

SOIL AND DEWATERING MANAGEMENT PLAN - Revised 4/11/2022 Washington Park Preserve Palmetto, Manatee County, Florida

Prepared for:

Manatee County Government
Parks and Natural Resources Division
1112 Manatee Avenue West
Suite 203
Bradenton, Florida 34205

Prepared by:

Professional Service Industries, Inc. 5801 Benjamin Center Drive, Suite 112 Tampa, Florida 33634 Telephone (813) 886-1075

PSI PROJECT NO. 05523453

March 7, 2022

TABLE OF CONTENTS

) INTRODUCTION / BACKGROUND				
1.1 PROJECT DESCRIPTION	2			
1.2 SITE ASSESSMENTS/INVESTIGATIONS	2			
SAMPLING RESULTS				
2.2 SOILS	4			
OBJECTIVE	5			
APPLICABLE REGULATORY CRITERIA				
4.1 SOILS	6			
4.2 GROUNDWATER	6			
ONSITE SOIL REUSE	7			
DEWATERING				
REQUIRED BEST PRACTICES				
7.1 HEALTH AND SAFETY PLAN	10			
7.2 STORMWATER	10			
7.3 PERMITS				
7.4 PROJECT CONTROLS AND MANAGEMENT MEASURES	11			
7.5 SOIL EXCAVATION PROCEDURE AND EQUIPMENT				
SUMMARY REPORT				
	1.1 PROJECT DESCRIPTION 1.2 SITE ASSESSMENTS/INVESTIGATIONS. SAMPLING RESULTS 2.1 GROUNDWATER. 2.2 SOILS. OBJECTIVE. APPLICABLE REGULATORY CRITERIA. 4.1 SOILS. 4.2 GROUNDWATER. ONSITE SOIL REUSE. DEWATERING. REQUIRED BEST PRACTICES. 7.1 HEALTH AND SAFETY PLAN 7.2 STORMWATER. 7.3 PERMITS. 7.4 PROJECT CONTROLS AND MANAGEMENT MEASURES. 7.5 SOIL EXCAVATION PROCEDURE AND EQUIPMENT.			

LIST OF FIGURES

Figure 1 – Site Map

Figure 2 – Revised Clean Fill Overview

LIST OF APPENDICES

- Appendix A Correspondence Dated January 23, 2007 from Drs. Robert and Stuchal to FDEP Bureau of Waste Cleanup
- Appendix B Phase II Environmental Site Assessment Washington Park Site, Prepared by Cardno TBE, dated June 2014
- Appendix C Site Construction Plans

1.0 INTRODUCTION / BACKGROUND

Professional Service Industries, Inc. (PSI) is pleased to submit this Soil and Dewatering Management Plan (SDMP) to provide procedures for the excavation and relocation of arsenic and petroleum impacted soil within the Washington Park Preserve (WPP) Phase I proposed construction project. These soils are proposed for re-use within the project area but are subject to this assessment and review of current conditions and planned use to ensure public health and safety concerns are met. Dewatering and possibly effluent treatment is prescribed herein to meet the expected need of the discharge of dewatering effluent to adjacent surface water bodies. Thus, the SDMP will also assess potential dewatering issues needed to facilitate construction.

The WPP project is located in a suburban area of western Manatee County in Section 12, Township 34 South, Range 17 East. The overall site consists of approximately 81 acres; however, the area planned for use in this project incorporates approximately 12 acres, with the remainder of the project area to be developed in the future. This improvement project involves converting an historical soil borrow area to a passive nature preserve with limited recreational play fields. A Site Map is included as **Figure 1**.

As part of the pre-project due diligence, a Phase I and Phase II Environmental Site Assessment was conducted for the Sarasota/Manatee Metropolitan Planning Organization in 2014. At that time, the plan for use of the site was shelved but was revitalized with project planning including performance of a Phase I Environmental Site Assessment in April 2020. The results of these investigations have documented the site history and with the performance of the Phase II Environmental Site assessment, it was determined that residual concentrations of arsenic and petroleum hydrocarbons in soils and arsenic and petroleum constituents in groundwater were present in the area to be redeveloped. The constituents found in the 2014 assessment were compared to the Florida Department of Environmental Protection (FDEP) Chapter 62-777 Residential Direct Exposure Soil Target Cleanup Criteria (SCTL-RDE), Groundwater Target Cleanup Levels (GCTL) and SCTL- Leachability. Results indicate soils contained arsenic above SCTL-RDE, with arsenic above the GCTL in one groundwater monitoring well.

