0.0067	959-98-8	10/21/10 08:46	10/12/10 17:1
Endosulfan II	8081	mg/kg	0.0017 U	1	0.0017	0.0067	33213-65-9	10/21/10 08:46	10/12/10 17:1
Endosulfan sulfate	8081	mg/kg	0.0012 U	1	0.0012	0.005	1031-07-8	10/21/10 08:46	10/12/10 17:1
Endrin	8081	mg/kg	0.0018 U	1	0.0018	0.0071	72-20-8	10/21/10 08:46	10/12/10 17:1
Endrin aldehyde	8081	mg/kg	0.0017 U	1	0.0017	0.0067	7421-93-4	10/21/10 08:46	10/12/10 17:1
Endrin ketone	8081	mg/kg	0.0014 U	1	0.0014	0.0054	53494-70-5	10/21/10 08:46	10/12/10 17:1
Heptachlor	8081	mg/kg	0.002 U	1	0.002	0.0079	76-44-8	10/21/10 08:46	10/12/10 17:1
Heptachlor epoxide	8081	mg/kg	0.0018 U	1	0.0018	0.0071	1024-57-3	10/21/10 08:46	10/12/10 17:1
Lindane	8081	mg/kg	0.00062 U	1	0.00062	0.0026	58-89-9	10/21/10 08:46	10/12/10 17:1
Methoxychlor	8081	mg/kg	0.002 U	1	0.002	0.0079	72-43-5	10/21/10 08:46	10/12/10 17:1
Mirex	8081	mg/kg	0.0067 U	1	0.0067	0.027	2385-85-5	10/21/10 08:46	10/12/10 17:1
Toxaphene	8081	mg/kg	0.077 U	1	0.077	0.31	8001-35-2	10/21/10 08:46	10/12/10 17:1
Chlorinated Herbicides by EPA 8321									
Date Extracted	8321		10/14/10						10/14/10 11:3
Date Analyzed			10/18/10	1				10/18/10 11:31	
2,4-Dichlorophenylacetic acid (5-111)	8321	%	70	1		1	DEP-SURR-	10/18/10 11:31	10/14/10 11:3
2,4-D	8321	ug/kg	33 U	1	33	140	94-75-7	10/18/10 11:31	10/14/10 11:3
2,4-DB	8321	ug/kg	9.2 U	1	9.2	36	94-82-6	10/18/10 11:31	10/14/10 11:3
Dicamba	8321	ug/kg	21 U	1	21	83	1918-00-9	10/18/10 11:31	10/14/10 11:3
Dichlorprop	8321	ug/kg	7.4 U	1	7.4	29	120-36-5	10/18/10 11:31	10/14/10 11:3
Dinoseb	8321	ug/kg	2.4 U	1	2.4	9.6	88-85-7	10/18/10 11:31	10/14/10 11:3
MCPA	8321	ug/kg	3 U	1	3	12	94-74-6	10/18/10 11:31	
MCPP	8321	ug/kg	9.3 U	1	9.3	38	93-65-2	10/18/10 11:31	
Picloram	8321	ug/kg	23 U	1	23	92	1918-02-1	10/18/10 11:31	10/14/10 11:3
	8321		7.4 U	1	7.4	29	93-76-5	10/18/10 11:31	10/14/10 11:3
2,4,5-T	8321	ug/kg ug/kg	7.5 U	1	7.5	30	93-72-1	10/18/10 11:31	

Laboratory ID Number - E84809

Phone: 813-881-9401 Fax: 813-354-4661 Email: Info@SunLabsInc.com

SunLabs Project Number

101011.02

Cardno TBE, Inc.

Project Description

Manatee

October 25, 2010

SunLabs Sample Number

110335

Sample Designation

SS-2

Matrix

Date Collected Date Received Soil

10/08/10 14:45 10/08/10 17:40

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Florida Petroleum Range Orgar	nics(C8-C40)								
Date Extracted			10/14/10						10/14/10 16:45
Date Analyzed			10/18/10	1				10/18/10 18:43	
C-39 (40-140)	FLPRO	%	115	5		5		10/18/10 18:43	10/14/10 16:4
o-Terphenyl (40-140)	FLPRO	%	90	5		5	84-15-1	10/18/10 18:43	10/14/10 16:4
Petroleum Range Organics	FLPRO	mg/kg	840	5	25	100		10/18/10 18:43	10/14/10 16:4
Percent Moisture									
% Moisture	160.3M	%	4			0.1		10/12/10	
Polynuclear Aromatic Hydrocar	bons by Method 8270								
Date Extracted	3550		10/14/10						10/14/10 16:4
Date Analyzed	8270		10/18/2010	2				10/18/10 17:20	
Terphenyl-d14 (5-139)	8270	%	97	2			DEP-SURR-	10/18/10 17:20	10/14/10 16:4
Acenaphthene	8270	mg/kg	0.0044 U	2	0.0044	0.018	83-32-9	10/18/10 17:20	10/14/10 16:4
Acenaphthylene	8270	mg/kg	0.0046 U	2	0.0046	0.018	208-96-8	10/18/10 17:20	10/14/10 16:4
Anthracene	8270	mg/kg	0.0036 U	2	0.0036	0.014	120-12-7	10/18/10 17:20	10/14/10 16:4
Benzo(a)anthracene	8270	mg/kg	0.0032 U	2	0.0032	0.012	56-55-3	10/18/10 17:20	10/14/10 16:4
Benzo(a)pyrene	8270	mg/kg	0.0042 U	2	0.0042	0.017	50-32-8	10/18/10 17:20	10/14/10 16:4
Benzo(b)fluoranthene	8270	mg/kg	0.0056 U	2	0.0056	0.022	205-99-2	10/18/10 17:20	10/14/10 16:4
Benzo(g,h,i)perylene	8270	mg/kg	0.014 U	2	0.014	0.058	191-24-2	10/18/10 17:20	10/14/10 16:4
Benzo(k)fluoranthene	8270	mg/kg	0.004 U	2	0.004	0.016	207-08-9	10/18/10 17:20	10/14/10 16:4
Chrysene	8270	mg/kg	0.0024 U	2	0.0024	0.01	218-01-9	10/18/10 17:20	10/14/10 16:4
Dibenzo(a,h)anthracene	8270	mg/kg	0.015 U	2	0.015	0.06	53-70-3	10/18/10 17:20	10/14/10 16:4
Fluoranthene	8270	mg/kg	0.0048 U	2	0.0048	0.019	206-44-0	10/18/10 17:20	10/14/10 16:4
Fluorene	8270	mg/kg	0.0038 U	2	0.0038	0.015	86-73-7	10/18/10 17:20	10/14/10 16:4
Indeno(1,2,3-cd)pyrene	8270	mg/kg	0.015 U	2	0.015	0.06	193-39-5	10/18/10 17:20	10/14/10 16:4
1-Methylnaphthalene	8270	mg/kg	0.0068 U	2	0.0068	0.028	90-12-0	10/18/10 17:20	10/14/10 16:4
2-Methylnaphthalene	8270	mg/kg	0.0058 U	2	0.0058	0.024	91-57-6	10/18/10 17:20	10/14/10 16:4
Naphthalene	8270	mg/kg	0.011 U	2	0.011	0.046	91-20-3	10/18/10 17:20	10/14/10 16:4
Phenanthrene	8270	mg/kg	0.0058 U	2	0.0058	0.024	85-01-8	10/18/10 17:20	10/14/10 16:4
Pyrene	8270	mg/kg	0.014 U	2	0.014	0.058	129-00-0	10/18/10 17:20	10/14/10 16:4
Volatile Organic Compounds (B	TEX/MTBE)								
Date Analyzed	THE PERSON NAMED IN		10/12/10	1				10/12/10 19:00	
Toluene-d8 (49-134)	8260	%	100	1			DEP-SURR-	10/12/10 19:00	
Benzene	8260	mg/kg	0.00058 U	1		3 0.0042		10/12/10 19:00	
Ethylbenzene	8260	mg/kg	0.00066 U	1	0.00066	0.0042	100-41-4	10/12/10 19:00	
MTBE	8260	mg/kg	0.0017 U	1	0.0017	0.0066	1634-04-4	10/12/10 19:00	
Toluene	8260	mg/kg	0.0025 U	1	0.0025	0.0075	108-88-3	10/12/10 19:00	
Total Xylenes	8260	mg/kg	0.0025 U	1	0.0025	0.0096	1330-20-7	10/12/10 19:00	
Total VOA	8260	mg/kg	0.00058 U	1	0.00058	3 0.0042		10/12/10 19:00	

SunLabs Project Number Cardno TBE, Inc.

101011.02

Project Description

Manatee

October 25, 2010

SunLabs Sample Number

Sample Designation

110336

SS-6

Matrix

Soil

Date Collected

10/08/10 11:15

Date Received

10/08/10 17:40

Parameters	Method	Units	Results	Dil	MDL	RL	CAS	Date/Time	Date/Time
				Factor			Number	Analyzed	Prep
Florida Petroleum Range Orga	nics(C8-C40)								
Date Extracted			10/14/10						10/14/10 16:4
Date Analyzed			10/18/10	1				10/18/10 19:08	
C-39 (40-140)	FLPRO	%	64	1		1,1		10/18/10 19:08	10/14/10 16:4
o-Terphenyl (40-140)	FLPRO	%	81	1		1.1	84-15-1	10/18/10 19:08	10/14/10 16:4
Petroleum Range Organics	FLPRO	mg/kg	5.1 U	1	5.1	20		10/18/10 19:08	10/14/10 16:4
Percent Moisture									
% Moisture	160,3M	%	6			0.11		10/12/10	
Polynuclear Aromatic Hydroca	rbons by Method 8270								
Date Extracted	3550		10/14/10						10/14/10 16:4
Date Analyzed	8270		10/15/2010	1				10/15/10 20:24	
Terphenyl-d14 (5-139)	8270	%	70	1			DEP-SURR-	10/15/10 20:24	10/14/10 16:4
Acenaphthene	8270	mg/kg	0.0022 U	1	0.0022	0.0089	83-32-9	10/15/10 20:24	10/14/10 16:4
Acenaphthylene	8270	mg/kg	0.0023 U	1	0.0023	0.0094	208-96-8	10/15/10 20:24	10/14/10 16:4
Anthracene	8270	mg/kg	0.0018 U	1	0.0018	0.0072	120-12-7	10/15/10 20:24	10/14/10 16:4
Benzo(a)anthracene	8270	mg/kg	0.0016 U	1	0.0016	0.0064	56-55-3	10/15/10 20:24	10/14/10 16:4
Benzo(a)pyrene	8270	mg/kg	0.0021 U	1	0.0021	0.0085	50-32-8	10/15/10 20:24	10/14/10 16:4
Benzo(b)fluoranthene	8270	mg/kg	0.0029 U	1	0.0029	0.011	205-99-2	10/15/10 20:24	10/14/10 16:4
Benzo(g,h,i)perylene	8270	mg/kg	0.0073 U	1	0.0073	0.029	191-24-2	10/15/10 20:24	10/14/10 16:4
Benzo(k)fluoranthene	8270	mg/kg	0.002 U	1	0.002	0.0081	207-08-9	10/15/10 20:24	10/14/10 16:4
Chrysene	8270	mg/kg	0.0013 U	1	0.0013	0.0051	218-01-9	10/15/10 20:24	10/14/10 16:4
Dibenzo(a,h)anthracene	8270	mg/kg	0.0078 U	1	0.0078	0.031	53-70-3	10/15/10 20:24	10/14/10 16:4
Fluoranthene	8270	mg/kg	0.0024 U	1	0.0024	0.0098	205-44-0	10/15/10 20:24	10/14/10 16:4
Fluorene	8270	mg/kg	0.0019 U	1	0.0019	0.0077	86-73-7	10/15/10 20:24	10/14/10 16:4
Indeno(1,2,3-cd)pyrene	8270	mg/kg	0.0077 U	1	0.0077	0.031	193-39-5	10/15/10 20:24	10/14/10 16:4
1-Methylnaphthalene	8270	mg/kg	0.0035 U	1	0.0035	0.014	90-12-0	10/15/10 20:24	10/14/10 16:4
2-Methylnaphthalene	8270	mg/kg	0.003 U	1	0.003	0.012	91-57-6	10/15/10 20:24	10/14/10 16:4
Naphthalene	8270	mg/kg	0.0059 U	1	0.0059	0.023	91-20-3	10/15/10 20:24	10/14/10 16:4
Phenanthrene	8270	mg/kg	0.003 U	1	0.003	0.012	85-01-8	10/15/10 20:24	10/14/10 16:4
Pyrene	8270	mg/kg	0.0073 U	1	0.0073	0.03	129-00-0	10/15/10 20:24	10/14/10 16:4
Volatile Organic Compounds (E	BTEX/MTBE)								
Date Analyzed			10/12/10	1				10/12/10 19:25	
Toluene-d8 (49-134)	8260	%	99	1			DEP-SURR-	10/12/10 19:25	
Benzene	8260	mg/kg	0.00056 U	1	0.00056	0.004	71-43-2	10/12/10 19:25	
Ethylbenzene	8260	mg/kg	0.00064 U	1	0.00064	0.004	100-41-4	10/12/10 19:25	
MTBE	8260	mg/kg	0.0016 U	1	0.0016	0.0064	1634-04-4	10/12/10 19:25	
Toluene	8260	mg/kg	0.0024 U	1	0.0024	0.0073	108-88-3	10/12/10 19:25	
Total Xylenes	8260	mg/kg	0.0024 U	1	0.0024	0.0098	1330-20-7	10/12/10 19:25	
Total VOA	8260	mg/kg	0.00056 U	1	0.00056	0.004		10/12/10 19:25	

SunLabs Project Number

101011.02

Cardno TBE, Inc.

Project Description

Manatee

October 25, 2010

SunLabs Sample Number Sample Designation

110478 TMW-1 Matrix

Groundwater

Date Collected Date Received 10/11/10 10:08 10/12/10 11:15

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Volatile Organic Compounds By E	PA Method 8260								
Date Analyzed			10/12/10	1				10/12/10 18:57	
4-Bromofluorobenzene (66-125)	8260	%	104	1			DEP-SURR-	10/12/10 18:57	
Dibromofluoromethane (61-137)	8260	%	88	1			186-85-37	10/12/10 18:57	
Toluene-d8 (69-128)	8260	%	109	1			DEP-SURR-	10/12/10 18:57	
Acetone	8260	ug/L	3.4 I	1	0.6	5	67-64-1	10/12/10 18:57	
Benzene	8260	ug/L	0.1 U	1	0.1	0.5	71-43-2	10/12/10 18:57	
Bromochloromethane	8260	ug/L	0.2 U	1	0.2	8.0	74-97-5	10/12/10 18:57	
Bromodichloromethane	8260	ug/L	0.1 U	1	0.1	0.5	75-27-4	10/12/10 18:57	
Bromoform	8260	ug/L	0.3 U	1	0.3	1.2	75-25-2	10/12/10 18:57	
Bromomethane	8260	ug/L	0.4 U	1	0.4	1.6	74-83-9	10/12/10 18:57	
2-Butanone	8260	ug/L	0.4 U	1	0.4	5	78-93-3	10/12/10 18:57	
Carbon disulfide	8260	ug/L	0.25 U	1	0.25	5	75-15-0	10/12/10 18:57	
Carbon tetrachloride	8260	ug/L	0.2 U	1	0.2	0.8	56-23-5	10/12/10 18:57	
Chlorobenzene	8260	ug/L	0.2 U	1	0.2	0.8	108-90-7	10/12/10 18:57	
Chloroethane	8260	ug/L	0.3 U	1	0.3	1.2	75-00-3	10/12/10 18:57	
Chloroform	8260	ug/L	0.1 U	1	0.1	0.5	67-66-3	10/12/10 18:57	
Chloromethane	8260	ug/L	0.1 U	1	0.1	0.5	74-87-3	10/12/10 18:57	
Dibromochloromethane	8260	ug/L	0.15 U	1	0.15	0.6	124-48-1	10/12/10 18:57	
Dibromomethane	8260	ug/L	0.1 U	1	0.1	0.5	74-95-3	10/12/10 18:57	
1,2-Dichlorobenzene	8260	ug/L	0.2 U	1	0.2	0.8	95-50-1	10/12/10 18:57	
1,3-Dichlorobenzene	8260	ug/L	0.3 U	1	0.3	1.2	541-73-1	10/12/10 18:57	
1,4-Dichlorobenzene	8260	ug/L	0.4 U	1	0.4	1.6	106-46-7	10/12/10 18:57	
Dichlorodifluoromethane	8260	ug/L	0.3 U	1	0.3	1.2	75-71-8	10/12/10 18:57	
1,1-Dichloroethane	8260	ug/L	0.1 U	1	0.1	0.5	75-34-3	10/12/10 18:57	
1,2-Dichloroethane	8260	ug/L	0.2 U	1	0.2	0.8	107-06-2	10/12/10 18:57	
1,1-Dichloroethene	8260	ug/L	0.15 U	1	0.15	0.6	75-35-4	10/12/10 18:57	
cis-1,2-Dichloroethene	8260	ug/L	0.2 U	1	0.2	0.8	156-59-2	10/12/10 18:57	
trans-1,2-Dichloroethene	8260	ug/L	0.2 U	1	0.2	0.8	156-60-5	10/12/10 18:57	
1,2-Dichloropropane	8260	ug/L	0.1 U	1	0.1	0.5	78-87-5	10/12/10 18:57	
1,3-Dichloropropene	8260	ug/L	0.2 U	1	0.2	0.8	542-75-6	10/12/10 18:57	
Ethylbenzene	8260	ug/L	0.20 I	1	0.2	0.5	100-41-4	10/12/10 18:57	
2-Hexanone	8260	ug/L	0.2 U	1	0.2	5	591-78-6	10/12/10 18:57	
4-Methyl-2-pentanone	8260	ug/L	0.2 U	1	0.2	5	108-10-1	10/12/10 18:57	
Methylene Chloride	8260	ug/L	1.7 U	1	1.7	6.8	75-09-2	10/12/10 18:57	
MTBE	8260	ug/L	0.05 U	1	0.05	0.5	1634-04-4	10/12/10 18:57	
isopropylbenzene	8260	ug/L	0.2 U	1	0.2	0.8	98-82-8	10/12/10 18:57	
Styrene	8260	ug/L	0.1 U	1	0.1	0.5	100-42-5	10/12/10 18:57	
1,1,2,2-Tetrachloroethane	8260	ug/L	0.2 U	1	0.2	0.8	79-34-5	10/12/10 18:57	
Tetrachloroethene	8260	ug/L	0.25 U	1	0.25	1	127-18-4	10/12/10 18:57	
Toluene	8260	ug/L	0.3 U	1	0.3	0.5	108-88-3	10/12/10 18:57	
1,1,1-Trichloroethane	8260	ug/L	0.1 U	1	0.1	0.5	71-55-6	10/12/10 18:57	

SunLabs Project Number

101011.02

Cardno TBE, Inc.

Project Description

Manatee

October 25, 2010

SunLabs Sample Number

Sample Designation

110478

TMW-1

Matrix

Groundwater

Date Collected Date Received 10/11/10 10:08 10/12/10 11:15

						-			
Parameters	Method	Units	Results	Dil Fact	MDL or	RL	CAS Number	Date/Time Analyzed	Date/Tin Prep
Volatile Organic Compounds B	y EPA Method 8260								
1,1,2-Trichloroethane	8260	ug/L	0.7 U	1	0.7	2.8	79-00-5	10/12/10 18:57	
Trichloroethene	8260	ug/L	0.2 U	1	0.2	8.0	79-01-6	10/12/10 18:57	
Trichlorofluoromethane	8260	ug/L	0.2 U	1	0.2	0.8	75-69-4	10/12/10 18:57	
1,2,4-Trimethylbenzene	8260	ug/L	0.84	1	0.2	0.8	95-63-6	10/12/10 18:57	
,3,5-Trimethylbenzene	8260	ug/L	0.32 I	1	0.2	0.8	108-67-8	10/12/10 18:57	
/inyl acetate	8260	ug/L	0.25 U	1	0.25	5	108-05-4	10/12/10 18:57	
/inyl chloride	8260	ug/L	0.09 U	1	0.09	0.5	75-01-4	10/12/10 18:57	
Total Xylenes	8260	ug/L	0.4 U	1	0.4	1.6	1330-20-7	10/12/10 18:57	
Petroleum Range Organics(C8	-C40)								otratici e a a
Date Extracted			10/15/10				-	**************************************	10/15/10 14
Date Analyzed			10/18/10	1				10/18/10 23:22	
C-39 (40-140)	FLPRO	%	65	1		1	-	10/18/10 23:22	10/15/10 14
o-Terphenyl (40-140)	FLPRO	%	82	1		1	84-15-1	10/18/10 23:22	10/15/10 14
Petroleum Range Organics	FLPRO	ug/L	46 U	1	46	300		10/18/10 23:22	10/15/10 14
1,2-Dibromoethane by EPA Me	ethod 8011								
Date Extracted			10/14/10		-			404540 01.01	10/14/10 12
Date Analyzed			10/15/10	1	10.000		142.024	10/15/10 01:01	10/14/10 15
1,2-Dibromoethane	8011	ug/L	0.006 U	1	0.006	0.024	106-93-4	10/15/10 01:01	10/14/10 12
Polynuclear Aromatic Hydroca									10/18/10 11
Date Extracted	3510		10/18/10	4				10/21/10 10:22	10/10/10 11
Date Analyzed	8270		10/21/2010	1			DED CUIDO	10/21/10 18:33	10/18/10 11
Terphenyl-d14 (3-130)	8270	%	72	1			DEP-SURR-	10/21/10 18:33	10/18/10 11
Acenaphthene	8270	ug/L	0.028 U	1	0.028	0.11	83-32-9	10/21/10 18:33	10/18/10 11
Acenaphthylene	8270	ug/L	0.022 U	1	0.022	0.09	208-96-8	10/21/10 18:33	10/18/10 11
Anthracene	8270	ug/L	0.02 U	1	0.02	0.08	120-12-7	10/21/10 18:33	10/18/10 11
Benzo(a)anthracene	8270	ug/L	0.011 U	1	0.011	0.044	56-55-3	10/21/10 18:33	40.0
Benzo(a)pyrene	8270	ug/L	0.009 U	1	0.009	0.036	50-32-8	10/21/10 18:33	10/18/10 11
Benzo(b)fluoranthene	8270	ug/L	0.007 U	1	0.007	0.028	205-99-2	10/21/10 18:33	10/18/10 11
Benzo(g,h,i)perylene	8270	ug/L	0.012 U	1	0.012	0.048	191-24-2	10/21/10 18:33	10/18/10 11
Benzo(k)fluoranthene	8270	ug/L	0.017 U	1	0.017	0.068	207-08-9	10/21/10 18:33	10/18/10 11
Chrysene	8270	ug/L	0.01 U	1	0.01	0.04	218-01-9	10/21/10 18:33	
Dibenzo(a,h)anthracene	8270	ug/L	0.011 U	1	0.011	0.044	53-70-3	10/21/10 18:33	10/18/10 11
Fluoranthene	8270	ug/L	0.02 U	1	0.02	0.08	206-44-0	10/21/10 18:33	10/18/10 11
Fluorene	8270	ug/L	0.03 U	1	0.03	0.12	86-73-7	10/21/10 18:33	10/18/10 11
Indeno(1,2,3-cd)pyrene	8270	ug/L	0.011 U	1	0.011	0.044	193-39-5	10/21/10 18:33	10/18/10 1
1-Methylnaphthalene	8270	ug/L	0.028 U	1	0.028	0.11	90-12-0	10/21/10 18:33	10/18/10 11
2-Methylnaphthalene	8270	ug/L	0.025 U	1	0.025	0.1	91-57-6	10/21/10 18:33	10/18/10 11
Naphthalene	8270	ug/L	0.031 U	1	0.031	0.12	91-20-3	10/21/10 18:33	10/18/10 13

SunLabs Project Number

101011.02

Cardno TBE, Inc.

Project Description

Manatee

October 25, 2010

SunLabs Sample Number

Sample Designation

110478

TMW-1

Matrix

Groundwater

Date Collected Date Received 10/11/10 10:08

10/11/10 10:08

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Polynuclear Aromatic Hydroc	carbons by Method 8270								
Phenanthrene	8270	ug/L	0.026 U	1	0.026	0.1	85-01-8	10/21/10 18:33	10/18/10 11:00
Pyrene	8270	ug/L	0.022 U	1	0.022	0.088	129-00-0	10/21/10 18:33	10/18/10 11:00
RCRA Metals ppb									
Date Digested	3005		10/15/10						10/15/10 08:30
Date Analyzed	6010		10/18/10	1				10/18/10 18:09	
Lead	6010	ug/L	4.4 U	1	4.4	18	7439-92-1	10/18/10 18:09	10/15/10 08:30

SunLabs Project Number

101011.02

Cardno TBE, Inc.

Project Description

Manatee

October 25, 2010

SunLabs Sample Number Sample Designation

110479 TMW-2 Matrix

Groundwater

Date Collected Date Received 10/11/10 11:05 10/12/10 11:15

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA N	1ethod 8081								
Date Extracted	3510c		10/15/10						10/15/10 11:4
Date Analyzed			10/21/2010	1				10/21/10 15:11	
2,4,5,6-Tetrachloro-m-xylene (10-139)	8081	%	65	1		1	DEP-SURR-	10/21/10 15:11	10/15/10 11:4
Aldrin	8081	ug/L	0.002 U	1	0.002	0.008	309-00-2	10/21/10 15:11	10/15/10 11:4
a-BHC	8081	ug/L	0.0023 U	1	0.0023	0.0092	319-84-6	10/21/10 15:11	10/15/10 11:4
b-BHC	8081	ug/L	0.003 U	1	0.003	0.012	319-85-7	10/21/10 15:11	10/15/10 11:4
d-BHC	8081	ug/L	0.0023 U	1			319-86-8	10/21/10 15:11	10/15/10 11:4
a-Chlordane	8081	ug/L	0.0019 U	1	0.0019	0.0076	5103-71-9	10/21/10 15:11	10/15/10 11:4
g-Chlordane	8081	ug/L	0.0021 U	1	0.0021	0.0084	5103-74-2	10/21/10 15:11	10/15/10 11:4
4,4'-DDD	8081	ug/L	0.0016 U	1	0.0016	0.0064	72-54-8	10/21/10 15:11	10/15/10 11:4
4,4'-DDE	8081	ug/L	0.0017 U	1	0.0017	0.0068	72-55-9	10/21/10 15:11	10/15/10 11:4
4,4'-DDT	8081	ug/L	0.002 U	1	0.002	0.008	50-29-3	10/21/10 15:11	10/15/10 11:4
Dieldrin	8081	ug/L	0.0014 U	1	0.0014	0.0056	60-57-1	10/21/10 15:11	10/15/10 11:4
Endosulfan I	8081	ug/L	0.0019 U	1	0.0019	0.0076	959-98-8	10/21/10 15:11	10/15/10 11:4
Endosulfan II	8081	ug/L	0.0018 U	1	0.0018	0.0072	33213-65-9	10/21/10 15:11	10/15/10 11:4
Endosulfan sulfate	8081	ug/L	0.0027 U	1	0.0027	0.011	1031-07-8	10/21/10 15:11	
Endrin	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-20-8	10/21/10 15:11	10/15/10 11:4
Endrin aldehyde	8081	ug/L	0.0019 U	1	0.0019	0.0076	7421-93-4	10/21/10 15:11	10/15/10 11:
Endrin ketone	8081	ug/L	0.0016 U	1	0.0016	0.0064	53494-70-5	10/21/10 15:11	10/15/10 11:4
Heptachlor	8081	ug/L	0.0024 U	1	0.0024	0.0096	76-44-8	10/21/10 15:11	10/15/10 11:
Heptachlor epoxide	8081	ug/L	0.0022 U	1	0.0022	0.0088	1024-57-3	10/21/10 15:11	10/15/10 11:4
Lindane	8081	ug/L	0.0024 U	1	0.0024	0.0096	58-89-9	10/21/10 15:11	10/15/10 11:4
Methoxychlor	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-43-5	10/21/10 15:11	10/15/10 11:4
Mirex	8081	ug/L	0.015 U	1	0.015	0.06	2385-85-5	10/21/10 15:11	10/15/10 11:4
Toxaphene	8081	ug/L	0.044 U	1	0.044	0.2	8001-35-2	10/21/10 15:11	10/15/10 11:4
Volatile Organic Compounds By EPA	A Method 8260		2011-1110	7.				10/12/10 19:17	
Date Analyzed	- 1000	-	10/12/10	1			DEP-SURR-	10/12/10 19:17	
4-Bromofluorobenzene (66-125)	8260	%	108	1			186-85-37	10/12/10 19:17	
Dibromofluoromethane (61-137)	8260	%	92	1			DEP-SURR-	10/12/10 19:17	
Toluene-d8 (69-128)	8260	%	112	1	0.0	5	67-64-1	10/12/10 19:17	
Acetone	8260	ug/L	8.5	1	0.6	0.5	71-43-2	10/12/10 19:17	
Benzene	8260	ug/L	0.1 U	1		0.5	74-97-5	10/12/10 19:17	
Bromochloromethane	8260	ug/L	0.2 U	1	0.2				
Bromodichloromethane	8260	ug/L	0.1 U	1	0.1	0.5	75-27-4	10/12/10 19:17 10/12/10 19:17	
Bromoform	8260	ug/L	0.3 U	1	0.3	1.2	75-25-2		
Bromomethane	8260	ug/L	0.4 U	1	0.4	1.6	74-83-9	10/12/10 19:17	
2-Butanone	8260	ug/L	3.8 I	1	0.4	5	78-93-3	10/12/10 19:17	
Carbon disulfide	8260	ug/L	0.25 U	1	0.25	5	75-15-0	10/12/10 19:17	
Carbon tetrachloride	8260	ug/L	0.2 U	1	0.2	0.8	56-23-5	10/12/10 19:17	
Chlorobenzene	8260	ug/L	0.2 U	1	0.2	0.8	108-90-7	10/12/10 19:17	

SunLabs Project Number

101011.02

Cardno TBE, Inc.

Project Description

Manatee

October 25, 2010

SunLabs Sample Number Sample Designation

110479 TMW-2 Matrix

Groundwater

Date Collected Date Received 10/11/10 11:05 10/12/10 11:15

Parameters	Method	Units	Results	Dil Fact	MDL or	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Volatile Organic Compounds By EP/	A Method 8260								
Chloroethane	8260	ug/L	0.3 U	1	0.3	1.2	75-00-3	10/12/10 19:17	
Chloroform	8260	ug/L	0.1 U	1	0.1	0.5	67-66-3	10/12/10 19:17	
Chloromethane	8260	ug/L	0.1 U	1	0.1	0.5	74-87-3	10/12/10 19:17	
Dibromochloromethane	8260	ug/L	0.15 U	1	0.15	0.6	124-48-1	10/12/10 19:17	
Dibromomethane	8260	ug/L	0.1 U	1	0.1	0.5	74-95-3	10/12/10 19:17	
1,2-Dichlorobenzene	8260	ug/L	0.2 U	1	0.2	0.8	95-50-1	10/12/10 19:17	
1,3-Dichlorobenzene	8260	ug/L	0.3 U	1	0.3	1.2	541-73-1	10/12/10 19:17	
1,4-Dichlorobenzene	8260	ug/L	0.4 U	1	0.4	1.6	106-46-7	10/12/10 19:17	
Dichlorodifluoromethane	8260	ug/L	0.3 U	1	0.3	1.2	75-71-8	10/12/10 19:17	
1,1-Dichloroethane	8260	ug/L	0.1 U	1	0.1	0.5	75-34-3	10/12/10 19:17	
1,2-Dichloroethane	8260	ug/L	0.2 U	1	0.2	0.8	107-06-2	10/12/10 19:17	
1,1-Dichloroethene	8260	ug/L	0.15 U	1	0.15	0.6	75-35-4	10/12/10 19:17	
cis-1,2-Dichloroethene	8260	ug/L	0.2 U	1	0.2	0.8	156-59-2	10/12/10 19:17	
trans-1,2-Dichloroethene	8260	ug/L	0.2 U	1	0.2	0.8	156-60-5	10/12/10 19:17	
1,2-Dichloropropane	8260	ug/L	0.1 U	1	0.1	0.5	78-87-5	10/12/10 19:17	
1,3-Dichloropropene	8260	ug/L	0.2 U	1	0.2	0.8	542-75-6	10/12/10 19:17	
Ethylbenzene	8260	ug/L	0.2 U	1	0.2	0.5	100-41-4	10/12/10 19:17	
2-Hexanone	8260	ug/L	0.2 U	1	0.2	5	591-78-6	10/12/10 19:17	
4-Methyl-2-pentanone	8260	ug/L	0.2 U	1	0.2	5	108-10-1	10/12/10 19:17	
Methylene Chloride	8260	ug/L	1.7 U	1	1.7	6.8	75-09-2	10/12/10 19:17	
MTBE	8260	ug/L	0.05 U	1	0.05	0.5	1634-04-4	10/12/10 19:17	
isopropylbenzene .	8260	ug/L	0.2 U	1	0.2	0.8	98-82-8	10/12/10 19:17	
Styrene	8260	ug/L	0.1 U	1	0.1	0.5	100-42-5	10/12/10 19:17	
1,1,2,2-Tetrachloroethane	8260	ug/L	0.2 U	1	0.2	8.0	79-34-5	10/12/10 19:17	
Tetrachloroethene	8260	ug/L	0.25 U	1	0.25	1	127-18-4	10/12/10 19:17	
Toluene	8260	ug/L	0.3 U	1	0.3	0.5	108-88-3	10/12/10 19:17	
1,1,1-Trichloroethane	8260	ug/L	0.1 U	1	0.1	0.5	71-55-6	10/12/10 19:17	
1,1,2-Trichloroethane	8260	ug/L	0.7 U	1	0.7	2.8	79-00-5	10/12/10 19:17	
Trichloroethene	8260	ug/L	0.2 U	1	0.2	0.8	79-01-6	10/12/10 19:17	
Trichlorofluoromethane	8260	ug/L	0.2 U	1	0.2	0.8	75-69-4	10/12/10 19:17	
1,2,4-Trimethylbenzene	8260	ug/L	0.2 U	1	0.2	0.8	95-63-6	10/12/10 19:17	
1,3,5-Trimethylbenzene	8260	ug/L	0.2 U	1	0.2	0.8	108-67-8	10/12/10 19:17	
Vinyl acetate	8260	ug/L	0.25 U	1	0.25	5	108-05-4	10/12/10 19:17	
Vinyl chloride	8260	ug/L	0.09 U	1	0.09	0.5	75-01-4	10/12/10 19:17	
Total Xylenes	8260	ug/L	0.4 U	1	0.4	1.6	1330-20-7	10/12/10 19:17	
Chlorinated Herbicides by EPA 832									104540 12.00
Date Extracted	8321		10/15/10						10/15/10 12:00
Date Analyzed			10/19/2010	1			300.30	10/19/10 20:32	Standard or or
2,4-Dichlorophenylacetic acid (D-131)	8321	%	77	1		1	DEP-SURR-	10/19/10 20:32	10/15/10 12:00
2,4-D	8321	ug/L	0.31 U	1	0.31	1.3	94-75-7	10/19/10 20:32	10/15/10 12:00

Laboratory ID Number - E84809

Phone: 813-881-9401 Fax: 813-354-4661 Email: Info@SunLabsInc.com

SunLabs Project Number

101011.02

Cardno TBE, Inc.

Project Description

Manatee

October 25, 2010

SunLabs Sample Number

110479

Sample Designation

TMW-2

Matrix

Groundwater

Date Collected

10/11/10 11:05

Date Received

10/12/10 11:15

								1000	3 411044
Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Tim Prep
Francisco Concession									
Chlorinated Herbicides by EPA 8	<u>8321</u>								
2,4-DB	8321	ug/L	1.1 U	1	1.1	4.4	94-82-6	10/19/10 20:32	10/15/10 12:0
Dicamba	8321	ug/L	0.35 U	1	0.35	1.4	1918-00-9	10/19/10 20:32	10/15/10 12:
Dichlorprop	8321	ug/L	0.32 U	1	0.32	1.3	120-36-5	10/19/10 20:32	10/15/10 12:
Dinoseb	8321	ug/L	0.18 U	1	0.18	0.72	88-85-7	10/19/10 20:32	10/15/10 12:
MCPA	8321	ug/L	0.21 U	1	0.21	0.84	94-74-6	10/19/10 20:32	10/15/10 12:
MCPP	8321	ug/L	0.15 U	1	0.15	0.6	93-65-2	10/19/10 20:32	10/15/10 12:
Picloram	8321	ug/L	0.35 U	1	0.35	1.4	1918-02-1	10/19/10 20:32	10/15/10 12:
2,4,5-T	8321	ug/L	0.23 U	1	0.23	0.92	93-76-5	10/19/10 20:32	10/15/10 12:0
Silvex	8321	ug/L	0.28 U	1	0.28	1.1	93-72-1	10/19/10 20:32	10/15/10 12:0
Petroleum Range Organics(C8-0	C40)								
Date Extracted			10/15/10						10/15/10 14:
Date Analyzed			10/18/10	1				10/18/10 23:30	
C-39 (40-140)	FLPRO	%	65	1		1		10/18/10 23:30	10/15/10 14:
o-Terphenyl (40-140)	FLPRO	%	79	1		1	84-15-1	10/18/10 23:30	10/15/10 14:
Petroleum Range Organics	FLPRO	ug/L	46 U	1	46	300		10/18/10 23:30	10/15/10 14:0
1,2-Dibromoethane by EPA Met	hod 8011								
Date Extracted			10/14/10						10/14/10 12:0
Date Analyzed			10/15/10	1				10/15/10 01:16	
1,2-Dibromoethane	8011	ug/L	0.006 U	1	0.006	0.024	106-93-4	10/15/10 01:16	10/14/10 12:
Polynuclear Aromatic Hydrocart	bons by Method 8270								
Date Extracted	3510		10/18/10						10/18/10 11:0
Date Analyzed	8270		10/21/2010	1				10/21/10 19:08	
Terphenyl-d14 (3-130)	8270	%	73	1			DEP-SURR-	10/21/10 19:08	10/18/10 11:0
Acenaphthene	8270	ug/L	0,028 U	1	0.028	0.11	83-32-9	10/21/10 19:08	10/18/10 11:0
Acenaphthylene	8270	ug/L	0.022 U	1	0.022	0.09	208-96-8	10/21/10 19:08	10/18/10 11:
Anthracene	8270	ug/L	0.02 U	1	0.02	0.08	120-12-7	10/21/10 19:08	10/18/10 11:0
Benzo(a)anthracene	8270	ug/L	0.011 U	1	0.011	0.044	56-55-3	10/21/10 19:08	10/18/10 11:0
Benzo(a)pyrene	8270	ug/L	0.009 U	1	0.009	0.036	50-32-8	10/21/10 19:08	10/18/10 11:0
Benzo(b)fluoranthene	8270	ug/L	0.007 U	1	0.007	0.028	205-99-2	10/21/10 19:08	10/18/10 11:
Benzo(q,h,i)perylene	8270	ug/L	0.012 U	1	0.012	0.048	191-24-2	10/21/10 19:08	10/18/10 11:0
Benzo(k)fluoranthene	8270	ug/L	0.017 U	1	0.017	0.068	207-08-9	10/21/10 19:08	10/18/10 11:0
Chrysene	8270	ug/L	0.01 U	1	0.01	0.04	218-01-9	10/21/10 19:08	10/18/10 11:0
Dibenzo(a,h)anthracene	8270	ug/L	0.011 U	1	0.011	0.044	53-70-3	10/21/10 19:08	10/18/10 11:0
Fluoranthene	8270	ug/L	0.02 U	1	0.02	0.08	206-44-0	10/21/10 19:08	10/18/10 11:0
	8270	ug/L	0.03 U	1	0.03	0.12	86-73-7	10/21/10 19:08	10/18/10 11:
Fluorene	8270	ug/L	0.011 U	1	0.011	0.044	193-39-5	10/21/10 19:08	10/18/10 11:
ndeno(1,2,3-cd)pyrene	02/0				0.028	0.11	90-12-0	10/21/10 19:08	10/18/10 11:
Cont. accounts	0270	110/1	0.038 11						
1-Methylnaphthalene 2-Methylnaphthalene	8270 8270	ug/L ug/L	0.028 U 0.025 U	1	0.025	0.1	91-57-6	10/21/10 19:08	10/18/10 11:0

Laboratory ID Number - E84809

Phone: 813-881-9401 Fax: 813-354-4661 Email: Info@SunLabsinc.com

SunLabs Project Number

101011.02

Cardno TBE, Inc.