The Washington Park Preserve design incorporates passive recreational features including a playground area, a rectangular grassed play field, a pavilion, a restroom pavilion, an access drive and parking, shell walking paths and associated stormwater ponds. Utility installations will include potable water service, sanitary sewer lines and stormwater piping. Dewatering is expected to occur to support utility installation and possibly stormwater pond construction.

This Soil and Dewatering Management Plan provides procedures for the handling and management of arsenic and benzo(a)pyrene (BAP) impacted soil and debris encountered during construction, as well as the management of dewatering effluent within the proposed project footprint.

1.1 PROJECT DESCRIPTION

The Washington Park Preserve construction project consists of infrastructure improvements in order to construct a passive park that will include a playground and a grassed area for team sports. The project features are being built with consideration of the past use of the area, which served as a borrow pit for construction of U S Highway 41 approximately 50 years ago. Some portions of the site were excavated for fill during that period to support road construction. During the Phase II Environmental Site Assessment, test pits were excavated and debris was reportedly discovered present across the site. After use of the site as a borrow pit, the area was left to be overgrown with no recent past use that might serve as a source of contamination. Some minor dumping likely has occurred over time.

1.2 SITE ASSESSMENTS/INVESTIGATIONS

As noted above, Environmental Site Assessments (ESAs) within the proposed Preserve were conducted in 2014 when a Phase I and Phase II ESA was conducted. These assessments were described in reports entitled *Phase I Environmental Site Assessment, Proposed Washington Park Site* and *Phase II Environmental Site Assessment Washington Park Site* dated March 14, 2014, and June 2014, respectively. The assessments were conducted by Cardno TBE and performed for the Sarasota/Manatee Metropolitan Planning Organization.

Results of the Phase I ESA indicated the presence of Recognized Environmental Conditions (RECs) which include: "The borrow pit is being identified as an REC due to the potential for impacts associated with heavy equipment used during excavation and potential fill material from off-site sources during excavation. Some of the on-site debris is indicative of illicit dumping, which offers the potential for various surface impacts. The former railroad is being identified as an REC due to the potential for on-site impacts related to historical pesticide and herbicide use (that may have contained petroleum constituents) and metals."

Note that the former railroad referenced above was present on the far western boundary of the site, in a portion of the property not a part of the current proposed construction area.

Subsequently, a Phase II ESA indicated:

"A comparison of the laboratory analytical results of the collected soil samples to Chapter 62-777 Soil Cleanup Target Levels (SCTLs) is summarized as follows. The concentration of arsenic was detected above the SCTL for the residential direct-exposure criteria at the 0.5-2.0 ft bls interval at all sampled locations (SB-1, 2, 4, 6, and 8). The concentration of arsenic also exceeded the residential direct-exposure criteria at the 2.0-4.0 ft bls interval at one sampled location (SB-2)."

In addition, other soil sample results indicate:

• "The concentration of benzene exceeded the SCTL for leachability in three soil samples (SB-6 @ 0.5-2.0 ft bls, SB-6 @ 2-4 ft bls and SB-8 at 0.5-2.0 ft bls)."

• "Laboratory analysis of the soil sample collected from SB-4 @ 0.5-2.0 ft bls revealed benzo(a)pyrene above its SCTL for the residential direct-exposure criteria, but well below the commercial/industrial direct-exposure criteria."

And in regard to groundwater:

- "The concentration of arsenic was reported above its Groundwater Cleanup Target Level (GCTL) in TMW-3, but well below the Natural Attenuation Default Concentration (NADC)."
- "The concentration of dibenzo(a,h)anthracene was reported above its GCTL in TMW-4, but well below the NADC."

Locations of these soil and groundwater samples are provided in Figure 1.

An additional Phase I ESA entitled *Phase I Environmental Site Assessment; Proposed Washington Park Site* was completed in April 2020. The assessment was conducted by Cardno TBE and performed for the Manatee County Property Management Department. No new additional information of note was derived from the updated Phase I.

NOTE: This SMP is revised on the basis of the discovery of large volumes of buried waste discovered during the initial phases of construction. As a result of this discovery discussions were held with FDEP indicating site conditions were found which were substantially different than originally discussed with the Department. As a result of this, the Department indicated they expected the project to be executed under, "The Guidance for Disturbance and Use of Old Closed Landfills or Waste Disposal Areas in Florida", Version 2.3 and dated April 2, 2019.

Subsequently PSI returned to the site and conducted installation of test pits to identify the total depth of cover and depth of debris throughout the project site. Based on those results in general 2 feet of cover was identified in areas not including the stormwater pond location and four small areas around the planned recreational play fields. The attached Figure entitled Washing Park Preserve Clean Fill Overview identified those areas requiring additional fill as well as the needed debris excavation and back fill along the western portion of the site in the area of the stormwater pond.