Project Description

Manatee

October 25, 2010

SunLabs Sample Number Sample Designation

110479 TMW-2 Matrix

Groundwater

Date Collected Date Received 10/11/10 11:05 10/12/10 11:15

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Polynuclear Aromatic Hydroc	arbons by Method 8270								
Naphthalene	8270	ug/L	0.031 U	1	0.031	0.12	91-20-3	10/21/10 19:08	10/18/10 11:00
Phenanthrene	8270	ug/L	0.026 U	1	0.026	0.1	85-01-8	10/21/10 19:08	10/18/10 11:00
Pyrene	8270	ug/L	0.022 U	1	0.022	0.088	129-00-0	10/21/10 19:08	10/18/10 11:00
RCRA Metals ppb									
Date Digested	3005		10/15/10						10/15/10 08:30
Date Analyzed	6010		10/18/10	1				10/18/10 18:11	
Lead	6010	ug/L	4.4 U	1	4.4	18	7439-92-1	10/18/10 18:11	10/15/10 08:30

SunLabs **Project Number**

101011.02

Cardno TBE, Inc.

Project Description Manatee

October 25, 2010

SunLabs Sample Number Sample Designation

110480

TMW-3

Matrix

Groundwater

Date Collected Date Received

10/11/10 12:45 10/12/10 11:15

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	lethod 8081								
Date Extracted	3510c		10/15/10						10/15/10 11:4
Date Analyzed			10/22/10	1				10/22/10 20:20	
2,4,5,6-Tetrachloro-m-xylene (10-139)	8081	%	50	1		1	DEP-SURR-	10/22/10 20:20	10/15/10 11:4
Aldrin	8081	ug/L	0.002 U	1	0.002	0.008	309-00-2	10/22/10 20:20	10/15/10 11:4
a-BHC	8081	ug/L	0.0023 U	1	0.0023	0.0092	319-84-6	10/22/10 20:20	10/15/10 11:4
b-BHC	8081	ug/L	0.003 U	1	0.003	0.012	319-85-7	10/22/10 20:20	10/15/10 11:4
d-BHC	8081	ug/L	0.0023 U	1	0.0023	0.0092	319-86-8	10/22/10 20:20	10/15/10 11:4
a-Chlordane	8081	ug/L	0.0019 U	1	0.0019	0.0076	5103-71-9	10/22/10 20:20	10/15/10 11:4
g-Chlordane	8081	ug/L	0.0021 U	1	0.0021	0.0084	5103-74-2	10/22/10 20:20	10/15/10 11:4
4,4'-DDD	8081	ug/L	0.0016 U	1	0.0016	0.0064	72-54-8	10/22/10 20:20	10/15/10 11:4
4,4'-DDE	8081	ug/L	0.0017 U	1	0.0017	0.0068	72-55-9	10/22/10 20:20	10/15/10 11:4
4,4'-DDT	8081	ug/L	0.002 U	1	0.002	0.008	50-29-3	10/22/10 20:20	10/15/10 11:4
Dieldrin	8081	ug/L	0.0014 U	1	0.0014	0.0056	60-57-1	10/22/10 20:20	10/15/10 11:4
Endosulfan I	8081	ug/L	0.0019 U	1	0.0019	0.0076	959-98-8	10/22/10 20:20	10/15/10 11:4
Endosulfan II	8081	ug/L	0.0018 U	1	0.0018	0.0072	33213-65-9	10/22/10 20:20	10/15/10 11:4
Endosulfan sulfate	8081	ug/L	0.0027 U	1	0.0027	0.011	1031-07-8	10/22/10 20:20	10/15/10 11:4
Endrin	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-20-8	10/22/10 20:20	10/15/10 11:4
Endrin aldehyde	8081	ug/L	0.0019 U	1	0.0019	0.0076	7421-93-4	10/22/10 20:20	10/15/10 11:4
Endrin ketone	8081	ug/L	0.0016 U	1	0.0016	0.0064	53494-70-5	10/22/10 20:20	10/15/10 11:4
Heptachlor	8081	ug/L	0.0024 U	1	0.0024	0.0096	76-44-8	10/22/10 20:20	10/15/10 11:4
Heptachlor epoxide	8081	ug/L	0.0022 U	1	0.0022	0.0088	1024-57-3	10/22/10 20:20	10/15/10 11:4
Lindane	8081	ug/L	0.0024 U	1	0.0024	0.0096	58-89-9	10/22/10 20:20	10/15/10 11:4
Methoxychlor	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-43-5	10/22/10 20:20	10/15/10 11:4
Mirex	8081	ug/L	0.015 U	1	0.015	0.06	2385-85-5	10/22/10 20:20	10/15/10 11:4
Toxaphene	8081	ug/L	0.044 U	1	0.044	0.2	8001-35-2	10/22/10 20:20	10/15/10 11:4
Volatile Organic Compounds By EPA	Method 8260								
Date Analyzed			10/12/10	1				10/12/10 19:38	
4-Bromofluorobenzene (66-125)	8260	%	111	1			DEP-SURR-	10/12/10 19:38	
Dibromofluoromethane (61-137)	8260	%	96	1			186-85-37	10/12/10 19:38	
Toluene-d8 (69-128)	8260	%	111	1			DEP-SURR-	10/12/10 19:38	
Acetone	8260	ug/L	2.2 I	1	0.6	5	67-64-1	10/12/10 19:38	
Benzene	8260	ug/L	0.1 U	1	0.1	0.5	71-43-2	10/12/10 19:38	
Bromochloromethane	8260	ug/L	0.2 U	1	0.2	0.8	74-97-5	10/12/10 19:38	
Bromodichloromethane	8260	ug/L	0.1 U	1	0.1	0.5	75-27-4	10/12/10 19:38	
Bromoform	8260	ug/L	0.3 U	1	0.3	1.2	75-25-2	10/12/10 19:38	
Bromomethane	8260	ug/L	0.4 U	1	0.4	1.6	74-83-9	10/12/10 19:38	
2-Butanone	8260	ug/L	4.1 I	1	0.4	5	78-93-3	10/12/10 19:38	
Carbon disulfide	8260	ug/L	0.25 U	1	0.25	5	75-15-0	10/12/10 19:38	
Carbon tetrachloride	8260	ug/L	0.2 U	1	0.2	0.8	56-23-5	10/12/10 19:38	
Chlorobenzene	8260	ug/L	0.2 U	1	0.2	0.8	108-90-7	10/12/10 19:38	

SunLabs Project Number Cardno TBE, Inc.

101011.02

Project Description

Manatee

October 25, 2010

SunLabs Sample Number Sample Designation

110480 TMW-3 Matrix

Groundwater

Date Collected Date Received 10/11/10 12:45 10/12/10 11:15

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Volatile Organic Compounds By EP	A Method 8260								
Chloroethane	8260	ug/L	0.3 U	1	0.3	1.2	75-00-3	10/12/10 19:38	
Chloroform	8260	ug/L	0.1 U	1	0.1	0.5	67-66-3	10/12/10 19:38	
Chloromethane	8260	ug/L	0.1 U	1	0.1	0.5	74-87-3	10/12/10 19:38	
Dibromochloromethane	8260	ug/L	0.15 U	1	0.15	0.6	124-48-1	10/12/10 19:38	
Dibromomethane	8260	ug/L	0.1 U	1	0.1	0.5	74-95-3	10/12/10 19:38	
1,2-Dichlorobenzene	8260	ug/L	0.2 U	1	0.2	0.8	95-50-1	10/12/10 19:39	
1,3-Dichlorobenzene	8260	ug/L	0.3 U	1	0.3	1.2	541-73-1	10/12/10 19:38	
1,4-Dichlorobenzene	8260	ug/L	0.4 U	1	0.4	1.6	106-46-7	10/12/10 19:38	
Dichlorodifluoromethane	8260	ug/L	0.3 U	1	0.3	1.2	75-71-8	10/12/10 19:38	
1,1-Dichloroethane	8260	ug/L	0.1 U	1	0.1	0.5	75-34-3	10/12/10 19:38	
1,2-Dichloroethane	8260	ug/L	0.2 U	1	0.2	0.8	107-06-2	10/12/10 19:38	
1,1-Dichloroethene	8260	ug/L	0.15 U	1	0.15	0.6	75-35-4	10/12/10 19:38	
cis-1,2-Dichloroethene	8260	ug/L	0.2 U	1	0.2	0.8	156-59-2	10/12/10 19:38	
trans-1,2-Dichloroethene	8260	ug/L	0.2 U	1	0.2	0.8	156-60-5	10/12/10 19:38	
1,2-Dichloropropane	8260	ug/L	0.1 U	1	0.1	0.5	78-87-5	10/12/10 19:38	
1,3-Dichloropropene	8260	ug/L	0.2 U	1	0.2	8.0	542-75-6	10/12/10 19:38	
Ethylbenzene	8260	ug/L	0.2 U	1	0.2	0.5	100-41-4	10/12/10 19:38	
2-Hexanone	8260	ug/L	0.2 U	1	0.2	5	591-78-6	10/12/10 19:38	
4-Methyl-2-pentanone	8260	ug/L	0.2 U	1	0.2	5	108-10-1	10/12/10 19:38	
Methylene Chloride	8260	ug/L	1.7 U	1	1.7	6.8	75-09-2	10/12/10 19:38	
MTBE	8260	ug/L	0.05 U	1	0.05	0.5	1634-04-4	10/12/10 19:38	
isopropylbenzene	8260	ug/L	0.2 U	1	0.2	0.8	98-82-8	10/12/10 19:38	
Styrene	8260	ug/L	0.1 U	1	0.1	0.5	100-42-5	10/12/10 19:38	
1,1,2,2-Tetrachloroethane	8260	ug/L	0.2 U	1	0.2	0.8	79-34-5	10/12/10 19:38	
Tetrachloroethene	8260	ug/L	0.25 U	1	0.25	1	127-18-4	10/12/10 19:38	
Toluene	8260	ug/L	0.3 U	1	0.3	0.5	108-88-3	10/12/10 19:38	
1,1,1-Trichloroethane	8260	ug/L	0.1 U	1	0.1	0.5	71-55-6	10/12/10 19:38	
1,1,2-Trichloroethane	8260	ug/L	0.7 U	1	0.7	2.8	79-00-5	10/12/10 19:38	
Trichloroethene	8260	ug/L	0.2 U	1	0.2	0.8	79-01-6	10/12/10 19:38	
Trichlorofluoromethane	8260	ug/L	0.2 U	1	0.2	0.8	75-69-4	10/12/10 19:38	
1,2,4-Trimethylbenzene	8260	ug/L	0.2 U	1	0.2	0.8	95-63-6	10/12/10 19:38	
1,3,5-Trimethylbenzene	8260	ug/L	0.2 U	1	0.2	8.0	108-67-8	10/12/10 19:38	
Vinyl acetate	8260	ug/L	0.25 U	1	0.25	5	108-05-4	10/12/10 19:38	
Vinyl chloride	8260	ug/L	0.09 U	1	0.09	0.5	75-01-4	10/12/10 19:38	
Total Xylenes	8260	ug/L	0.4 U	1	0.4	1.6	1330-20-7	10/12/10 19:38	
Chlorinated Herbicides by EPA 832	<u>1</u>								
Date Extracted	8321		10/15/10						10/15/10 12:00
Date Analyzed			10/19/2010	1				10/19/10 21:12	
2,4-Dichlorophenylacetic acid (D-131)	8321	%	81	1		1	DEP-SURR-	10/19/10 21:12	10/15/10 12:00
2,4-D	8321	ug/L	0.31 U	1	0.31	1.3	94-75-7	10/19/10 21:12	10/15/10 12:00

SunLabs Project Number

101011.02

Cardno TBE, Inc.

Project Description

Manatee

October 25, 2010

SunLabs Sample Number Sample Designation

110480 TMW-3 Matrix Date Collected Groundwater

Date Received

10/11/10 12:45 10/12/10 11:15

		Units					CAS	Date/Time	Date/Tin
				Facto	r		Number	Analyzed	Prep
Chlorinated Herbicides by EPA 8321									
2,4-DB	8321	ug/L	1.1 U	1	1.1	4.4	94-82-6	10/19/10 21:12	10/15/10 12
Dicamba	8321	ug/L	0.35 U	1	0.35	1.4	1918-00-9	10/19/10 21:12	10/15/10 12
Dichlorprop	8321	ug/L	0.32 U	1	0.32	1.3	120-36-5	10/19/10 21:12	10/15/10 12
Dinoseb	8321	ug/L	0.18 U	1	0.18	0.72	88-85-7	10/19/10 21:12	10/15/10 12
MCPA	8321	ug/L	0.21 U	1	0.21	0.84	94-74-6	10/19/10 21:12	10/15/10 12
MCPP	8321	ug/L	0.15 U	1	0.15	0.6	93-65-2	10/19/10 21:12	10/15/10 12
Picloram	8321	ug/L	0.35 U	1	0.35	1.4	1918-02-1	10/19/10 21:12	10/15/10 12
2,4,5-T	8321	ug/L	0.23 U	1	0.23	0.92	93-76-5	10/19/10 21:12	10/15/10 12
Silvex	8321	ug/L	0.28 U	1	0.28	1.1	93-72-1	10/19/10 21:12	10/15/10 12
Petroleum Range Organics(C8-C40)									
Date Extracted			10/15/10						10/15/10 14
Date Analyzed			10/18/10	1				10/18/10 23:39	
C-39 (40-140)	FLPRO	%	69	1		1		10/18/10 23:39	10/15/10 14
o-Terphenyl (40-140)	FLPRO	%	83	1		1	84-15-1	10/18/10 23:39	10/15/10 14
Petroleum Range Organics	FLPRO	ug/L	46 U	1	46	300		10/18/10 23:39	10/15/10 14
1,2-Dibromoethane by EPA Method 8	3011								
Date Extracted			10/14/10						10/14/10 12
Date Analyzed			10/15/10	1				10/15/10 01:31	
1,2-Dibromoethane	8011	ug/L	0.006 U	1	0.006	0.024	106-93-4	10/15/10 01:31	10/14/10 12
Polynuclear Aromatic Hydrocarbons	by Method 8270								
Date Extracted	3510		10/18/10						10/18/10 11
Date Analyzed	8270		10/21/2010	1				10/21/10 19:25	
Ferphenyl-d14 (3-130)	8270	%	75	1			DEP-SURR-	10/21/10 19:25	10/18/10 11
Acenaphthene	8270	ug/L	0.028 U	1	0.028	0.11	83-32-9	10/21/10 19:25	10/18/10 11
Acenaphthylene	8270	ug/L	0.022 U	1	0.022	0.09	208-96-8	10/21/10 19:25	10/18/10 11
Anthracene	8270	ug/L	0.02 U	1	0.02	0.08	120-12-7	10/21/10 19:25	10/18/10 11
Benzo(a)anthracene	8270	ug/L	0.011 U	1	0.011	0.044	56-55-3	10/21/10 19:25	10/18/10 11
Benzo(a)pyrene	8270	ug/L	0.009 U	1	0.009	0.036	50-32-8	10/21/10 19:25	10/18/10 11
Benzo(b)fluoranthene	8270	ug/L	0.007 U	1	0.007	0.028	205-99-2	10/21/10 19:25	10/18/10 11
Benzo(g,h,i)perylene	8270	ug/L	0.012 U	1	0.012	0.048	191-24-2	10/21/10 19:25	10/18/10 11
Benzo(k)fluoranthene	8270	ug/L	0.017 U	1	0.017	0.068	207-08-9	10/21/10 19:25	10/18/10 11
Chrysene	8270	ug/L	0.01 U	1	0.01	0.04	218-01-9	10/21/10 19:25	10/18/10 11
Dibenzo(a,h)anthracene	8270	ug/L	0.011 U	1	0.011	0.044	53-70-3	10/21/10 19:25	10/18/10 11
luoranthene	8270	ug/L	0.02 U	1	0.02	0.08	206-44-0	10/21/10 19:25	10/18/10 11
Fluorancierie	8270	ug/L	0.02 U	1	0.03	0.12	86-73-7	10/21/10 19:25	10/18/10 11
	8270	ug/L	0.011 U	1	0.011	0.044	193-39-5	10/21/10 19:25	10/18/10 11
indeno(1,2,3-cd)pyrene	8270	ug/L	0.028 U	1	0.028	0.11	90-12-0	10/21/10 19:25	10/18/10 11
I-Methylnaphthalene	02/0	ug/L	0.020 0	1	0.025	0.1	91-57-6	10/21/10 19:25	

Laboratory ID Number - E84809

Tampa, Florida 33634

SunLabs Project Number

101011.02

Cardno TBE, Inc.

Project Description

Manatee

October 25, 2010

SunLabs Sample Number Sample Designation

110480 TMW-3 Matrix

Groundwater

Date Collected Date Received 10/11/10 12:45 10/12/10 11:15

Parameters	Method	Units	Results	Dil Factor		RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Polynuclear Aromatic Hydro Naphthalene	carbons by Method 8270	ug/L	0.031 U	1	0.031	0.12	91-20-3	10/21/10 19:25	10/18/10 11:00
Phenanthrene	8270	ug/L	0.026 U	1	0.026	0.1	85-01-8	10/21/10 19:25	10/18/10 11:00
Pyrene	8270	ug/L	0.022 U	1	0.022	0.088	129-00-0	10/21/10 19:25	10/18/10 11:00

RCRA Metals ppb									
Date Digested	3005		10/15/10						10/15/10 08:30
Date Analyzed	6010		10/18/10	1				10/18/10 20:10	
heal	6010	un/l	44 11	1	4.4	18	7439-92-1	10/18/10 20:10	10/15/10 08:30

SunLabs **Project Number**

101011.02

Cardno TBE, Inc.

Project Description Manatee

October 25, 2010

SunLabs Sample Number Sample Designation

110481

SS-3 .50'-2'

Matrix

Soil

Date Collected Date Received 10/11/10 11:38

10/12/10	11:15

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Tim Prep
Florida Petroleum Range Orga	nics(C8-C40)								
Date Extracted			10/14/10						10/14/10 16:4
Date Analyzed			10/18/10	1				10/18/10 18:17	
C-39 (40-140)	FLPRO	%	54	1		1		10/18/10 18:17	10/14/10 16:4
o-Terphenyl (40-140)	FLPRO	%	70	1		1	84-15-1	10/18/10 18:17	10/14/10 16:
Petroleum Range Organics	FLPRO	mg/kg	4.9 U	1	4.9	20		10/18/10 18:17	10/14/10 16:
Percent Moisture									
% Moisture	160.3M	%	3			0.1		10/14/10	
Polynuclear Aromatic Hydroca	rbons by Method 8270	1							
Date Extracted	3550		10/14/10						10/14/10 16:
Date Analyzed	8270		10/15/2010	1				10/15/10 20:24	
Terphenyl-d14 (5-139)	8270	%	67	1			DEP-SURR-	10/15/10 20:24	10/14/10 16:
Acenaphthene	8270	mg/kg	0.0022 U	1	0.0022	0.0087	83-32-9	10/15/10 20:24	10/14/10 16:
Acenaphthylene	8270	mg/kg	0.0023 U	1	0.0023	0.0091	208-96-8	10/15/10 20:24	10/14/10 16:
Anthracene	8270	mg/kg	0.0018 U	1	0.0018	0.007	120-12-7	10/15/10 20:24	10/14/10 16:
Benzo(a)anthracene	8270	mg/kg	0.0015 U	1	0.0015	0.0062	56-55-3	10/15/10 20:24	10/14/10 16:
Benzo(a)pyrene	8270	mg/kg	0.0021 U	1	0.0021	0.0082	50-32-8	10/15/10 20:24	10/14/10 16:
Benzo(b)fluoranthene	8270	mg/kg	0.0028 U	1	0.0028	0.011	205-99-2	10/15/10 20:24	10/14/10 16:
Benzo(g,h,i)perylene	8270	mg/kg	0.0071 U	1	0.0071	0.028	191-24-2	10/15/10 20:24	10/14/10 16:
Benzo(k)fluoranthene	8270	mg/kg	0.002 U	1	0.002	0.0078	207-08-9	10/15/10 20:24	10/14/10 16:
Chrysene	8270	mg/kg	0.0012 U	1	0.0012	0.0049	218-01-9	10/15/10 20:24	10/14/10 16:
Dibenzo(a,h)anthracene	8270	mg/kg	0.0075 U	1	0.0075	0.03	53-70-3	10/15/10 20:24	10/14/10 16:
Fluoranthene	8270	mg/kg	0.0024 U	1	0.0024	0.0095	206-44-0	10/15/10 20:24	10/14/10 16:
Fluorene	8270	mg/kg	0.0019 U	1	0.0019	0.0074	86-73-7	10/15/10 20:24	10/14/10 16:
Indeno(1,2,3-cd)pyrene	8270	mg/kg	0.0074 U	1	0.0074	0.03	193-39-5	10/15/10 20:24	10/14/10 16:
1-Methylnaphthalene	8270	mg/kg	0.0034 U	1	0.0034	0.014	90-12-0	10/15/10 20:24	10/14/10 16:
2-Methylnaphthalene	8270	mg/kg	0.0029 U	1	0.0029	0.012	91-57-6	10/15/10 20:24	10/14/10 16:
Naphthalene	8270	mg/kg	0.0057 U	1	0.0057	0.023	91-20-3	10/15/10 20:24	10/14/10 16:
Phenanthrene	8270	mg/kg	0.0029 U	1	0.0029	0.012	85-01-8	10/15/10 20:24	10/14/10 16:
Pyrene	8270	mg/kg	0.0071 U	1	0.0071	0.029	129-00-0	10/15/10 20:24	10/14/10 16:
Volatile Organic Compounds (BTEX/MTBE)								
Date Analyzed			10/12/10	1				10/12/10 19:49	
Toluene-d8 (49-134)	8260	%	100	1			DEP-SURR-	10/12/10 19:49	
Benzene	8260	mg/kg	0.00055 U	1	0.00055	0.004	71-43-2	10/12/10 19:49	
Ethylbenzene	8260	mg/kg	0.00062 U	1	0.00062	0.004	100-41-4	10/12/10 19:49	
MTBE	8260	mg/kg	0.0016 U	1	0.0016	0.0062	1634-04-4	10/12/10 19:49	
Toluene	8260	mg/kg	0.0024 U	1	0.0024	0.0071	108-88-3	10/12/10 19:49	
Total Xylenes	8260	mg/kg	0.0024 U	1	0.0024	0.0091	1330-20-7	10/12/10 19:49	
Total VOA	8260	mg/kg	0.00055 U	1	0.00055	0.004		10/12/10 19:49	

SunLabs Project Number

101011.02

Cardno TBE, Inc.

Project Description

Manatee

October 25, 2010

SunLabs Sample Number

Sample Designation

110482

SS-4 .50'-2'

Matrix

Soil

Date Collected

10/11/10 11:56

Date Received

10/12/10 11:15

Parameters	Method	Units	Results	Dil Facto	MDL	RL	CAS Number	Date/Time Analyzed	Date/Tim Prep
Florida Petroleum Range Orga	nics(C8-C40)								
Date Extracted			10/14/10						10/14/10 16:4
Date Analyzed			10/19/2010	1				10/19/10 14:24	
C-39 (40-140)	FLPRO	%	57	1		1		10/19/10 14:24	10/14/10 16:4
o-Terphenyl (40-140)	FLPRO	%	63	1		1	84-15-1	10/19/10 14:24	10/14/10 16:4
Petroleum Range Organics	FLPRO	mg/kg	6.6 I	1	4.9	20		10/19/10 14:24	10/14/10 16:4
Percent Moisture									
% Moisture	160.3M	%	3			0.1		10/14/10	
Polynuclear Aromatic Hydroca	rbons by Method 8270								
Date Extracted	3550		10/14/10						10/14/10 16:4
Date Analyzed	8270		10/15/2010	1				10/15/10 20:39	
Terphenyl-d14 (5-139)	8270	%	70	1			DEP-SURR-	10/15/10 20:39	10/14/10 16:4
Acenaphthene	8270	mg/kg	0.0022 U	1	0.0022	0.0087	83-32-9	10/15/10 20:39	10/14/10 16:4
Acenaphthylene	8270	mg/kg	0.0023 U	1	0.0023	0.0091	208-96-8	10/15/10 20:39	10/14/10 16:4
Anthracene	8270	mg/kg	0.0018 U	1	0.0018	0.007	120-12-7	10/15/10 20:39	10/14/10 16:4
Benzo(a)anthracene	8270	mg/kg	0.0015 U	1	0.0015	0.0062	56-55-3	10/15/10 20:39	10/14/10 16:4
Benzo(a)pyrene	8270	mg/kg	0.0021 U	1	0.0021	0.0082	50-32-8	10/15/10 20:39	10/14/10 16:4
Benzo(b)fluoranthene	8270	mg/kg	0.0028 U	1	0.0028	0.011	205-99-2	10/15/10 20:39	10/14/10 16:4
Benzo(g,h,i)perylene	8270	mg/kg	0.0071 U	1	0.0071	0.028	191-24-2	10/15/10 20:39	10/14/10 16:4
Benzo(k)fluoranthene	8270	mg/kg	0.002 U	1	0.002	0.0078	207-08-9	10/15/10 20:39	10/14/10 16:4
Chrysene	8270	mg/kg	0.0012 U	1	0.0012	0.0049	218-01-9	10/15/10 20:39	10/14/10 16:4
Dibenzo(a,h)anthracene	8270	mg/kg	0.0075 U	1	0.0075	0.03	53-70-3	10/15/10 20:39	10/14/10 16:4
Fluoranthene	8270	mg/kg	0.0024 U	1	0.0024	0.0095	206-44-0	10/15/10 20:39	10/14/10 16:4
Fluorene	8270	mg/kg	0.0019 U	1	0.0019	0.0074	86-73-7	10/15/10 20:39	10/14/10 16:4
Indeno(1,2,3-cd)pyrene	8270	mg/kg	0.0074 U	1	0.0074	0.03	193-39-5	10/15/10 20:39	10/14/10 16:4
1-Methylnaphthalene	8270	mg/kg	0.0034 U	1	0.0034	0.014	90-12-0	10/15/10 20:39	10/14/10 16:4
2-Methylnaphthalene	8270	mg/kg	0.0029 U	1	0.0029	0.012	91-57-6	10/15/10 20:39	10/14/10 16:4
Naphthalene	8270	mg/kg	0.0057 U	1	0.0057	0.023	91-20-3	10/15/10 20:39	10/14/10 16:4
Phenanthrene	8270	mg/kg	0.0029 U	1	0.0029	0.012	85-01-8	10/15/10 20:39	10/14/10 16:4
Pyrene	8270	mg/kg	0.0071 U	1	0.0071	0.029	129-00-0	10/15/10 20:39	10/14/10 16:4
Volatile Organic Compounds (I	BTEX/MTBE)								
Date Analyzed			10/12/10	1				10/12/10 20:14	
Toluene-d8 (49-134)	8260	%	101	1			DEP-SURR-	10/12/10 20:14	
Benzene	8260	mg/kg	0.00056 U	1	0.00056	0.004	71-43-2	10/12/10 20:14	
Ethylbenzene	8260	mg/kg	0.00064 U	1	0.00064	0.004	100-41-4	10/12/10 20:14	
MTBE	8260	mg/kg	0.0016 U	1	0.0016	0.0064	1634-04-4	10/12/10 20:14	
Toluene	8260	mg/kg	0.0024 U	1	0.0024	0.0072	108-88-3	10/12/10 20:14	
Total Xylenes	8260	mg/kg	0.0024 U	1	0.0024	0.0093	1330-20-7	10/12/10 20:14	
Total VOA	8260	mg/kg	0.00056 U	1	0.00056	0.004		10/12/10 20:14	

SunLabs Project Number

Cardno TBE, Inc.

Project Description

101011.02 Pr

Manatee

October 25, 2010

SunLabs Sample Number Sample Designation 110483

SS-5 .50'-2'

Matrix

Soil

Date Collected

10/11/10 13:20

Date Received

10/12/10 11:15

Parameters	Method	Units	Results	Dil Facto	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	lethod 8081								
Date Extracted	3545a		10/12/10						10/12/10 17:15
Date Analyzed			10/21/2010	1				10/21/10 08:57	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	70	1		1.1	DEP-SURR-	10/21/10 08:57	10/12/10 17:15
Aldrin	8081	mg/kg	0.0024 U	1	0.0024	0.0096	309-00-2	10/21/10 08:57	10/12/10 17:15
a-BHC	8081	mg/kg	0.0032 U	1	0.0032	0.013	319-84-6	10/21/10 08:57	10/12/10 17:15
b-BHC	8081	mg/kg	0.002 U	1	0.002	0.0078	319-85-7	10/21/10 08:57	10/12/10 17:15
d-BHC	8081	mg/kg	0.0024 U	1	0.0024	0.0096	319-86-8	10/21/10 08:57	10/12/10 17:15
a-Chlordane	8081	mg/kg	0.0025 U	1	0.0025	0.01	5103-71-9	10/21/10 08:57	10/12/10 17:15
g-Chlordane	8081	mg/kg	0.0018 U	1	0.0018	0.0074	5103-74-2	10/21/10 08:57	10/12/10 17:15
4,4'-DDD	8081	mg/kg	0.002 U	1	0.002	0.0078	72-54-8	10/21/10 08:57	10/12/10 17:15
4,4'-DDE	8081	mg/kg	0.0018 U	1	0.0018	0.0074	72-55-9	10/21/10 08:57	10/12/10 17:15
4,4'-DDT	8081	mg/kg	0.0007 U	1	0.0007	0.0028	50-29-3	10/21/10 08:57	10/12/10 17:15
Dieldrin	8081	mg/kg	0.0017 U	1	0.0017	0.007	60-57-1	10/21/10 08:57	10/12/10 17:15
Endosulfan I	8081	mg/kg	0.0017 U	1	0.0017	0.007	959-98-8	10/21/10 08:57	10/12/10 17:15
Endosulfan II	8081	mg/kg	0.0017 U	1	0.0017	0.007	33213-65-9	10/21/10 08:57	10/12/10 17:15
Endosulfan sulfate	8081	mg/kg	0.0013 U	1	0.0013	0.0052	1031-07-8	10/21/10 08:57	10/12/10 17:15
Endrin	8081	mg/kg	0.0018 U	1	0.0018	0.0074	72-20-8	10/21/10 08:57	10/12/10 17:15
Endrin aldehyde	8081	mg/kg	0.0017 U	1	0.0017	0.007	7421-93-4	10/21/10 08:57	10/12/10 17:15
Endrin ketone	8081	mg/kg	0.0014 U	1	0.0014	0.0057	53494-70-5	10/21/10 08:57	10/12/10 17:15
Heptachlor	8081	mg/kg	0.0021 U	1	0.0021	0.0083	76-44-8	10/21/10 08:57	10/12/10 17:15
Heptachlor epoxide	8081	mg/kg	0.0018 U	1	0.0018	0.0074	1024-57-3	10/21/10 08:57	10/12/10 17:15
Lindane	8081	mg/kg	0.00065 U	1	0.00065	0.0027	58-89-9	10/21/10 08:57	10/12/10 17:15
Methoxychlor	8081	mg/kg	0.0021 U	1	0.0021	0.0083	72-43-5	10/21/10 08:57	10/12/10 17:15
Mirex	8081	mg/kg	0.007 U	1	0.007	0.028	2385-85-5	10/21/10 08:57	10/12/10 17:15
Toxaphene	8081	mg/kg	0.08 U	1	0.08	0.33	8001-35-2	10/21/10 08:57	10/12/10 17:15
Chlorinated Herbicides by EPA 8321									
Date Extracted	8321		10/14/10						10/14/10 11:30
Date Analyzed			10/19/10	1				10/19/10 00:52	
2,4-Dichlorophenylacetic acid (5-111)	8321	%	78	1		1	DEP-SURR-	10/19/10 00:52	10/14/10 11:30
2,4-D	8321	ug/kg	35 U	1	35	140	94-75-7	10/19/10 00:52	10/14/10 11:30
2,4-DB	8321	ug/kg	9.6 U	1	9.6	38	94-82-6	10/19/10 00:52	10/14/10 11:30
Dicamba	8321	ug/kg	22 U	1	22	87	1918-00-9	10/19/10 00:52	10/14/10 11:30
Dichlorprop	8321	ug/kg	7.7 U	1	7.7	30	120-36-5	10/19/10 00:52	10/14/10 11:30
Dinoseb	8321	ug/kg	2.5 U	1	2.5	10	88-85-7	10/19/10 00:52	10/14/10 11:30
MCPA	8321	ug/kg	3.2 U	1	3.2	13	94-74-6	10/19/10 00:52	10/14/10 11:30
MCPP	8321	ug/kg	9.7 U	1	9.7	39	93-65-2	10/19/10 00:52	10/14/10 11:30
Picloram	8321	ug/kg	24 U	1	24	96	1918-02-1	10/19/10 00:52	10/14/10 11:30
2,4,5-T	8321	ug/kg	7.7 U	1	7.7	30	93-76-5	10/19/10 00:52	10/14/10 11:30
2,4,5-TP	8321	ug/kg	7.8 U	1	7.8	32	93-72-1	10/19/10 00:52	10/14/10 11:20

SunLabs Project Number

101011.02

Cardno TBE, Inc.

Project Description

Manatee

October 25, 2010

SunLabs Sample Number

110483

Sample Designation

SS-5 .50'-2'

Matrix

Soil

Date Collected

10/11/10 13:20

Date Received

10/12/10 11:15

Parameters	Method	Units	Results	Dil	MDL	RL	CAS	Date/Time	Date/Tim
Tutumeters	Hethou	omo	Kessies	Factor	200	14.	Number	Analyzed	Prep
Florida Petroleum Range Organ	ics(C8-C40)								
Date Extracted			10/14/10						10/14/10 16:4
Date Analyzed			10/18/10	1				10/18/10 19:42	
C-39 (40-140)	FLPRO	%	50	1		1.1		10/18/10 19:42	10/14/10 16:4
o-Terphenyl (40-140)	FLPRO	%	74	1		1.1	84-15-1	10/18/10 19:42	10/14/10 16:4
Petroleum Range Organics	FLPRO	mg/kg	6.1 I	1	5.2	21		10/18/10 19:42	10/14/10 16:4
Percent Moisture									
% Moisture	160.3M	%	8			0.11		10/14/10	
Polynuclear Aromatic Hydrocar	bons by Method 8270	<u>)</u>							
Date Extracted	3550		10/14/10						10/14/10 16:4
Date Analyzed	8270		10/15/2010	1				10/15/10 20:56	
Terphenyl-d14 (5-139)	8270	%	71	1			DEP-SURR-	10/15/10 20:56	10/14/10 16:4
Acenaphthene	8270	mg/kg	0.0023 U	1	0.0023	0.0091	83-32-9	10/15/10 20:56	10/14/10 16:4
Acenaphthylene	8270	mg/kg	0.0024 U	1	0.0024	0.0096	208-96-8	10/15/10 20:56	10/14/10 16:4
Anthracene	8270	mg/kg	0.0018 U	1	0.0018	0.0074	120-12-7	10/15/10 20:56	10/14/10 16:4
Benzo(a)anthracene	8270	mg/kg	0.0016 U	1	0.0016	0.0065	56-55-3	10/15/10 20:56	10/14/10 16:4
Benzo(a)pyrene	8270	mg/kg	0.0022 U	1	0.0022	0.0087	50-32-8	10/15/10 20:56	10/14/10 16:4
Benzo(b)fluoranthene	8270	mg/kg	0.0029 U	1	0.0029	0.012	205-99-2	10/15/10 20:56	10/14/10 16:4
Benzo(g,h,i)perylene	8270	mg/kg	0.0075 U	1	0.0075	0.03	191-24-2	10/15/10 20:56	10/14/10 16:4
Benzo(k)fluoranthene	8270	mg/kg	0.0021 U	1	0.0021	0.0083	207-08-9	10/15/10 20:56	10/14/10 16:4
Chrysene	8270	mg/kg	0.0013 U	1	0.0013	0.0052	218-01-9	10/15/10 20:56	10/14/10 16:4
Dibenzo(a,h)anthracene	8270	mg/kg	0.0079 U	1	0.0079	0.032	53-70-3	10/15/10 20:56	10/14/10 16:4
Fluoranthene	8270	mg/kg	0.0025 U	1	0.0025	0.01	206-44-0	10/15/10 20:56	10/14/10 16:4
Fluorene	8270	mg/kg	0.002 U	1	0.002	0.0078	86-73-7	10/15/10 20:56	10/14/10 16:4
Indeno(1,2,3-cd)pyrene	8270	mg/kg	0.0078 U	1	0.0078	0.031	193-39-5	10/15/10 20:56	10/14/10 16:4
1-Methylnaphthalene	8270	mg/kg	0.0036 U	1	0.0036	0.014	90-12-0	10/15/10 20:56	10/14/10 16:4
2-Methylnaphthalene	8270	mg/kg	0.003 U	1	0.003	0.012	91-57-6	10/15/10 20:56	10/14/10 16:4
Naphthalene	8270	mg/kg	0.006 U	1	0.006	0.024	91-20-3	10/15/10 20:56	10/14/10 16:4
Phenanthrene	8270	mg/kg	0.003 U	1	0.003	0.012	85-01-8	10/15/10 20:56	10/14/10 16:4
Pyrene	8270	mg/kg	0.0075 U	1	0.0075	0.03	129-00-0	10/15/10 20:56	10/14/10 16:4
Volatile Organic Compounds (B)	TEX/MTBE)								
Date Analyzed			10/12/10	1				10/12/10 20:38	
Toluene-d8 (49-134)	8260	%	99	1			DEP-SURR-	10/12/10 20:38	
Benzene	8260	mg/kg	0.00076 U	1	0.00076	0.0054	71-43-2	10/12/10 20:38	
Ethylbenzene	8260	mg/kg	0.00087 U	1	0.00087	0.0054	100-41-4	10/12/10 20:38	
мтве	8260	mg/kg	0.0022 U	1	0.0022	0.0087	1634-04-4	10/12/10 20:38	
Toluene	8260	mg/kg	0.0033 U	1	0.0033	0.0098	108-88-3	10/12/10 20:38	
Total Xylenes	8260	mg/kg	0.0033 U	1	0.0033	0.013	1330-20-7	10/12/10 20:38	
Total VOA	8260	mg/kg	0.00076 U	1	0.00076	0.0054		10/12/10 20:38	

SunLabs Project Number

Cardno TBE, Inc.