This change in regulatory requirements provided for the need to modify the existing soil management plan. As such the following changes have been made and are identified in the following pages via the use of strike though and highlighted insertions.

2.0 SAMPLING RESULTS

The following provides a comprehensive summary of prior soil and groundwater assessment results:

2.1 GROUNDWATER

Arsenic was present in TMW-3 at a concentration of 52 micrograms/liter (ug/L). None of the other tested wells exhibited the presence of arsenic. Dibenzo[a,h]anthracene was present above the GCTL in TMW-4 at a concentration of 0.17 ug/L.

2.2 SOILS

Arsenic was identified in all surficial (0.5' below land surface (bls) to 2.0' feet bls) soil samples ranging in concentration from 1.1 mg/kg to 4.9 mg/kg. One soil sample at depth (SB-2, 2-4 ft bls) contained arsenic at 3.1 mg/kg.

Benzene above the SCTL for Leaching to Groundwater occurred in soil boring SB-6 in both sample intervals and was also present above that standard in SB-8. Concentrations of benzene were identified from 0.0078 to 0.011 mg/kg in SB-6. No synthetic precipitation leaching procedure (SPLP) analyses was run on these samples. Data from SB-8 is not germane to this project given the location of that boring is on the far norther boundary of the parcel

Benzo(a)pyrene equivalent in sample SB-4 at 0.5-2.0 ft bls was calculated to be 0.6 mg/kg which is below the Alternative SCTL currently in use by the FDEP.

Subsequent sampling during construction indicated the presence of elevated levels of arsenic and minor exceedance of BaP standards throughout the soils excavated in the vicinity of the stormwater pond.

3.0 OBJECTIVE

The purpose of the Soil and Dewatering Management Plan (SDMP) is to provide the procedures required for the permitting, excavation, and relocation of impacted soils, if warranted, and how the soils will be incorporated into the construction of the proposed project features. Directions regarding potential dewatering in the vicinity of the one arsenic impacted monitoring well are also incorporated.

4.0 APPLICABLE REGULATORY CRITERIA

4.1 SOILS

While the presence of arsenic and benzo(a)pyrene equivalent are above the SCTL-RDE, the concentrations are below alternative soil cleanup target limits currently in use by the FDEP.

With regards to arsenic, in 2007, University of Florida toxicologists Drs. Roberts and Stuchal developed an alternative SCTL for arsenic which is consistently utilized as a recreational standard. This criteria of 5.5 milligrams/kilogram was documented in the letter attached as Appendix A and referenced an Off Road Vehicle Park. Calculations commissioned by the County indicates arsenic concentrations could increase to a value of 17.3 mg/kg and provide for the same level of protection. However, the far more conservative value of 5.5 mg/kg was determined to be appropriate and utilizing this arsenic ASCTL for a passive use park provides an appropriate protective human health standard. All arsenic concentrations identified in the sampling conducted in this proposed area are less than 5.5 mg/kg and as such these soils are not considered as being a human health risk to the users of the facility.

Likewise, FDEP has developed an alternative SCTL for benzo(a) pyrene equivalents and has established that level as 0.7 mg/kg for the residential direct exposure criteria. All B(a)P equivalent results are below this alternative SCTL and thus are not considered to be a human health risk to users of this facility.

The presence of benzene in SB-6 in samples collected from six inches bls to four feet bls indicate exceedances of the leachability to groundwater criteria. No other samples exceeded this standard within the project footprint. Because of the presence of benzene, specific soil management criteria are required to be developed.

Note: During the time this project was being prepared for construction, the FDEP returned the SCTL-for BaPs to 0.1 mg/kg. Subsequently a sample of wastes excavated from the pond site indicated BaPs slightly above the 0.1 mg/kg standard. Arsenic levels from similar samples were found to be above the recreational standard of 5.5 mg/kg, ranging from 5.7 mg/kg to 31 mg/kg.

4.2 GROUNDWATER

Arsenic was present in TMW-3 at a concentration of 52 ug/L, above the GCTL. No other wells exhibited the presence of arsenic. Dibenzo[a,h]anthracene was present above the GCTL in TMW – 4 at a concentration of 0.17 micrograms/liter.

Due to the presence of these constituents, a plan to treat groundwater will be required in the event dewatering is needed to support construction.

5.0 ONSITE SOIL REUSE

In an effort to reduce the importation of fill material, an onsite soil reuse plan should be developed by the Contractor in conjunction with this SMP. This onsite reuse is complicated by the presence of geotechnically unsuitable material. The contractor should account for the presence of arsenic, which is not an issue for onsite reuse, but would be an issue relative to potential export of excess fill from the project.

It is our understanding that the total cut volume is approximately 7,622 cubic yards consisting principally form stormwater pond construction. Imported material per the mass balance includes an additional 480 c.y. of clean fill needed to attain design grades. No fill will be removed from the site based on the mass balance.

In the event geotechnical considerations require the need to export fill, all exported material is likely to contain arsenic above the RDE-SCTL, at least if the source is from the upper one to two feet of soil. This would require proper disposal. Past practice in Manatee County has been to provide this material to the landfill in exchange for their clean fill normally used for daily cover. PSI recommends an evaluation of costs associated with options available to reduce the costs inherent in the mass balance of site fill. A cost evaluation of screening soils to remove solid waste to reduce exported volume or to enhance the quality of fill to be sent to the landfill for daily cover (as opposed to pure disposal) may provide costs savings as well.

In the event soil is excavated and screened, volume may be sufficiently reduced such that only debris is shipped off site as construction and demolition debris. If soil is remaining post construction, it should be tested for the presence of arsenic, BaPs and benzene and based on analytical results there exists the possibility it may then be removed as uncontaminated soil or, if contaminated, managed as described above.

It is also noted that installation of the gravity sewer line will require excavation of soils up to a depth of seven to eight feet. Given the presence of debris, some of this material may be unsuitable for backfill and managed as described above.

The presence of benzene and B(a)P equivalent at SB-6 and SB-4 respectively will not impact the project. The only planned construction in the location of each of these borings is to provide for a 10 foot wide shell pathway so no disturbance other than land clearing is planned for those areas.

Prior to importation of clean fill, the contractor is to provide data documenting the suitability of the fill to be acquired. This effort shall include collection of a soil sample from the active borrow pit providing the purchased fill. This sample shall be analyzed by EPA Method 8260 (Volatile Organic Compounds, Method 8270 (Petroleum Aromatic Hydrocarbons), EPA Method 6010/6020 (8 RCRA Metals), Total Recoverable Petroleum Hydrocarbons (FL-PRO), EPA Method 8081 (organochlorine pesticides). The results shall be submitted to the County for approval prior to importation of fill.

As a result of the discovery of large quantities of debris and elevated arsenic and BaP constituents, the contractor was advised to remove all excavated debris which could not be

recycled (i.e. concrete) and or which could go to a tire disposal facility, to the Lena Road landfill on the basis of their acceptance of the wastes while in receipt of the analytical results.

NO SOIL IS TO BE REUSED FOR CONSTRUCTION PURPOSES.

6.0 DEWATERING

Dewatering for construction is expected to be limited to the installation of the gravity sewer line servicing the proposed restrooms and will extend eastward to an offsite connection. Dewatering is not expected to be necessary for excavation of the stormwater pond. It is expected that no dewatering will be required for other construction activities including installation of the proposed potable water line.

Any required dewatering in most areas can proceed without concern with the exception of the sanitary sewer line in the vicinity of the proposed restrooms. North of that pavilion, groundwater was determined to contain arsenic in excess of the GCTL. No other wells exhibited arsenic and a review of the field data forms developed during that sampling effort indicated the identified arsenic was not due to the presence of high levels of turbidity in the sampled well.

A sentinel monitor well should be installed approximately half the distance between the restroom pavilion and the location of TMW-3 as shown on the attached figure. If possible, dewatering should be limited from the restroom to approximately Sta 2+50. If dewatering is necessary, the sentinel monitor well should be sampled for arsenic following 24 hours of dewatering. Results of this groundwater sample should be provided within 24 hours of collection.

The sentinel well to be labeled MW-A shall be located as shown on Figure 2. It should be constructed via hollow stem auger and be constructed of two inch schedule 40 pvc to an approximate depth of 13 feet below grade. A ten foot section of 0.010 slotted screen shall be installed with a sufficient riser to extend approximately three feet above ground. The riser should be protected by installation of bollards to prevent damage during construction. A 20/30 sand filter pack should be installed with a one foot bentonite seal. The well should be developed until produced water runs clear and a locking cap installed.

Prior to dewatering, the Contractor will be required to submit for an NPDES permit. Groundwater data from the Phase II ESA should be used to support that effort though sampling of the sentinel well will be required to provide data on other analytes required to be tested for in the permit application. See Section 7.3.1 for further details.

In the event arsenic is present above the GCTL (10 ug/l) in the monitor well, the contractor is to provide treatment of dewatered influent and test effluent from the treatment system for the presence of arsenic and continue monitoring until influent concentrations drop below 10 ug/l. Additionally, testing for other analytes will be required by the NPDES permit.