101011.02

Project Description

Manatee

October 25, 2010

	Footnotes
ſ	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
J	The reported value failed to meet the established quality control criteria for either precision or accuracy(see cover letter for explanation)
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
MB	Method Blank
MS	Matrix Spike
MSD	Matrix Spike Duplicate
NA	Sample not analyzed at client's request.
P	SunLabs is not currently NELAC certified for this analyte.
Q	Sample held beyond the accepted holding time.
RL	RL(reporting limit) = PQL(practical quantitation limit).
RPD	Relative Percent Difference
U	Compound was analyzed for but not detected.
V	Indicates that the analyte was detected in both the sample and the associated method blank.

Project Number

Cardno TBE, Inc.

101011.02

Project Description Manatee

October 25, 2010

Batch No:

D6226

Test:

Metals by EPA Method 6010

Associated Samples

110331, 110332, 110333

TestCode: 6010-L-ug/l

Compound	В	lank		LCS	LCS	LCSD	RPD	QC	Limits	MS	MS	MSD	RPD	QC	Limits	Dup	Qualifiers
				Spike	%Rec	%Rec	%	RPD	LCS	Spike	%Rec	%Rec	%	RPD	MS	RPD	
Parent Sample Number			_	-							110331	110331					
Arsenic	4.8	U	ug/L	1000	110	112	2	20	80-120	1000	110	113	3	20	75-125		
Lead	4.4	U	ug/L	1000	109	107	2	20	80-120	1000	104	108	4	20	75-125		
Phosphorous	15	U	ug/L	10.0	106	102	4	20	80-120	10.0	98	102	4	20	75-125		
Sodium	38	I	ug/L	10.0	101	101	0	20	80-120	10.0	86	94	9	20	75-125		

Batch No:

Test:

D6248

Volatile Organic Compounds By EPA Method 8260

Associated Samples 110331, 110332, 110478, 110479, 110480

TestCode:

Compound	Blan	k	LCS Spike	LCS %Rec	LCSD %Rec	RPD %	QC RPD	Limits LCS	MS Spike	MS MSD %Rec %Rec	RPD	QC Limits RPD MS	Dup RPD	Qualifiers
Parent Sample Number	W. 19. 19. L.									110479			110480	
Date Analyzed	10/12/10 U													
4-Bromofluorobenzene (66-125)	109	%												
Dibromofluoromethane (61-137)	93	96												
Toluene-d8 (69-128)	107	%												
Acetone	0.60 U	ug/L	50	113	113	0	14	78-125	50	131		67-136	0	
Benzene	0.10 U	ug/L	50	109	117	7	20	73-120	50	109		62-121	0	
Bromochloromethane	0.20 U	ug/L	50	109	118	8	10	74-125	50	111		79-122	0	
Bromodichloromethane	0.10 U	ug/L	50	102	113	10	20	72-118	50	105		69-129	0	
Bromoform	0.30 U	ug/L	50	99	101	2	13	53-131	50	93		35-149	0	
Bromomethane	0.40 U	ug/L	50	110	119	8	20	80-125	50	121		70-132	0	
2-Butanone	0.40 U	ug/L	50	114	116	2	20	59-126	50	117		64-135	6	
Carbon disulfide	0.25 U	ug/L	50	91	96	5	9	74-127	50	98		65-132	0	
Carbon tetrachloride	0.20 U	ug/L	50	101	109	8	15	81-124	50	103		75-127	0	
Chlorobenzene	0.20 U	ug/L	50	108	117	8	8	79-123	50	121 *		67-116	0	
Chloroethane	0.30 U	ug/L	50	109	119	9	20	78-127	50	123		74-133	0	
Chloroform	0.10 U	ug/L	50	107	115	7	20	68-124	50	114		75-126	0	
Chloromethane	0.10 U	ug/L	50	116	123	6	20	75-128	50	112		77-117	0	
Dibromochloromethane	0.15 U	ug/L	50	104	111	7	20	72-119	50	108		61-132	0	
Dibromomethane	0.10 U	ug/L	50	113	119	5	14	71-126	50	116		72-129	0	
1,2-Dichlorobenzene	0.20 U	ug/L	50	110	113	3	20	75-120	50	110		75-117	0	
1,3-Dichlorobenzene	0.30 U	ug/L	50	110	121	10	10	78-121	50	117		74-121	0	
1,4-Dichlorobenzene	0.40 U	ug/L	50	113	119	5	12	59-129	50	112		75-115	0	
Dichlorodifluoromethane	0.30 U	ug/L	50	112	112	0	17	55-137	50	118		73-119	0	
1,1-Dichloroethane	0.10 U	ug/L	50	119	127 *	7	12	72-125	50	126		71-130	0	
1,2-Dichloroethane	0.20 U	ug/L	50	116	120	3	8	72-125	50	121		74-131	0	
1,1-Dichloroethene	0.15 U	ug/L	50	108	116	7	13	85-121	50	114		63-124	0	
cis-1,2-Dichloroethene	0.20 U	ug/L	50	116	125	7	20	64-128	50	120		65-132	0	
trans-1,2-Dichloroethene	0.20 U	ug/L	50	113	120	6	20	74-123	50	118		71-132	0	
1,2-Dichloropropane	0,10 U	ug/L	50	120	125	4	20	71-126	50	128 *		75-123	0	
1,3-Dichloropropene	0.20 U	ug/L	50	110	119	8	20	69-122	50	111		21-156	0	
Ethylbenzene	0.20 U	ug/L	50	97	96	1	17	59-133	50	114		50-138	0	
2-Hexanone	0.20 U	ug/L	50	131	128	2	10	46-145	50	150 *		73-131	0	
4-Methyl-2-pentanone	0.20 U	ug/L	50	126	126	0	7	48-141	50	146 *		69-135	0	
MTBE	0.05 U	ug/L	50	106	117	10	20	71-120	50	109		68-135	0	
isopropylbenzene	0.20 U	ug/L	50	108	110	2	20	78-128	50	117		59-139	0	
Styrene	0.10 U	ug/L	50	119	115	3	20	79-135	50	123		45-142	0	
1,1,2,2-Tetrachloroethane	0.20 U	ug/L	50	122	121	1	20	59-132	50	118		74-123	0	
Tetrachloroethene	0.25 U	ug/L	50	110	117	6	11	78-120	50	115		0-183	0	
Toluene	0.30 U	ug/L	50	116	122	5	19	66-129	50	121		62-122	0	
1,1,1-Trichloroethane	0.10 U	ug/L	50	113	119	5	20	79-121	50	119*		84-118	0	

Project Number

Cardno TBE, Inc.

101011.02

Project Description

Manatee

October 25, 2010

3a	Fa	h	M	0.	
a	11,		IV	U.	

Test:

D6248

Volatile Organic Compounds By EPA Method 8260

Associated Samples

110331, 110332, 110478, 110479, 110480

Compound	Blan	k	LCS Spike	LCS	LCSD %Rec	RPD	QC	lmits	MS Spike	MS %Rec	MSD %Rec	RPD	QC Limits	Dup	Qualifiers
			Брікс	7011.00	- Junea		KPD	LCS					KPD M3		_
Parent Sample Number										110479			176.16.45	110480	
1,1,2-Trichloroethane	0.70 U	ug/L	50	114	120	5	9	59-133	50	124			49-143	0	
Trichloroethene	0.20 U	ug/L	50	117	122	4	20	70-127	50	123			19-158	0	
Trichlorofluoromethane	0.20 U	ug/L	50	102	107	5	20	79-127	50	109			66-122	0	
1,2,4-Trimethylbenzene	0.20 U	ug/L	50	112	117	4	8	73-128	50	116			55-139	0	
1,3,5-Trimethylbenzene	0.20 U	ug/L	50	111	115	4	18	80-124	50	114			59-125	0	
Vinyl acetate	0.25 U	ug/L	50	119	122	2	20	64-130	50	121			39-144	0	
Vinyl chloride	0.09 U	ug/L	50	110	124	12	20	73-129	50	123			72-131	0	
Total Xylenes	0.40 U	ug/L	50	116	121	4	20	68-129	50	116			65-129	0	

Batch No:

D6256

Organochlorine Pesticides by EPA Method 8081

Associated Samples 110335, 110483

Test: TestCode: 8081-s1 RPD --- QC Limits---Qualifiers Blank LCS LCSD MS MS MSD RPD ---QC Limits--- Dup

Compound	,	Mail		Spike	%Rec	%Rec	%	RPD	LCS	Spike	%Rec	%Rec	%	RPD	MS	RPD	Quantities
Parent Sample Number		-									110293	110293				-	
Date Analyzed	0/18/2010	U															
2,4,5,6-tetrachloro-m-xylene (16-141)	61		%														
Aldrin	0.0022	U	mg/kg	100	62	59	5	13	35-130	100	75	67	11	17	37-148		
a-BHC	0.0029	U	mg/kg	100	55	53	4	20	27-136	100	71	62	14	20	30-156		
b-BHC	0.0018	U	mg/kg	100	59	56	5	17	24-131	100	76	69	10	33	34-142		
d-BHC	0.0022	U	mg/kg	100	50	47	6	19	24-110	100	66	55	18	22	28-122		
a-Chlordane	0.0023	U	mg/kg	100	55	53	4	16	37-115	100	65	57	13	20	40-143		
g-Chlordane	0.0017	U	mg/kg	100	61	58	5	19	42-118	100	71	62	14	15	52-125		
4,4'-DDD	0.0018	U	mg/kg	100	63	60	5	20	50-113	100	75	66	13	34	47-141		
4,4'-DDE	0.0017	U	mg/kg	100	60	58	3	19	45-105	100	71	62	14	20	39-133		
4,4'-DDT	0.00064	U	mg/kg	100	64	63	2	17	33-116	100	79	69	14	18	29-139		
Dieldrin	0.0016	U	mg/kg	100	60	58	3	19	33-116	100	67	62	8	20	0-176		
Endosulfan I	0.0016	U	mg/kg	100	55	55	0	16	34-125	100	70	61	14	24	46-140		
Endosulfan II	0.0016	U	mg/kg	100	54	53	2	19	48-89	100	70	62	12	20	38-125		
Endosulfan sulfate	0.0012	U	mg/kg	100	53	51	4	19	43-105	100	64	58	10	19	35-131		
Endrin	0.0017	U	mg/kg	100	63	60	5	21	39-120	100	76	69	10	14	48-137		
Endrin aldehyde	0.0016	U	mg/kg	100	43	42	2	19	25-80	100	66	63	5	19	31-111		
Endrin ketone	0.0013	U	mg/kg	100	71	68	4	19	30-119	100	81	76	6	16	26-143		
Heptachlor	0.0019	U	mg/kg	100	53	50	6	17	35-117	100	66	57	15	15	31-139		
Heptachlor epoxide	0.0017	U	mg/kg	100	63	60	5	17	42-115	100	71	65	9	12	44-126		
Lindane	0,0006	U	mg/kg	100	56	54	4	16	39-112	100	69	60	14	18	39-126		
Methoxychlor	0.0019	U	mg/kg	100	67	65	3	16	31-130	100	81	75	8	25	25-149		
Mirex	0.0064	U	mg/kg														
Toxaphene	0.074	U	mg/kg														

Batch No:

Test:

D6265

Volatile Organic Compounds (BTEX/MTBE)

Associated Samples

110334, 110335, 110336, 110481, 110482, 110483

BTEX-s TestCode: LCSD Qualifiers RPD Dup ---QC Limits---MSD --- QC Limits---Compound Blank LCS LCS MS %Rec %Rec RPD %Rec Spike Spike %Rec RPD RPD MS Parent Sample Number Toluene-d8 (49-134) 99 Benzene 0.0007 U mg/kg 100 100 53 54-145 65-125 100 97 93 34 Ethylbenzene 0.0008 U mg/kg 22 45-146 MTBE 0.002 U mg/kg 100 98 101

SunLabs, Inc.

5460 Beaumont Center Blvd., Suite 520 Tampa, Florida 33634

Page QC-2 of 7

Phone: 813-881-9401 Fax: 813-354-4661 Email: Info@SunLabsInc.com

Project Number

Cardno TBE, Inc.

101011.02

Project Description

Manatee

October 25, 2010

Batch No:	D6265											ted Sam		136 110	0481, 110	487 11	0483
Test:	Volatile Org	ganic Con	pounds	(BTEX	MTBE	Ξ)				1	110334	, 11033.	, 1103	,50, 110	701, 110	102, 11	0.103
TestCode:	BTEX-s																
Compound		Blar	ık	LCS Spike		LCSD %Rec	RPD %	QC RPD	Limits LCS	MS Spike	MS %Rec	MSD %Rec	RPD %	QC RPD	Limits MS	Dup RPD	Qualifiers
Parent Sample Number			Samo	***	400		-	24	20.472								
Toluene		0.003 U	mg/kg	100	100	97	3	21	28-172						-		
Total Xylenes		0.003 U	mg/kg	100	103	100	3	32	66-142								
Total VOA		0.0007 U	mg/kg		_						_		_				
Batch No:	D6270											ted Sam		33 110	0478, 110	479 11	0480
Test:	1,2-Dibrom	oethane t	y EPA	Method	8011						110331	, 11033.	, 1103	55, 110	3170, 110	1, 2, 11	0100
TestCode:	8011-w																
Compound	201111	Blar	ı	LCS	LCS	LCSD	RPD	00	Limits	MS	MS	MSD	RPD	00	Limits	Dup	Qualifier
compound		Diai		Spike		%Rec	%	RPD	LCS			%Rec	%	RPD	MS	RPD	
Parent Sample Number		Van area									110480	110480					
Date Extracted		10/14/10															_
Date Analyzed		10/14/10						54	*****						NE -ES		
1,2-Dibromoethane		0.006 U	ug/L	0.25	95	98	3	20	60-140	0.25	96	94	2	59	35-152		
Batch No:	D6272											ted Sam		22			
Test:	Polynuclea	r Aromatic	Hydro	carbons	by Me	ethod 8	3270			1	110331	, 110332	, 1103	23			
TestCode:	8270PAH-w		V 640.1														
Compound	SET OF THE T	Blar	k	LCS Spike		LCSD %Rec	RPD %	QC RPD	Limits LCS	MS Spike	MS %Rec	MSD %Rec	RPD %	QC RPD	Limits MS	Dup RPD	Qualifier
December of the section						1000	-	10.0			110317	110317					
Parent Sample Number Terphenyl-d14 (3-130)		79	%								110317	110317					
Acenaphthene		0.028 U	ug/L	1000	77	75	3	20	48-87	1000	83	80	4	49	14-113		
Acenaphthylene		0.022 U	ug/L	1000	68	73	7	16	31-109	1000	77	79	3	35	10-112		
Anthracene		0.022 U	ug/L	1000	80	82	2	14	53-90	1000	79	79	0	42	20-118		
Benzo(a)anthracene		0.011 U	ug/L	1000	85	88	3	20	53-111	1000	79	80	1	66	12-131	-	
Benzo(a)pyrene		0.009 U	ug/L	1000	64	65	2	14	27-104	1000	59	52	13	46	6-101		
Benzo(b)fluoranthene		0.007 U	ug/L	1000	61	61	0	43	7-143	1000	59	59	0	34	3-113		
Benzo(g,h,i)perylene		0.012 U	ug/L	1000	61	66	8	20	32-112	1000	49	54	10	37	2-114		
Benzo(k)fluoranthene		0.012 U	ug/L	1000	60	65	8	30	24-124	1000	63	56	12	29	15-107	-	
		0.017 U	ug/L	1000	79	76	4	20	63-99	1000	76	73	4	28	27-121		
Chrysene			ug/L	1000	61	63	3	11	21-111	1000	56	51	9	43	8-106		
Dibenzo(a,h)anthracene		0.011 U 0.020 U	ug/L ug/L	1000	65	69	6	20	46-110	1000	67	72	7	42	18-132		
Fluoranthene Fluorene		0.020 U	ug/L	1000	72	73	1	20	46-99	1000	77	76	1	52	15-115		
Indeno(1,2,3-cd)pyrene		0.030 U	ug/L	1000	67	72	7	20	43-110	1000	56	57	2	47	4-116		
		0.011 U		1000	56	55	2	20	21-115	1000	63	63	0	37	0-128		
1-Methylnaphthalene		0.028 U		1000	56	55	2	20	26-106	1000	67	68	1	33	0-126		
2-Methylnaphthalene		0.025 U		1000	70	70	0	16	40-85	1000	74	74	0	46	0-154		
Naphthalene Phonosthropo		0.031 U	-	1000	72	76	5	20	51-95	1000	75	77	3	40	20-118		
Phenanthrene		0.026 U		1000	66	62	6	10	46-107	1000	63	63	0	34	18-128		
Pyrene		0.022 0	ug/L	1000	00	02	0	10	40-107	1000	03	03	0	27	10 120		
Batch No:	D6278			المام معام								ted Sam					
Test:	Chlorinated	l Herbicid	es by El	PA 832							. 10333	, 110 10.					
TestCode:	8321-s-CAS																
Compound		Blan	k	LCS Spike		LCSD %Rec	RPD	QC RPD	Limits LCS	MS Spike	MS %Rec	MSD %Rec	RPD %	QC RPD	Limits MS	Dup RPD	Qualifiers
								-845 E	9.5					7	9/04/		
Parent Camela Historia											110335	110335					
	acid (5-111)	R5	%								110335	110335					
Parent Sample Number 2,4-Dichlorophenylacetic 2,4-D	acid (5-111)	85 32 U	% ug/kg	5.00	82	84	2	14	62-100	5.00	110335 89	110335 81	9	64	27-118		

Project Number

Cardno TBE, Inc.