7.0 REQUIRED BEST PRACTICES

4.3 7.1 HEALTH AND SAFETY PLAN

Prior to implementing any field work, the County's selected contractor shall develop a Health and Safety Plan to address worker exposure to impacted dust/soil during the construction process. Soil analytical data collected across the site exhibited arsenic concentrations above the Residential SCTL of 2.1 mg/kg. Exceedances above the Direct Exposure Commercial/Industrial SCTLs were not detected in any of the soil analytical data. While the arsenic exceedances at the proposed park do not represent a significant human health risk during recreational use, activities occurring during construction could produce fugitive dusts which has the potential to create an exposure to arsenic for the contractor's employees. The site-specific HASP shall provide the details for the health and safety component of this project. Details on excavation safety and worker safety along with reduction of worker exposure to fugitive dusts shall be included in the site-specific HASP.

4.4 7.2 STORMWATER

The County's selected contractor shall be required to implement stormwater management control in the form of a stormwater pollution prevention plan (SWPPP). The County's selected contractor shall ensure that the site work associated with soil excavation and soil stockpiling is consistent with the plan. Such practices are detailed in the Best Management Practices portion of the Stantec construction plans.

4.5 7.3 **PERMITS**

4.5.1 7.4 Environmental Permits

The County, as part of the project permitting, conducted a meeting with the FDEP to notify and seek review of this SMDP for the work associated with the soil re-use and disposal as well as for dewatering for construction of the project. As a result of that meeting, the FDEP concurred that this work did not fall under the purview of Chapter 62-780 FAC and could proceed without their further review given the conditions and prospective actions described in the report. As such, the only environmental related approval required is the NPDES permit described below.

However, due to the discovery of large quantities of solid wastes a subsequent meeting was held with FDEP. During that time the Department indicated all excavated materials were to be properly disposed of and it was acknowledged that none of the excavated material could be utilized for project backfill. It was also determined that at least 2 feet of clean cover was required to be present over the buried debris and subsequently test pit excavation was performed in order to determine the current level of compliance with regards to that requirement.

It was also determined that ALL buried debris in the area of the stormwater pond had to be removed to 2 feet below finished grade and the area of removal be backfilled with 2 feet of clean fill to the finished grade.

The County's contractor is to obtain an NPDES permit and provide groundwater data from the attached report. It is expected that the FDEP will provide a Generic Permit for Discharges From Petroleum Contaminated Sites under the Chapter 62-621.300 (1) permitting authority for dewatering activities that may require additional monitoring.

4.5.2 7.5 Construction Permit

The District's selected contractor for the soil excavation shall obtain all necessary State and Local permits.

4.6 PROJECT CONTROLS AND MANAGEMENT MEASURES

The county's selected contractor shall implement engineering controls to limit the impact of the excavation/construction on the site and surrounding areas. These measures will also preclude cross-contamination by controlling dust emissions, surface erosion, and stormwater run-on and run-off.

4.6.1 Dust Control

Engineering controls and work practices, which shall be used to control emissions, are outlined below.

4.6.2 Watering

Water shall be applied to the site and work area surfaces when airborne dust emissions are present.

4.6.3 Roadway Dust Control

The County's selected contractor shall ensure that haul and access roads and pathways are properly maintained to enhance dust control. Material transport vehicles shall be loaded in a manner to avoid spillage during transport. Any spillage of impacted soils or waste materials during transport shall be cleaned up immediately. Water may also be used for dust control on roadways, if necessary.

4.7 SOIL EXCAVATION PROCEDURE AND EQUIPMENT

The County's selected contractor shall be responsible for onsite activities and safety. The contractor and the County's onsite Project Manager are responsible to implement the following protocols. Because the site is located in a suburban area, potential noise control shall be addressed by the County's selected contractor during the excavation activities. The contractor shall develop a site-specific HASP. The site-specific HASP may require that hearing protection be worn by the contractor crew members.

Work activities shall be planned and scheduled as such to minimize the number of times the impacted soils are handled or disturbed. Excavation, loading, transportation, and stockpiling shall be planned to minimize the aerial extent of waste or work area exposed. Vehicular traffic,

which will include principally truck traffic, shall be controlled on-site by implementing and enforcing traffic routes for all vehicles. These routes shall be clearly marked and drivers will be informed of the traffic plan in writing prior to performing any work at the site. Route markers (e.g., traffic cones and traffic signs) shall be placed as necessary to mark site access and routes of travel. The contractor shall also coordinate as necessary with all other site activities occurring during the soil removal.

The contractor is precluded form excavation activities in the area around SB-6 as shown in Figure 2. In the highlighted area, soils are not to be excavated though the shell walk path may be constructed.