101011.02

Project Description

Manatee

October 25, 2010

Batch No:	D6278											ed Sam , 11048					
Test:	Chlorinated Herbid	cide	es by El	PA 832	1					3	110222	, 11040.	,				
TestCode:	8321-s-CAS																
Compound	E	Blan	k	LCS Spike	LCS %Rec	LCSD %Rec	RPD %	QC RPD	Limits LCS	MS Spike	MS %Rec	MSD %Rec	RPD %	QC RPD	Limits MS	Dup RPD	Qualifier
Parent Sample Number									_		110335	110335					
Dicamba	20	U	ug/kg	5.00	112	112	0	10	73-114	5.00	103	90	13	35	32-117		
Dichlorprop	7.1	Ü	ug/kg	5.00	85	88	3	10	70-94	5.00	91	85	7	46	44-106		
Dinoseb	2.3	U	ug/kg	5.00	72	76	5	10	60-86	5.00	73	71	3	34	25-89		
MCPA	2.9	U	ug/kg	5.00	83	86	4	10	66-98	5.00	88	80	10	48	36-105		
MCPP	8.9	U	ug/kg	5.00	83	86	4	14	66-94	5.00	85	79	7	49	19-127		
Picloram	22	U	ug/kg	5.00	85	87	2	39	24-113	5.00	96	95	1	36	9-109		
2,4,5-T	7.1	U	ug/kg	5.00	83	86	4	11	67-98	5.00	85	76	11	48	34-106		
2,4,5-TP	7.2	U	ug/kg	5.00	86	84	2	6	58-94	5.00	86	78	10	31	19-109		
Batch No:	D6279									1.5		ed Sam		ar an	sist .vi	teo te	
Test:	Florida Petroleum	Ra	nge Or	ganics(C8-C4	0)				12	110334	11033	5, 1103	36, 110	0481, 110	482, 11	0483
TestCode:	FIPro-s																
Compound	ı	Blan	k	LCS Spike		LCSD %Rec	RPD %	QC RPD	Limits	MS Spike	MS %Rec	MSD %Rec	RPD %	QC RPD	Limits MS	Dup RPD	Qualifier
Parent Sample Number										-	110481	110481					
Date Extracted	10/14/10	U															
Date Analyzed	10/18/10	U															
C-39 (40-140)	46		%														
o-Terphenyl (40-140)	69		%														
	0,5		70											6,000			
			mg/kg	850	68	72	6	25	63-143	850	67	63	6	25	60-140		
Petroleum Range Organ Batch No:	D6280	U	mg/kg					25	63-143	,	Associat	ed Sam	ples		60-140 0481, 110	482, 11	0483
Petroleum Range Organ Batch No: Test:	ics 4.8	U	mg/kg					25	63-143	,	Associat	ed Sam	ples			482, 11	0483
Petroleum Range Organ Batch No: Test: TestCode:	D6280 Polynuclear Aroma	U	mg/kg Hydrod		by Me				63-143 Limits LCS	MS	Associat	ed Sam 11033!	ples	336, 110		482, 11 Dup RPD	0483 Qualifier
Petroleum Range Organ Batch No: Test: TestCode: Compound	D6280 Polynuclear Aroma	u atic	mg/kg Hydrod	arbons	by Me	ethod 8	3270 RPD	QC	Limits	MS Spike	Associat 110334 MS	ed Sam 11033!	ples 5, 1103 RPD	336, 110 Qc	0481, 110 Limits	Dup	
Petroleum Range Organ Batch No: Test: TestCode: Compound Parent Sample Number	D6280 Polynuclear Aroma	u atic	mg/kg Hydrod	arbons	by Me	ethod 8	3270 RPD	QC	Limits	MS Spike	Associat 110334 MS %Rec	MSD %Rec	ples 5, 1103 RPD	336, 110 Qc	0481, 110 Limits	Dup	
Petroleum Range Organ Batch No: Test: Test: Compound Parent Sample Number Date Analyzed	D6280 Polynuclear Aroma 8270PAH-s	u atic	mg/kg Hydrod	arbons	by Me	ethod 8	3270 RPD	QC	Limits	MS Spike	Associat 110334 MS %Rec	MSD %Rec	ples 5, 1103 RPD %	336, 110 Qc	0481, 110 Limits	Dup	
Petroleum Range Organ Batch No: Test: Test: Compound Parent Sample Number Date Analyzed Terphenyl-d14 (5-139)	D6280 Polynuclear Aroma 8270PAH-s E	u atic	mg/kg Hydroc k	arbons	by Me	ethod 8	3270 RPD %	QC RPD	Limits LCS	MS Spike	Associat 10334 MS %Rec 110481	ed Sam. 11033! MSD %Rec 10481	ples 5, 1103 RPD %	QC RPD	0481, 110 Limits MS	Dup	
Petroleum Range Organ Batch No: Test: Test: Compound Parent Sample Number Date Analyzed Terphenyl-d14 (5-139) Acenaphthene	D6280 Polynuclear Aroma 8270PAH-s 10/15/10 68 0.0021 0.0022	u atic	mg/kg Hydroc k % mg/kg mg/kg	earbons LCS Spike	by Me	LCSD %Rec	3270 RPD %	QC RPD	Limits LCS 41-85 38-96	MS Spike	Associat 10334 MS %Rec 110481	MSD %Rec 10481	ples 5, 1103 RPD %	QC RPD	Limits MS 44-98 55-100	Dup	
Petroleum Range Organ Batch No: Test: Test: Compound Parent Sample Number Date Analyzed Terphenyl-d14 (5-139) Acenaphthene Acenaphthylene	D6280 Polynuclear Aroma 8270PAH-s 10/15/10 68 0.0021	u atic	mg/kg Hydroc k % mg/kg mg/kg mg/kg mg/kg	LCS Spike	by Me	LCSD %Rec	3270 RPD %	QC RPD 15 14 15	Limits LCS 41-85 38-96 49-90	MS Spike 1000 1000 1000	Associat 110334 MS %Rec 110481 66 62 71	MSD %Rec 10481	ples 5, 1103 RPD %	QC RPD	Limits MS 44-98 55-100 51-103	Dup	
Petroleum Range Organ Batch No: Test: Test: Compound Parent Sample Number Date Analyzed Terphenyl-d14 (5-139) Acenaphthene Acenaphthylene Anthracene	D6280 Polynuclear Aroma 8270PAH-s 10/15/10 68 0.0021 0.0022	u u u	mg/kg Hydroc k % mg/kg mg/kg	LCS Spike	by Me LCS %Rec	LCSD %Rec	8270 RPD %	QC RPD 15 14 15 20	Limits LCS 41-85 38-96 49-90 35-115	MS Spike 1000 1000 1000	Association 10334, MS %Rec 110481 66 62 71 79	MSD %Rec 10481 67 63 72 82	ples 5, 1103 RPD %	20 20 20 20 20	0481, 110 Limits MS 44-98 55-100 51-103 50-105	Dup	
Petroleum Range Organ Batch No: Test: Test: Compound Parent Sample Number Date Analyzed Terphenyl-d14 (5-139) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	D6280 Polynuclear Aroma 8270PAH-s 10/15/10 68 0.0021 0.0022 0.0017 0.0015 0.002	u atic	mg/kg Hydroc k % mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LCS Spike 1000 1000 1000 1000	by Me LCS %Rec	63 71 76 83 71	8270 RPD %	QC RPD 15 14 15 20	41-85 38-96 49-90 35-115 21-105	MS Spike 1000 1000 1000 1000	MS %Rec 110481 66 62 71 79 66	MSD %Rec 10481 67 63 72 82 72	ples 5, 1103 RPD %	20 20 20 20 30	0481, 110 Limits MS 44-98 55-100 51-103 50-105 5-110	Dup	
Petroleum Range Organ Batch No: Test: Test: TestCode: Compound Parent Sample Number Date Analyzed Terphenyl-d14 (5-139) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	D6280 Polynuclear Aroma 8270PAH-s 10/15/10 68 0.0021 0.0022 0.0017 0.0015 0.002 0.0027	u u u u u	mg/kg Hydroc k % mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1000 1000 1000 1000 1000	LCS %Rec 67 74 79 81 68 61	63 71 76 83 71 62	3270 RPD % 6 4 4 2 4 2	QC RPD 15 14 15 20 12 20	41-85 38-96 49-90 35-115 21-105 30-112	MS Spike 1000 1000 1000 1000 1000	MS %Rec 110481 66 62 71 79 66 60	MSD %Rec 10481 67 63 72 82 72 66	ples 5, 1103 RPD %	20 20 20 20 30 30	0481, 110 Limits MS 44-98 55-100 51-103 50-105 5-110 5-129	Dup	
Petroleum Range Organ Batch No: Test: Test: TestCode: Compound Parent Sample Number Date Analyzed Terphenyl-d14 (5-139) Acenaphthylene Acenaphthylene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)filuoranthene Benzo(g,h,i)perylene	10/15/10 68 0.0021 0.0022 0.0017 0.0025 0.0027 0.0026	u u u u u u u u u u u u u	mg/kg Hydrock Myg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1000 1000 1000 1000 1000 1000 1000	LCS %Rec 67 74 79 81 68 61 67	63 71 76 83 71 62 71	8270 RPD % 6 4 2 4 2 6	QC RPD 15 14 15 20 12 20 12	41-85 38-96 49-90 35-115 21-105 30-112 20-116	MS Spike 1000 1000 1000 1000 1000 1000 1000	MS %Rec 110481 66 62 71 79 66 60 66	MSD %Rec 10481 67 63 72 82 72 66 63	ples 5, 1103 RPD %	20 20 20 20 30 30 41	44-98 55-100 51-103 50-105 5-110 5-129 30-105	Dup	
Petroleum Range Organ Batch No: Test: Test: TestCode: Compound Parent Sample Number Date Analyzed Date Analyzed Acenaphthene Acenaphthene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene	10/15/10 10/10/15/	U U U U U U U U U U U U U U	mg/kg Hydroc k % mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1000 1000 1000 1000 1000 1000 1000 100	LCS %Rec 67 74 79 81 68 61 67 73	63 71 76 83 71 62 71 73	8270 RPD %	QC RPD 15 14 15 20 12 20 12 13	41-85 38-96 49-90 35-115 21-105 30-112 20-116 34-104	MS Spike 1000 1000 1000 1000 1000 1000 1000 1	MS %Rec 110481 66 62 71 79 66 60 66 68	MSD %Rec 10481 67 63 72 82 72 66 63 71	ples 5, 1103 RPD %	20 20 20 20 30 30 41 54	44-98 55-100 51-103 50-105 5-110 5-129 30-105 25-108	Dup	
Petroleum Range Organ Batch No: Test: Test: TestCode: Compound Parent Sample Number Date Analyzed Terphenyl-d14 (5-139) Acenaphthene Acenaphthene Banzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene	10/15/10 10/15/10 10/15/10 68 0.0021 0.0022 0.0017 0.0025 0.0027 0.0026 0.0027 0.0029 0.0019 0.0019	u Blan u u u u u u	mg/kg Hydroc k % mg/kg	1000 1000 1000 1000 1000 1000 1000 100	67 74 79 81 68 61 67 73 86	63 71 76 83 71 62 71 73	8PD %	15 14 15 20 12 20 12 13 21	41-85 38-96 49-90 35-115 21-105 30-112 20-116 34-104 52-99	MS Spike 1000 1000 1000 1000 1000 1000 1000 1	MS %Rec 110481 66 62 71 79 66 60 66 68 82	MSD %Rec 10481 67 63 72 82 72 66 63 71 82	ples 5, 1103 RPD %	20 20 20 20 30 30 41 54	44-98 55-100 51-103 50-105 5-110 5-129 30-105 25-108 53-100	Dup	
Petroleum Range Organ Batch No: Test: Test: TestCode: Compound Parent Sample Number Date Analyzed Terphenyl-d14 (5-139) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene	10/15/10 8270PAH-s 10/15/10 68 0.0021 0.0022 0.0017 0.0022 0.0027 0.0069 0.0019	u u u u u u u u u u u u u u u u	mg/kg Hydroc k % mg/kg	1000 1000 1000 1000 1000 1000 1000 100	67 74 79 81 68 61 67 73 86 77	63 71 76 83 71 62 71 73 85	8PD %	15 14 15 20 12 20 12 13 21 6	41-85 38-96 49-90 35-115 21-105 30-112 20-116 34-104 52-99 35-106	MS Spike 1000 1000 1000 1000 1000 1000 1000 10	MS %Rec 110481 66 62 71 79 66 60 66 68 82 70	MSD %Rec 10481 67 63 72 82 72 66 63 71 82 70	ples 55, 1103 RPP %	20 20 20 20 20 30 30 41 54 20 30	244-98 55-100 51-103 50-105 5-110 30-105 25-108 53-100 42-115	Dup	
Petroleum Range Organ Batch No: Test: Test: TestCode: Compound Parent Sample Number Date Analyzed Terphenyl-d14 (5-139) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	10/15/10 Polynuclear Aroma 8270PAH-s 10/15/10 68 0.0021 0.0022 0.0017 0.0022 0.0027 0.0069 0.0019 0.0012 0.0023	u u u u u u u u u u	mg/kg Hydroc k % mg/kg	1000 1000 1000 1000 1000 1000 1000 100	67 74 79 81 68 61 67 73 86 77	63 71 76 83 71 62 71 73 85 74	8PPD % 6 4 4 2 6 0 1 4 3	15 14 15 20 12 20 12 13 21 6	41-85 38-96 49-90 35-115 30-112 20-116 34-104 52-99 35-106 42-106	MS Spike 1000 1000 1000 1000 1000 1000 1000 10	Associate 110334, MS %Rec 110481 66 62 71 79 66 60 66 68 82 70 76	MSD %Rec 10481 67 63 72 82 72 66 63 71 82 70 74	ples 55, 1103 RPP %	20 20 20 20 30 30 41 54 20 30 35	244-98 44-98 55-100 51-103 50-105 5-110 5-129 30-105 25-108 53-100 42-115 21-149	Dup	
Petroleum Range Organ Batch No: Test: Test: TestCode: Compound Parent Sample Number Date Analyzed Terphenyl-d14 (5-139) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(c),hjanthracene Fluoranthene	10/15/10 Polynuclear Aroma 8270PAH-s 10/15/10 68 0.0021 0.0022 0.0017 0.0025 0.0027 0.0069 0.0019 0.0012 0.0073 0.0023 0.0018	u u u u u u u u u	mg/kg Hydroc k % mg/kg	1000 1000 1000 1000 1000 1000 1000 100	67 74 79 81 68 61 67 73 86 77	63 71 76 83 71 62 71 73 85	8270 RPD %	15 14 15 20 12 20 12 13 21 6 17	41-85 38-96 49-90 35-115 30-112 20-116 34-104 52-99 35-106 42-106 42-93	MS Spike 1000 1000 1000 1000 1000 1000 1000 10	Associate 110334, MS %Rec 110481 66 62 71 79 66 60 66 68 82 70 76 65	MSD %Rec 10481 67 63 72 82 72 66 63 71 82 70 74 69	ples 55, 1103 RPD %	20 20 20 20 30 30 41 54 20 30 35	10481, 110 Limits MS 44-98 55-100 51-103 50-105 5-110 5-129 30-105 25-108 53-100 42-115 21-149 50-106	Dup	
Petroleum Range Organ Batch No: Test: Test: TestCode: Compound Parent Sample Number Date Analyzed Terphenyl-d14 (5-139) Acenaphthene Acenaphthylene Anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Eluoranthene Eluoranthene	10/15/10 Polynuclear Aroma 8270PAH-s 10/15/10 68 0.0021 0.0012 0.0015 0.002 0.0017 0.0016 0.0029 0.0019 0.0019 0.0012 0.0018 0.0023 0.0018 0.0027	u u u u u u u u u u u u u u u u u u u	mg/kg Hydroc k % mg/kg	1000 1000 1000 1000 1000 1000 1000 100	67 74 79 81 68 61 67 73 86 77 75 66 77	63 71 76 83 71 62 71 73 85 74 77 66 75	8PPD % 6 4 4 2 4 2 6 0 1 4 3 0 3	15 14 15 20 12 20 12 13 21 6 17 17	41-85 38-96 49-90 35-115 21-105 30-112 20-116 34-104 52-99 35-106 42-106 42-93 30-113	1000 1000 1000 1000 1000 1000 1000 100	Associate 110334, WS %Rec 110481 66 62 71 79 66 60 66 68 82 70 76 65 66	MSD %Rec 10481 67 63 72 82 72 66 63 71 82 70 74 69 66	ples FPD % PPD % P	20 20 20 20 30 30 41 54 20 30 35 35	10481, 110 Limits MS 44-98 55-100 51-103 50-105 5-119 30-105 25-108 53-100 42-115 21-149 50-106 41-120	Dup	
Petroleum Range Organ Batch No: Test: Test: TestCode: Compound Parent Sample Number Date Analyzed Terphenyl-d14 (5-139) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	10/15/10 Polynuclear Aroma 8270PAH-s 10/15/10 68 0.0021 0.0012 0.0015 0.002 0.0017 0.0015 0.002 0.0019 0.0019 0.0012 0.0013 0.0023 0.0018 0.0023 0.0018 0.0072 0.0033	u u u u u u u u u u u u u u	mg/kg Hydroc k % mg/kg	1000 1000 1000 1000 1000 1000 1000 100	67 74 79 81 68 61 67 73 86 77 75 66 77	63 71 76 83 71 62 71 73 85 74 77 66 75	8PD % 6 4 4 2 4 2 6 0 1 4 3 0 3 2	15 14 15 20 12 20 12 13 21 6 17 17 13	41-85 38-96 49-90 35-115 21-105 30-112 20-116 34-104 52-99 35-106 42-106 42-93 30-113 41-89	1000 1000 1000 1000 1000 1000 1000 100	Associate 110334, WS %Rec 110481 66 62 71 79 66 60 66 68 82 70 76 65 66 54	MSD %Rec 10481 67 63 72 82 72 66 63 71 82 70 74 69 66 53	ples FPD % PPD % P	20 20 20 20 30 30 41 54 20 30 35 35 35	44-98 55-100 51-103 50-105 5-110 5-129 30-105 521-108 53-100 42-115 21-149 50-106 41-120 42-103	Dup	
Petroleum Range Organ Batch No: Test: Test: TestCode: Compound Parent Sample Number Date Analyzed Terphenyl-d14 (5-139) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene 2-Methylnaphthalene	10/15/10 Polynuclear Aroma 8270PAH-s 10/15/10 68 0.0021 0.0022 0.0017 0.0015 0.0026 0.0019 0.0019 0.0012 0.0023 0.0018 0.0023 0.0018 0.0028	atic	mg/kg Hydrock Hydrock Mg/kg	1000 1000 1000 1000 1000 1000 1000 100	67 74 79 81 68 61 67 73 86 77 75 66 77 56	63 71 76 83 71 62 71 73 85 74 77 66 75	8PPD % 6 4 4 2 4 2 6 0 1 4 3 0 3 2 8	QC RPD 15 14 15 20 12 20 12 13 21 6 17 17 13 18	41-85 38-96 49-90 35-115 21-105 30-112 20-116 34-104 52-99 35-106 42-106 42-93 30-113 41-89 42-84	1000 1000 1000 1000 1000 1000 1000 100	Associate 110334, WS %Rec 110481 66 62 71 79 66 60 66 68 82 70 76 65 66 54 46	MSD %Rec 10481 67 63 72 82 72 66 63 71 82 70 74 69 66 53 45	Ples Ples Ples Ples Ples Ples Ples Ples	20 20 20 20 30 30 41 54 20 30 35 35 35 20 20	44-98 55-100 51-103 50-105 5-110 5-129 30-105 52-108 53-100 42-115 21-149 50-106 41-120 42-103 43-97	Dup	
Petroleum Range Organ Batch No: Test: Test: TestCode: Compound Parent Sample Number Date Analyzed Terphenyl-d14 (5-139) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene 2-Methylnaphthalene	10/15/10 Polynuclear Aroma 8270PAH-s 10/15/10 68 0.0021 0.0022 0.0017 0.0015 0.0029 0.0069 0.0019 0.0012 0.0073 0.0023 0.0018 0.0072 0.0033 0.0028 0.0028	atic	mg/kg Hydrocok Hydrocok mg/kg	1000 1000 1000 1000 1000 1000 1000 100	67 74 79 81 68 61 67 73 86 77 75 66 77	63 71 76 83 71 62 71 73 85 74 77 66 75 57 51 61	8PPD % 6 4 4 2 4 2 6 0 1 4 3 0 3 2 8 5	15 14 15 20 12 20 12 13 21 6 17 17 13 18 14 13	41-85 38-96 49-90 35-115 21-105 30-112 20-116 42-106 42-93 30-113 41-89 42-84 45-80	1000 1000 1000 1000 1000 1000 1000 100	Associate 110334, WS %Rec 110481 66 62 71 79 66 60 66 68 82 70 76 65 66 54 46 62 62	MSD %Rec 10481 67 63 72 82 72 66 63 71 82 70 74 69 66 53 45 60	Ples Ples Ples Ples Ples Ples Ples Ples	20 20 20 20 20 30 30 41 54 20 30 35 35 35 20 20 20	44-98 55-100 51-103 50-105 5-110 5-129 30-105 53-100 42-115 21-149 50-106 41-120 42-103 43-97 46-88	Dup	
Petroleum Range Organ Batch No: Test: Test: TestCode: Compound Parent Sample Number Date Analyzed Terphenyl-d14 (5-139) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluoranthene Fluoranthene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene Phenanthrene	10/15/10 Polynuclear Aroma 8270PAH-s 10/15/10 68 0.0021 0.0022 0.0017 0.0015 0.0026 0.0019 0.0019 0.0012 0.0023 0.0018 0.0023 0.0018 0.0028	atic	mg/kg Hydrocok Hydrocok mg/kg	1000 1000 1000 1000 1000 1000 1000 100	67 74 79 81 68 61 67 73 86 77 75 66 77 56	63 71 76 83 71 62 71 73 85 74 77 66 75	8PPD % 6 4 4 2 4 2 6 0 1 4 3 0 3 2 8	QC RPD 15 14 15 20 12 20 12 13 21 6 17 17 13 18	41-85 38-96 49-90 35-115 21-105 30-112 20-116 34-104 52-99 35-106 42-106 42-93 30-113 41-89 42-84	1000 1000 1000 1000 1000 1000 1000 100	Associate 110334, WS %Rec 110481 66 62 71 79 66 60 66 68 82 70 76 65 66 54 46	MSD %Rec 10481 67 63 72 82 72 66 63 71 82 70 74 69 66 53 45	Ples Ples Ples Ples Ples Ples Ples Ples	20 20 20 20 30 30 41 54 20 30 35 35 35 20 20	44-98 55-100 51-103 50-105 5-110 5-129 30-105 52-108 53-100 42-115 21-149 50-106 41-120 42-103 43-97	Dup	