The excavated soil will be placed in an area that is not proposed for inundation or flooding. Based on the limited contaminants present in the soil, no berms or liners are proposed or necessary for the stockpile to limit the impacted soil from leaching to the surface water or groundwater. The contractor shall insure that no soils present in the vicinity of SB-6 (benzene impacted soils) are inadvertently excavated.

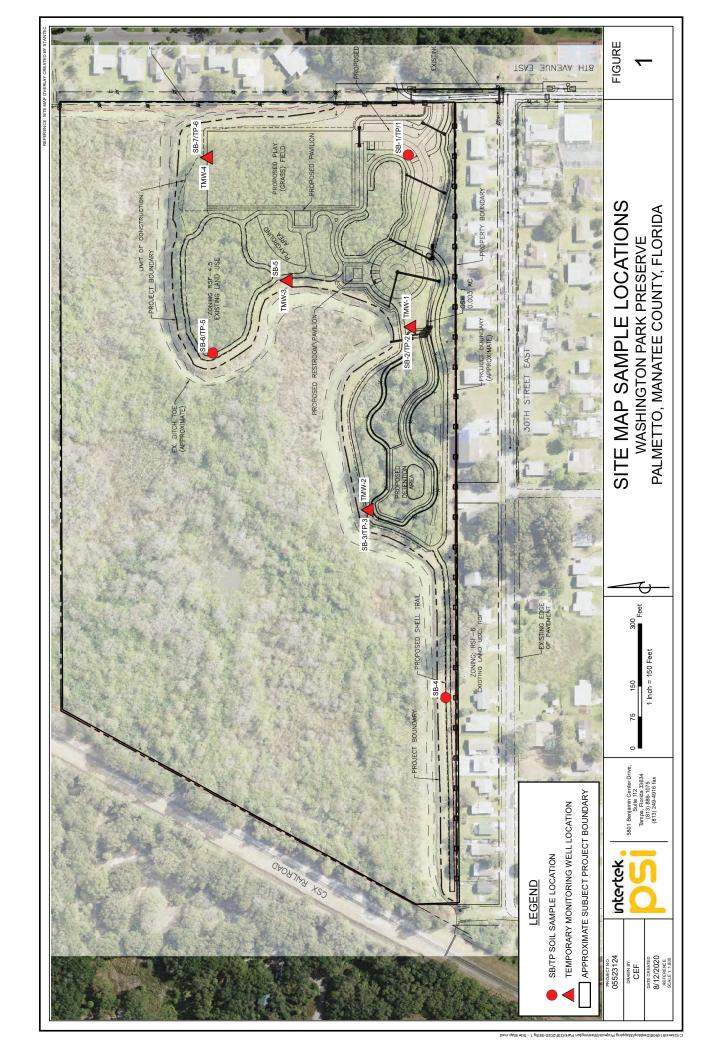
In an effort to limit soil erosion and sediment control of the soil stockpile, both non-structural and structural controls shall be used to control storm water run-off and related erosion from the soil stockpile. The structural controls, such as hay bales, shall be used in conjunction with silt fencing and diversion ditches to control surface water runoff. The exact locations of structural controls shall be determined based on the locations prescribed in the construction plans, prior to use of heavy equipment. Controls shall be implemented concurrently with all construction activity and shall be continued throughout the period of construction. Additionally, the County's selected contractor shall implement controls dictated by periods of intense weather. Weather forecasts shall be monitored to provide an alert of such weather conditions.