Project Number

Cardno TBE, Inc.

101011.02

Project Description Manatee

Batch No:	D6282											Associat	ted Sam	ples				
		DA 14	44	1 004									, 110479		80			
Test:	Metals by E	PA Me	inc	00 6010	J													
TestCode:	6010-L-ug/l		-															
Compound		В	lan	k	LCS Spike	LCS %Rec	LCSD %Rec	RPD %	QC RPD	Limits LCS	MS Spike	MS %Rec	MSD %Rec	RPD %	QC RPD	Limits MS	Dup RPD	Qualifiers
Parent Sample Numbe	er .		_	-		-						110572	110572		-			
Arsenic		4.8	U	ug/L	1000	97	100	3	20	80-120	1000	94	98	4	20	75-125		
Cadmium		0.6	U	ug/L	1000	98	99	1	20	80-120	1000	94	97	3	20	75-125		
Chromium		3.5	U	ug/L	1000	96	95	1	20	80-120	1000	92	95	3	20	75-125		
Cobalt		1.2	U	ug/L	1000	97	100	3	20	80-120	1000	94	100	6	20	75-125		
Copper		1.9	U	ug/L	1000	97	100	3	20	80-120	1000	95	96	1	20	75-125		
Iron		2.3	U	ug/L	1000	97	102	5	20	80-120	1000	102	106	4	20	75-125		
Lead		4.4	U	ug/L	1000	96	100	4	20	80-120	1000	95	97	2	20	75-125		
Manganese		0.6	U	ug/L	1000	97	101	4	20	80-120	1000	99	101	2	20	75-125		
Molybdenum		2.9	U	ug/L	1000	95	100	5	20	80-120	1000	90	96	6	20	75-125		
Nickel		2.5	U	ug/L	1000	98	101	3	20	80-120	1000	95	100	5	20	75-125		
Sodium		11	U	ug/L	10.0	100	100	0	20	80-120	10.0	100	99	1	20	75-125		
Batch No: Test:	D6299 Petroleum F	Range (Org	ganics(C8-C40)							ted Sam , 110332		33, 110)478, 110·	479, 11	0480
	TH IO-W	D	lan	le.	LCS	LCS	LCSD	RPD	00	Limits	MS	MS	MSD	RPD	00	Limits	Dup	Qualifier
Compound		В	lan	К	Spike		%Rec		RPD	LCS		%Rec		%	RPD	MS	RPD	Quantici
Parent Sample Numbe	er											110478	110478					
Date Extracted		10/15/10	U															
Date Analyzed		10/18/10	U															
C-39 (40-140)		80		%														
o-Terphenyl (40-140)		85	75	%	122	20				FF. 1.0	050	70	72		ar.	60 140		
o-Terphenyl (40-140)	nics		Ü		850	69	72	4	20	55-118	850	70	72	3	25	60-140		
2-39 (40-140) D-Terphenyl (40-140) Petroleum Range Orga Batch No:	D6300	85	U	%	850	69	72	4	20	55-118		Associat	ted Sam	ples	25	60-140		
o-Terphenyl (40-140) Petroleum Range Orga	1.74	85 46		% ug/L				4	20	55-118		Associat		ples	25	60-140		
o-Terphenyl (40-140) Petroleum Range Orga Batch No: Fest:	D6300 Organochlo	85 46		% ug/L				4	20	55-118		Associat	ted Sam	ples	25	60-140		
o-Terphenyl (40-140) Petroleum Range Orga Batch No: Fest: FestCode	D6300	85 46 orine Pe		% ug/L cides t		Method		RPD %		55-118 Limits LCS	MS	Associat	ted Sam , 110480 MSD	ples		60-140 Limits MS	Dup RPD	Qualifier
Batch No: Fest: FestCode	D6300 Organochlo 8081-w	85 46 orine Pe	sti	% ug/L cides t	y EPA I	Method	d 8081	RPD	Qc	Limits	MS Spike	Associat 110479 MS	ted Sam , 110480 MSD	ples)	Qc	Limits		Qualifier
o-Terphenyl (40-140) Petroleum Range Orga Batch No:	D6300 Organochlo 8081-w	85 46 orine Pe	sti	% ug/L cides t	y EPA I	Method	d 8081	RPD	Qc	Limits	MS Spike	Associal 110479 MS %Rec	MSD %Rec	ples)	Qc	Limits		Qualifier
Detroleum Range Orga Batch No: Fest: FestCode Compound Parent Sample Number 2,4,5,6-Tetrachloro-m-	D6300 Organochlo 8081-w	85 46 orine Pe B	esti	% ug/L cides t	y EPA I	Method	d 8081	RPD	Qc	Limits	MS Spike	Associal 110479 MS %Rec	MSD %Rec	ples)	Qc	Limits		Qualifier
Detroleum Range Orga Batch No: Fest: FestCode Compound Parent Sample Number 1,4,5,6-Tetrachloro-m-	D6300 Organochlo 8081-w	85 46 orine Pe B 53 0.002	esti	% ug/L cides t	LCS Spike	LCS %Rec	d 8081	RPD	Qc	Limits LCS	MS Spike	Associat 110479 MS %Rec 110480	MSD %Rec	ples) RPD %	QC RPD	Limits MS		Qualifier
Detroleum Range Orga Batch No: Fest: FestCode Compound Parent Sample Number 2,4,5,6-Tetrachloro-maddrin BHC	D6300 Organochlo 8081-w	85 46 orine Pe B 53 0.002	esti Ian U	% ug/L cides t k % ug/L	LCS Spike	LCS %Rec	d 8081	RPD	Qc	Limits LCS	MS Spike	Associat 110479 MS %Rec 110480	MSD %Rec 110480	ples) RPD %	QC RPD	Limits MS 0-134		Qualifier
Detroleum Range Orga Batch No: Fest: FestCode Compound Parent Sample Number 2,4,5,6-Tetrachloro-maddin BHC Detroleum Range Orga Parent Sample Number Detroleum Range Orga Detrole	D6300 Organochlo 8081-w	85 46 orine Pe B 53 0.002 0.0023	lan U	% ug/L cides t k % ug/L ug/L	LCS Spike	LCS %Rec	d 8081	RPD	Qc	Limits LCS 30-100 21-103	MS Spike	Associat 110479 MS %Rec 110480 49	MSD %Rec 110480	RPD %	QC RPD	0-134 0-154		Qualifier
Batch No: Test: EstCode Compound Parent Sample Number 2,4,5,6-Tetrachloro-maddin BHC 1-BHC 1-BHC	D6300 Organochlo 8081-w	85 46 brine Pe 8 53 0.002 0.0023 0.0030	lan U U U	% ug/L cides t k % ug/L ug/L ug/L ug/L ug/L	LCS Spike	LCS %Rec	d 8081	RPD	Qc	30-100 21-103 32-117	MS Spike 100 100 100	Associat 110479 MS %Rec 110480 49 53 50	MSD %Rec 110480 45 47 56	PPD % 9 12 11	QC RPD	Units MS 0-134 0-154 0-152		Qualifier
Batch No: Test: TestCode Compound Parent Sample Number 2,4,5,6-Tetrachloro-m- Ndrin BHC 1-BHC 1-BHC 1-Chlordane	D6300 Organochlo 8081-w	85 46 brine Pe 8 53 0.002 0.0023 0.0030 0.0023	U U U U	% ug/L cides t k % ug/L ug/L ug/L ug/L ug/L	LCS Spike	LCS %Rec 46 43 50	d 8081	RPD	Qc	30-100 21-103 32-117 0-151	MS Spike 100 100 100	Associat 110479 MS %Rec 110480 49 53 50 40	MSD %Rec 110480 45 47 56 42	9 12 11 5	QC RPD 27 21 168 57	U-134 0-154 0-152 0-134		Qualifier
Detroleum Range Orga Batch No: Test: Test: TestCode Compound Parent Sample Number 2,4,5,6-Tetrachloro-maddrin BHC B-BHC B-Chlordane B-Chlordane B-Chlordane	D6300 Organochlo 8081-w	85 46 brine Pe 8 53 0.002 0.0023 0.0030 0.0023 0.0023	U U U U U U U U	% ug/L cides t k % ug/L ug/L ug/L ug/L ug/L ug/L ug/L	LCS Spike	46 43 50 41	d 8081	RPD	Qc	30-100 21-103 32-117 0-151 37-108	MS Spike 100 100 100 100	Associal 110479 MS %Rec 110480 49 53 50 40 57	MSD %Rec 110480 45 47 56 42 56	9 12 11 5 2	QC RPD 27 21 168 57 18	0-134 0-154 0-152 0-134 9-118		Qualifier
Detroleum Range Orga Batch No: Test: TestCode Compound Parent Sample Number 2,4,5,6-Tetrachloro-mandrin BBHC B-BHC B-Chlordane 9-Chlordane 4,4'-DDD	D6300 Organochlo 8081-w	85 46 brine Pe 8 0.002 0.0023 0.0030 0.0023 0.0019 0.0021	lan U U U U U U U U U	% ug/L cides t k % ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	LCS Spike 100 100 100 100 100 100 100	46 43 50 41 59 69	d 8081	RPD	Qc	30-100 21-103 32-117 0-151 37-108 33-129	MS Spike 100 100 100 100 100	Associal 110479 MS %Rec 110480 49 53 50 40 57 71	MSD %Rec 110480 45 47 56 42 56 67	9 12 11 5 2 6	QC RPD 27 21 168 57 18 33	0-134 0-154 0-152 0-134 9-118 3-131		Qualifier
Detroleum Range Orga Batch No: Test: Test: TestCode Compound Parent Sample Number 2,4,5,6-Tetrachloro-m- Addrin DeBHC DeBHC Compound C	D6300 Organochlo 8081-w	85 46 brine Pe B 53 0.002 0.0023 0.0030 0.0023 0.0019 0.0021 0.0016	U U U U U U U U	% ug/L cides t k % ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	LCS Spike 100 100 100 100 100 100 100	46 43 50 41 59 69	d 8081	RPD	Qc	30-100 21-103 32-117 0-151 37-108 33-129 47-121	MS Spike 100 100 100 100 100 100	MS %Rec 110480 49 53 50 40 57 71 58	MSD %Rec 110480 45 47 56 42 56 67 57	9 12 11 5 2 6 2	QC RPD 27 21 168 57 18 33 19	0-134 0-154 0-152 0-134 9-118 3-131 12-143		Qualifier
Parent Sample Number, 4,5,6-Tetrachloro-mandin	D6300 Organochlo 8081-w	85 46 brine Pe B 53 0.002 0.0023 0.0030 0.0023 0.0019 0.0021 0.0016 0.0017	U U U U U U U U U U	% ug/L cides t k % ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	LCS Spike 100 100 100 100 100 100 100 100 100	46 43 50 41 59 69 69	d 8081	RPD	Qc	30-100 21-103 32-117 0-151 37-108 33-129 47-121 31-118	MS Spike 100 100 100 100 100 100 100 100	MS %Rec 110480 49 53 50 40 57 71 58 61	MSD %Rec 110480 45 47 56 42 56 67 57 57	9 12 11 5 2 6	QC RPD 27 21 168 57 18 33 19	0-134 0-154 0-152 0-134 9-118 3-131 12-143 26-103		Qualifier
Parent Sample Number 1,4,5,6-Tetrachloro-mandrin 1-BHC 1-BHC 1-BHC 1-Chlordane 1,4'-DDD 1,4'-DDE 1,4'-DDT 1-Dieldrin	D6300 Organochlo 8081-w	85 46 brine Pe B 53 0.002 0.0023 0.0030 0.0023 0.0019 0.0021 0.0016 0.0017 0.002 0.0014	U U U U U U U U U U U	% ug/L cides t k % ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	LCS Spike 100 100 100 100 100 100 100 100 100 1	46 43 50 41 59 69 69 82	d 8081	RPD	Qc	30-100 21-103 32-117 0-151 37-108 33-129 47-121 31-118 33-133	MS Spike 100 100 100 100 100 100 100 100 100	MS %Rec 110480 49 53 50 40 57 71 58 61 65	MSD %Rec 110480 45 47 56 42 56 67 57 62	9 12 11 5 2 6 2 7	QC RPD 27 21 168 57 18 33 19 19 30	0-134 0-154 0-152 0-134 9-118 3-131 12-143 26-103 0-165		Qualifier
Parent Sample Number, 4,5,6-Tetrachloro-mandelle Parent Sample Number, 4,5,6-Tetrachloro-mandelle Parent Sample Number, 4,5,6-Tetrachloro-mandelle Parent Sample Number, 5,6-Tetrachloro-mandelle Parent Sample Numbe	D6300 Organochlo 8081-w	85 46 brine Pe B 53 0.002 0.0023 0.0030 0.0023 0.0019 0.0021 0.0016 0.0017 0.002	u u u u u u u u u u u u u u u u	% ug/L cides t k % ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	100 100 100 100 100 100 100 100	46 43 50 41 59 69 69 82 70	d 8081	RPD	Qc	30-100 21-103 32-117 0-151 37-108 33-129 47-121 31-118 33-133 42-113	MS Spike 100 100 100 100 100 100 100 100 100	Associat 110479 MS %Rec 110480 49 53 50 40 57 71 58 61 65 69	MSD %Rec 110480 45 47 56 42 56 67 57 62 73	9 12 11 5 2 6 2 7 5 6	QC RPD 27 21 168 57 18 33 19 19 30 21	0-134 0-154 0-152 0-134 9-118 3-131 12-143 26-103 0-165 14-132		Qualifier
Petroleum Range Orga Batch No: Fest: Fest: FestCode Compound Parent Sample Number 1,4,5,6-Tetrachloro-mandrin FBHC FBHC FCHlordane FCHordane 1,4'-DDD FG-Chlordane FG-Chordane FG-Chordan	D6300 Organochlo 8081-w	85 46 orine Pe B 53 0.002 0.0023 0.0030 0.0021 0.0016 0.0017 0.002 0.0014 0.0019 0.0018	lan U U U U U U U U U U U U U U U U U U U	% ug/L cides t k % ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	100 100 100 100 100 100 100 100 100 100	46 43 50 41 59 69 69 82 70 55	d 8081	RPD	Qc	30-100 21-103 32-117 0-151 37-108 33-129 47-121 31-118 33-133 42-113 40-106	MS Spike 100 100 100 100 100 100 100 100 100 1	MS %Rec 110480 49 53 50 40 57 71 58 61 65 69 53	MSD %Rec 110480 45 47 56 42 56 67 57 57 62 73 54	9 12 11 5 2 6 2 7 5 6 2	QC RPD 27 21 168 57 18 33 19 19 30 21 23	0-134 0-154 0-155 0-134 9-118 3-131 12-143 26-103 0-165 14-132 7-131		Qualifier
Petroleum Range Orga Batch No: Fest: FestCode: Compound Parent Sample Number 2,4,5,6-Tetrachloro-maldrin BHC B-Chlordane C-Chlordane C-Ch	D6300 Organochlo 8081-w	85 46 orine Pe B 53 0.002 0.0023 0.0030 0.0019 0.0011 0.0016 0.0017 0.002 0.0014 0.0019 0.0018 0.0027	lan U U U U U U U U U U U U U U U U U U U	% ug/L cides t k % ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	100 100 100 100 100 100 100 100 100 100	46 43 50 41 59 69 69 82 70 55	d 8081	RPD	Qc	30-100 21-103 32-117 0-151 37-108 33-129 47-121 31-118 33-133 42-113 40-106 35-127	MS Spike 100 100 100 100 100 100 100 100 100 1	Associat 110479 %Rec 110480 49 53 50 40 57 71 58 61 65 69 53 68	MSD %Rec 110480 45 47 56 67 57 62 73 54 63	9 12 11 5 2 6 2 7 5 6 2 8	27 21 168 57 18 33 19 19 30 21 23	0-134 0-154 0-152 0-134 9-118 3-131 12-143 26-103 0-165 14-132 7-131		Qualifier
Petroleum Range Orga Batch No: Fest: Fest: FestCode Compound Parent Sample Number 2,4,5,6-Tetrachloro-maldrin BBHC B-Chlordane B-Chlordan	D6300 Organochlo 8081-w	85 46 orine Pe B 53 0.002 0.0023 0.0030 0.0019 0.0016 0.0017 0.002 0.0014 0.0019 0.0018 0.0027 0.0018	U U U U U U U U U U U U U U U U U U U	% ug/L cides t k % ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	100 100 100 100 100 100 100 100 100 100	46 43 50 41 59 69 69 82 70 55 77 69 63	d 8081	RPD	Qc	30-100 21-103 32-117 0-151 37-108 33-129 47-121 31-118 33-133 42-113 40-106 35-127 17-132	MS Spike 100 100 100 100 100 100 100 100 100 1	Associat 110479 %Rec 110480 49 53 50 40 57 71 58 61 65 69 53 68 58	MSD %Rec 110480 45 47 56 62 73 54 63 58	9 12 11 5 2 6 2 7 5 6 2 8	27 21 168 57 18 33 19 19 30 21 23 22 38	0-134 0-154 0-152 0-134 9-118 3-131 12-143 26-103 0-165 14-132 7-131 14-121 0-171		Qualifier
Detroleum Range Orga Batch No: Fest: FestCode: Compound Parent Sample Number 2,4,5,6-Tetrachloro-maldrin BBHC B-BHC B-Chlordane B-Chlorda	D6300 Organochlo 8081-w	85 46 orine Pe B 53 0.002 0.0023 0.0030 0.0019 0.0016 0.0017 0.002 0.0014 0.0019 0.0018 0.0027 0.0018 0.0019	U U U U U U U U U U U U U U U U U U U	% ug/L cides t k % ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	100 100 100 100 100 100 100 100 100 100	46 43 50 41 59 69 69 82 70 55 77 69 63 88	d 8081	RPD	Qc	30-100 21-103 32-117 0-151 37-108 33-129 47-121 31-118 33-133 42-113 40-106 35-127 17-132 37-122 37-134	MS Spike 100 100 100 100 100 100 100 100 100 1	Associat 110479 %Rec 110480 49 53 50 40 57 71 58 61 65 69 53 68 58	MSD %Rec 110480 45 47 56 67 57 62 73 54 63 58 61	9 12 11 5 2 6 2 7 5 6 2 8 0	QC RPD 27 21 168 57 18 33 19 19 30 21 23 22 38 25	0-134 0-154 0-152 0-134 9-118 3-131 12-143 26-103 0-165 14-132 7-131 14-121 0-171 14-143		Qualifier
Parent Sample Number 2,4,5,6-Tetrachloro-maddrin 3-BHC 3-Chlordane 3-Chlordane 3-(1-DDD) 4,4'-DDE 4,4'-DDT 5-Chlordane 5-Chlordane 6-Chlordane 6-Chlor	D6300 Organochlo 8081-w	85 46 srine Pe B 53 0.002 0.0023 0.0030 0.0023 0.0019 0.0011 0.0016 0.0017 0.002 0.0014 0.0019 0.0018 0.0027 0.0018 0.0019 0.0016	esti u u u u u u u u u u u u u u u u u u u	% ug/L cides t k % ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	100 100 100 100 100 100 100 100 100 100	46 43 50 41 59 69 69 82 70 55 77 69 63 88 84	d 8081	RPD	Qc	30-100 21-103 32-117 0-151 37-108 33-129 47-121 31-118 33-133 42-113 40-106 35-127 17-132 37-122 37-134 31-132	MS Spike 100 100 100 100 100 100 100 100 100 10	Associat 110479 %Rec 110480 49 53 50 40 57 71 58 61 65 69 53 68 58 62 61 66	MSD %Rec 110480 45 47 56 42 56 67 57 57 62 73 54 63 58 61 58 64	9 12 11 5 2 6 2 7 5 6 2 8 0 2 5 3	QC RPD 27 21 168 57 18 33 19 19 30 21 23 22 38 25 28 39	0-134 0-154 0-152 0-134 9-118 3-131 12-143 26-103 0-165 14-132 7-131 14-121 0-171 14-143 0-158 0-148		Qualifier
Detroleum Range Orga Batch No: Test:	D6300 Organochlo 8081-w	85 46 orine Pe B 53 0.002 0.0023 0.0030 0.0019 0.0016 0.0017 0.002 0.0014 0.0019 0.0018 0.0027 0.0018 0.0019	esti U U U U U U U U U U U U U U U U U U U	% ug/L cides t k % ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	100 100 100 100 100 100 100 100 100 100	46 43 50 41 59 69 69 82 70 55 77 69 63 88	d 8081	RPD	Qc	30-100 21-103 32-117 0-151 37-108 33-129 47-121 31-118 33-133 42-113 40-106 35-127 17-132 37-122 37-134	MS Spike 100 100 100 100 100 100 100 100 100 1	Associat 110479 %Rec 110480 49 53 50 40 57 71 58 61 65 69 53 68 58 62 61	MSD %Rec 110480 45 47 56 67 57 57 62 73 54 63 58 61 58	9 12 11 5 2 6 2 7 5 6 2 8 0 2 5	27 21 168 57 18 33 19 19 30 21 23 22 38 25 28	0-134 0-154 0-152 0-134 9-118 3-131 12-143 26-103 0-165 14-132 7-131 14-121 0-171 14-143 0-158		Qualifier