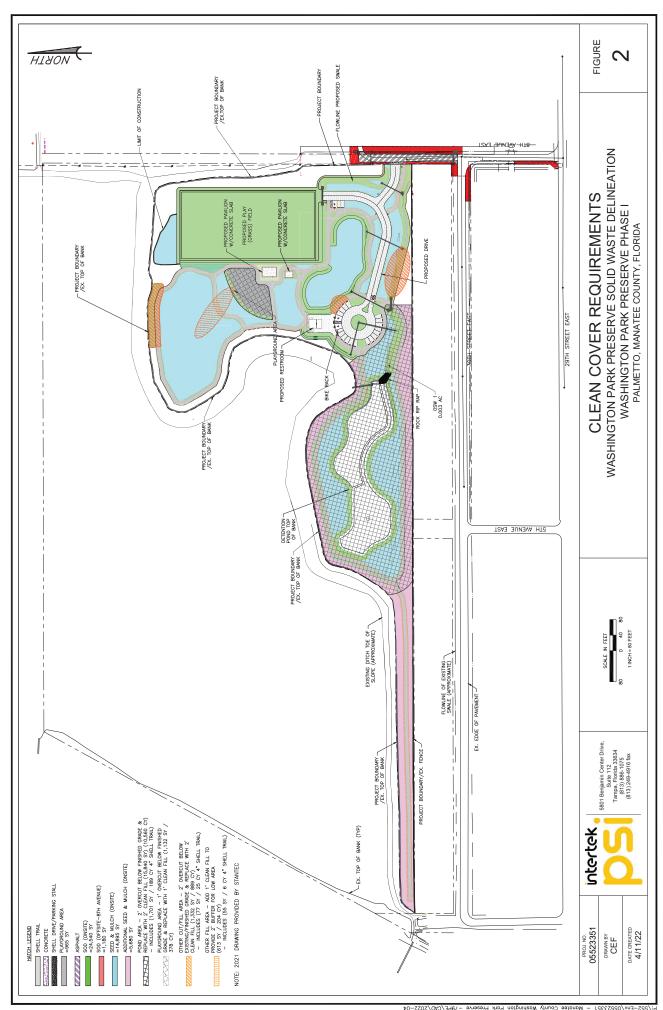
The County's selected contractor shall install suitable erosion and sediment control measures around the site as depicted in the Stantec plans prior to initiation of any site activities. The contractor shall augment the existing erosion controls as necessary, including the strategic placement of silt fence and hay bales. The controls shall be inspected after each rain event by the contractor to ensure continued performance pursuant to the approved SWPPP.

As noted above no excavated soils are to be re-used on the project site. The need to maintain dust control is emphasized herein due to the presence of higher levels of arsenic than was previously discovered. Furthermore, all excavated material not immediately removed from the site via direct load should be stockpiled on and covered by a minimum 6 mil poly sheeting when left on site and not scheduled to be immediately removed in that day.

Clean backfill is to be imported to the site and emplaced in the four areas shown on Figure 2 in the Appendix entitled, "Washington Park Preserve Clean Fill Overview". Based on the test pit results only those four areas identified do not currently have the requisite 2 feet of clean cover over buried debris. It is our understanding as well that clean fill is also going to be used during construction of the play field and playground areas which will further increase the buffer above the buried debris.

SUMMARY REPORT


The Contractor should prepare a report documenting field activities and summarizing the movement and disposal of on-site soils. The contractor is to provide 'as-built' drawings to the County as well as the results of testing for 'clean fill' constituents. The data collected will be illustrated on figures documenting the location of construction activity and prior assessment results. The figures will illustrate soil relocation areas with associated survey maps.


All data from the analytical testing conducted for any dewatering/treatment activity, including for the NPDES application and for any required treatment mandated by the NPDES permit shall also be provided.

FIGURES

APPENDIX A

Correspondence Dated January 23, 2007 from Drs. Robert and Stuchal to FDEP Bureau of Waste Cleanup

Center for Environment & Human Toxicology

PO Box 110885 Gainesville, FL 32611-0885 352-392-4700, ext. 5500 352-392-4707 Fax

January 23, 2007

Ligia Mora-Applegate
Bureau of Waste Cleanup
Florida Department of Environmental Protection
2600 Blair Stone Road
Tallahassee, FL 32399-2400

Re: Off-Road Vehicle Park SCTL for Arsenic

Dear Ms. Mora-Applegate:

At your request, we have calculated a provisional soil cleanup target level (SCTL) for arsenic under an off-road vehicle park scenario. As you know, we have developed default residential and commercial/industrial land use SCTLs for the Department in the context of Chapter 62-777, FAC. The exposure assumptions used to develop these default SCTLs do not represent well the exposure circumstances likely to exist for an off-road vehicle park; hence, the need to develop provisional values.

Arsenic is a carcinogen, and the risk to exposed individuals will be a function in part of both exposure frequency and exposure duration. In the absence of definitive information on frequency and duration of park use, we have chosen values consistent with recent risk assessments for park and recreational land use in Florida; namely, 200 days/year for 14 years. This represents an individual who begins visiting the park as a child, and continues visits as an adolescent and young adult. We recognize that the offroad park may be used primarily by adults, but have developed an SCTL for a child/adolescent/young adult in order to be health protective. Riders that begin as children will have, over time, somewhat greater exposure per unit body weight, and consequently greater risk, than adult riders.

Another departure from default SCTL exposure assumptions is in the inhalation of dust. All SCTLs include consideration of potential intake of contaminants by incidental ingestion, through dermal contact, and from inhalation of dust and volatilized material. Default scenarios are based on inhalation of dust from undisturbed soil, which clearly does not apply to off-road vehicle use. The Ārīzona Department of Health Services (under agreement with the Agency for Toxic Substances and Disease Registry of the U.S. Public Health Service) derived a particle emission factor (PEF) for fugitive dusts released during all-terrain vehicle (ATV) activities. This PEF value is based on ATV PM10 emission rates estimated from emission modeling, and was used in the calculation of SCTL values presented here.