Project Number

Cardno TBE, Inc.

101011.02

Project Description

Manatee

October 25, 2010

Batch No: Test:	D6300 Organochlo	orine Pest	icides t	y EPA	Metho	d 8081						ated Sam 9, 11048	*				
Compound		Blai	nk	LCS Spike	LCS %Red	LCSD %Rec	RPD %	QC	Limits LCS	MS Spike	MS %Red	MSD %Rec	RPD %	QC RPD	Limits MS	Dup RPD	Qualifier
Parent Sample Number	r	5.86		-	de.					1325	110480						
Methoxychlor		0.0018 U		100	91				41-142	100	71	72	1	47	0-175		
Mirex		0.015 U		100	81				27-136	100	53	48	10	26	0-141		
Toxaphene		0.044 U	ug/L			_			-								
Batch No:	D6314											ted Sam		142			
Test:	Polynuclea	r Aromatic	c Hydro	carbons	by M	ethod	8270				110478	3, 11047	9, 110	180			
TestCode:	8270PAH-w		87.1		000												
	OZIOLAIPW	Blar	ale	LCS	LCS	LCSD	RPD	001	Limits	MS	MS	MSD	RPD	00	Limits	Dup	Qualifier
Compound		ы	ik.	Spike		%Rec	%	RPD	LCS	Spike		%Rec	%	RPD	MS	RPD	Qualifiers
Parent Sample Number											110478	110478					
Terphenyl-d14 (3-130)		130	%	- 700-						- 12		-22			0.0000		
Acenaphthene		0.028 U	ug/L	100	70	69	1	20	48-87	100	68	70	3	49	14-113		
Acenaphthylene		0.022 U	ug/L	100	73	68	7	16	31-109	100	64	68	6	35	10-112		
Anthracene		0.020 U	ug/L	100	86	88	2	14	53-90	100	90	90	0	42	20-118		
Benzo(a)anthracene		0.011 U	ug/L	100	79	81	2	20	53-111	100	59	59	0	66	12-131		
Benzo(a)pyrene		0.009 U	ug/L	100	71	71	0	14	27-104	100	72	81	12	46	6-101		
Benzo(b)fluoranthene		0.007 U	ug/L	100	64	60	6	43	7-143	100	66	72	9	34	3-113		
Benzo(g,h,i)perylene		0.012 U	ug/L	100	69	69	0	20	32-112	100	60	63	5	37	2-114		
Benzo(k)fluoranthene		0.017 U	ug/L	100	71	74	4	30	24-124	100	70	83	17	29	15-107		
Chrysene	_	0.010 U	ug/L	100	95	92	3	20	63-99	100	97	95	2	28	27-121		
Dibenzo(a,h)anthracen	e	0.011 U	ug/L	100	49	50	2	11	21-111	100	65	65	0	43	8-106		
Fluoranthene		0.020 U	ug/L	100	69	66	4	20	46-110	100	67	72	7	42	18-132		
Fluorene		0.030 U	ug/L	100	68	63	8	20	46-99	100	64	68	6	52	15-115		
Indeno(1,2,3-cd)pyren	e	0.011 U	ug/L	100	64	61	5	20	43-110	100	62	63	2	47	4-116		
1-Methylnaphthalene		0.028 U	ug/L	100	71	71	0	20	21-115	100	55	55	0	37	0-128		
2-Methylnaphthalene		0.025 U	ug/L	100	56	54	4	20	26-106	100	47	50	6	33	0-124		
Naphthalene		0.031 U	ug/L	100	68	66	3	16	40-85	100	59	65	10	46	0-154		
Phenanthrene		0.026 U	ug/L	100	68	68	0	20	51-95	100	65	69	6	40	20-118		
Pyrene		0.022 U	ug/L	100	62	59	5	10	46-107	100	64	69	8	34	18-128		
Batch No:	D6322											ted Sam					
Test:	Chlorinated	Herbicid	es by E	PA 832	1					1	1104/9	, 110480	J				
TestCode.	8321-w																
Compound		Blan	ık	LCS Spike		LCSD %Rec	RPD %	QC L	imits	MS Spike	MS %Rec	MSD %Rec	RPD %	QC	Limits MS	Dup RPD	Qualifiers
Parent Sample Number			_		_	_		_			110480	110480					
2,4-Dichlorophenylacet		75	%														
2,4-D		0.31 U	ug/L	5.0	82				39-114	5.0	84	86	2	21	54-102		
2,4-DB		1.1 U	ug/L	5.0	81				58-99	5.0	83	86	4	18	40-118		
Dicamba		0.35 U	ug/L	5.0	91				43-125	5.0	95	88	8	19	13-191		
Dichlorprop		0.32 U	ug/L	5.0	83				47-108	5.0	85	88	3	29	58-107		
Dinoseb		0.18 U	ug/L	5.0	82				51-97	5.0	67	71	6	13	52-92		
MCPA		0.21 U	ug/L	5.0	76				39-105	5.0	79	81	2	23	47-101		
MCPP		0.15 U	ug/L	5.0	76				48-103	5.0	77	80	4	17	40-106		
Picloram		0.35 U	ug/L	5.0	60				9-86	5.0	35	33	6	60	0-66		
2457		0.22 11	ner#	EO	70				40 110	E 0	0.4	06	2	10	62 07		

2,4,5-T

0.23 U ug/L

0.28 U ug/L

5.0

79

40-110

37-117

5.0

84

86

2

15

63-97

Phone: 813-881-9401 Fax: 813-354-4661 Email: Info@SunLabsInc.com

Project Number

Cardno TBE, Inc.

101011.02

Project Description

Manatee

October 25, 2010

* indicates value is outside control limits for %Recovery or greater than acceptance criteria for RPD

Footnotes

The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

U Compound was analyzed for but not detected.

	>CC+0:1:	50000
	בותכ	
(2	
	SOC CON	1

							T												T				T		1		T	
100 E	~ +																	JNUSED/	Time:	7.6.	Time:	为人	Time.	į	Time:			
6N	132	42	ı.	20		ested*:	FDED PreApproval site	المارة والو	ments:							d Retention if	rs:*	DISPOSAL OF U	Date:		Date:	14-8-6	Date:		Date:			nc. 520, Tampa, Florida 33634 x: 813-354-4661
	Project Name:	Project #:	PO #	Alt Bill To:		Due Date Requested*	TEDEP Pre	Cash rates	· Remarks / Comments:				T			Length of Record Retention if	other than 5 years:*	ABS, INC. RESERVES THE RIGHT TO BILL FOR DISPOSAL OF UNDRETURNED SAMPLES AND TO RETURN UNUSED SAMPLES	hed To:	1	hed To:		hed To:		hed To:		2	20 00
													+		-			WES THE RIC	Relinquished To:	ju.	Relinquished To:	1	Relinguished To:		Relinquished To:			SunLabs, 0 Beaumont Center Blvd., Suite Phone: 813-881-9401 / F
sunLabs, Inc. Chain of Custody	40.1101																	SUNLABS, INC. RESERVES THE RIGHT TO BILL FOR DISPOSAL OF UNUSED/ UNRETURNED SAMPLES AND TO RETURN UNUSED SAMPLES.	Relinquished By:	14/2 (Relinquished By:	1	Relinquished Bv:		Relinquished By:			5460 Beaumor Phor
Chain	**(#8449				941/	10	y d	×	×	×	×	X	<		İ				<u>L</u>	S = 2	II.		LIE C] Œ			
abs, Inc.	SunLabs Project #		le le		Analysis / Method Requested	#Of	Bottles	6	13	6	5	21						1	16 1116	Acid + Ice	OFW, + Ice	T = Sodium thiosulfate + ice	pecify)	G	ON Z	AN N N	N N N	N N NA
Sunt	SunLabs	Bottle Type	Preservative	Matrix	Analysis	Sampled	Time	02/3/	15,00	20.37	(0/9/	MAN	15.13					1	1 (611	S = Sulfuric Acid + Ice	VS = MeOH, OFW, + Ice	T = Sodium t	O = Omer (specify)	ipt:			~	2005
		×1	0.200	1	5	S	Date	110-8,70	1				>					-	100 KM	Preservative Codes: H = Hydrochloric Acid + Ice	I = Ice only	N = Nitric Acid + Ice	Internal Use Only	Sample Condition Upon Receipt: Custody Seals present?	Custody Seals intact?	Shipping Bills attached?	Samples within holding times?	Sufficient volume for all analyses? Are vials head-space free?
	JOHANNI DE	KICK HOW 281	SV. York Has Hild, Say	Chickmen 12 352-7	2 -57- 3505/01-177	Sample Description		MW-4R	1917-7	1111-125	13-1	アイン						1. 8 × (7	1000	GVS = Low Level Volatile Kit H = H	T = Tedlar Bag	O = Other (Specify)	SO = Soil Inter	SOL = Solid		O = Other (Specify) Shipp	°, C	AZ Z
	Client Name:	Contact:	Address:	ı	Phone / Fax:	SunLabs	Sample #	10001	10000	10.533	110 234	心のいっこ						Sampler Signature / Date	11 11 11	Bottle Type Codes: / GV = Glass Vial	GA = Glass Amber	P = Plastic	Matrix Codes:	A = Air	GW = Ground Water	SE = Sediment Internal Use Only	Temp upon receipt: 3	Received or

* See General Terms and Conditions on Reverse

SunLabs, Inc. Chain of Custody

			OUL	Labs, inc	Chair	sunLabs, Inc. chain of custody			0000	C C C C C C C C C C C C C C C C C C C
Client Name:	\\ \\		SunLai	SunLabs Project #		101011.09	à	Droiog Name		
Contact: 16 1	de. bu		Bottle Type	ed.				Project #:		
Address:	Her Heter	13 P P	Preservative	ative				PO #	*	ĺ
The said	S 24 1 10 8	v 1	Matrix					Alt Bill To:		
Phone / Fax:	175 /4 1-1		Analys	Analysis / Method Requested	45 19					
SunLabs Samp	Sample Description	-	Sampled	# of	10		Due	Due Date Requested*	, , , , , , , , , , , , , , , , , , ,	
Sample #		Date	te Time	Bottles	1			FDEP PreApproval site	oroval site	
11047 8 7.7011	1-01	10-1	-1110 REX	6	. ٪			Cash rates		
110475	12.12		11/2 5	11	X		Remi	Remarks / Comments:	nts:	
110450	111.5		12:115	5/	X					
110481 65-11	161-31		25:11	4	×			リディ		
15-55 C-3h011	1,75,74		9.7/		×					
100/83	1 . 36 - 21	V	13:20	0	×					
		-								
			+		1		Leng	Length of Record Retention if	Retention if	
							other	other than 5 years:		
Sampler Signature / Date:		Printed Name / Affiliation:	lation:	- (SUNLABS, INC. RESERVES THE RIGHT TO BILL FOR DISPOSAL OF UNUSED/ UNRETURNED SAMPLES AND TO RETURN UNUSED SAMPLES	(BS), INC. RESERVES THE RIGHT TO BILL FOR DISPOSAL OF UI UNRETURNED SAMPLES AND TO RETURN UNISED SAMPLES	BILL FOR DIS	SPOSAL OF UN	4USED/
1 1/1	11/6	1 Otto 6	11/12	Grelly F	75	Relinquished By:	Relinquished To:		Date:	Time:
Bottle Type Codes: GV = Glass Vial GVS = Low Level Volatile Kit		Preservative Codes: H = Hydrochloric Acid + Ice	3.20	S = Sulfuric Acid + Ice		1 Visited	1	\	G1 3/1	17a
GA = Glass Amber T = Tedlar Bag	<u>=</u>	I = Ice only	VS = Me(VS = MeOH, OFW, + Ice		Relinquished By:	Relinquished To:	0	Date:	Time:
P = Plastic O = Other (Specify) S = Soil Jar		N = Nitric Acid + Ice B = Sodium bisulfte + Ic		T = Sodlum thiosulfate + ice O = Other (Specify)			/ 	-	164.76	\
Matrix Codes: SO = Soil	Inte	Internal Use Only				Relinquished By:	Relinquished To:		Date:	Time:
A = Air SOL = Solid DW = Drinking Water SW = Surface Water		Sample Condition Upon Receipt: Custody Seals present?	Receipt:	Y / N / NA						
		Custody Seals intact?		Y / N / NA		Relinquished By:	Relinquished To:		Date:	Time:
SE = Sediment O = Other (Specify) Internal Use Only		Shipping Bills attached? Sample containers intact?	2	Y I N I NA						
Temp upon receipt:	C San	Samples within holding times? Sufficient volume for all analyses?	mes?	AN N		0975	SunLabs, Inc.	inc.	10000 Chino	
Received on Ice? (Y) N / NA		Are vials head-space free?	7e	Y N N NA		Phone e-mail: info@	Phone: 813-881-9401 / Fax: 813-354-4661 e-mail: info@SunLabsInc.com	ax: 813-354-4661 www.SunLabsInc.com	Solution 33034 361 slnc.com	
				Carlo						