Chapter 62-777, F.A.C. includes an oral bioavailability factor of 0.33 for arsenic in the calculation of cleanup target levels. This bioavailability factor was also included in the derivation of a vehicle park SCTL. The provisional SCTL for arsenic under an offroad vehicle park scenario is **5.5 mglkg**.

Please let us know if you have any questions in the derivation of this SCTL.

Sincerely,

Stephen M. Roberts, Ph.D.

Leah D. Stuchal, Ph.D.

Equations and Assumptions Used to Calculate Soil Cleanup Target Levels (SCTLs) for an Off-Road Vehicle Park Scenario

$$SCTL = \frac{TR \times BW \times AC}{EF \times ED \times FC \times \left(CSF_o \times IR_o \times CF \right) + \left(CSF_d \times SA \times AF \times DA \times CF \right) + \left(CSF_i \times IR_i \times \left(\frac{1}{VF} + \frac{1}{PEF} \right) \right) \right]}$$

$$VF = Q/C \times 10^{-4} (\text{m}^2/\text{cm}^2) \times \frac{\sqrt{3.14 \times \text{D}_A \times \text{T}}}{2 \times \text{r}_b \times \text{D}_A}$$

Abbreviation	Definition	Value
SCTL	Soil Cleanup Target Level	chemical-specific (mg/kg)
TR	Target Cancer Risk	1.00E-06
BW	Body Weight	39 (kg)
AT	Carcinogenic Averaging Time	25550 (d)
EF	Exposure Frequency	200 (d/γ)
ED	Exposure Duration	14 (y)
FC	Fraction from Contaminated Source	1.0
CSF,	Oral Cancer Slope Factor	chemical-specific (mg/kg-d) ⁻¹
CSF _d	Dermal Cancer Slope Factor	chemical-specific (mg/kg-d)-1
CSF,	Inhalation Cancer Slope Factor	chemical-specific (mg/kg-d) ⁻¹
CF	Correction Factor	1.00E-06 (kg/mg)
SA	Surface Area	4200 (cm ² /d)
AF	Adherence Factor	0.11 (mg/cm ²)
DA	Dermal Absorption	0.01
IR _o	Ingestion Rate	129 (mg/d)
I R _t	Inhalation Rate	12.2 (m ³ /d)
VF	Volatilization Factor	chemical-specific (m ³ /kg)
PEF	Particulate Emission Factor	4.60E+09 (m ³ /kg)
Q/C	Inverse of the Mean Concentration	85.61 (q/m²-s)
D _A	Apparent Diffusivity	chemical-specific (cm²/s)
T	Exposure Interval	ED X 3.1536E+07 (s)
ρ _b	Dry Soil Bulk Density	1.5 (g/cm ³)

APPENDIX B

Phase II Environmental Site Assessment Results
Washington Park Site
Palmetto, FL

Prepared by Cardno TBE Dated June 2014

Phase II Environmental Site Assessment

Conducted Under EPA Cooperative Agreement No. BF-95481811-0

Washington Park Site

Palmetto, Manatee County, Florida Parcel ID Nos. 2310800004, 2310600008, 2310200007, and 2519600007

prepared for:

Sarasota/Manatee Metropolitan Planning Organization

7632 15th Street East Sarasota, FL 34243-3248

prepared by:

Shaping the Future

380 Park Place Boulevard, Suite 300 Clearwater, FL 33759 Project No. 00022-959-00

June 2014

This Client/Grantee received funding from the EPA for this project.

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY	1
2.0	BACKGROUND	3
2.1	Site Description and Features	3
2.2	Site History and Land Use	3
2.3	Adjacent Property Use	3
2.4	Summary of Previous Assessments	3
2.5	Purpose	4
2.6	Limitations/Exceptions of Assessment	4
2.7	Limiting Conditions and Methodologies Used	
3.0	PHASE II ESA ACTIVITIES	6
3.1	Sampling Objectives	6
	3.1.1 Conceptual Site Model and Sampling Plan	
3.2	Phase II Investigation and Methods	
U. _	3.2.1 Test Pit Investigation	6
	3.2.2 Soil Sample Collection	
	·	
4.0	ENVIRONMENTAL ASSESSMENT RESULTS	
4.1	Subsurface Conditions	
	4.1.2 Site-specific Soil Lithology	
	4.1.3 Site-specific Shallow Groundwater Table Elevation Data	8
4.2	Analytical Data	
	4.2.1 Soil Analytical Results	
	4.2.3 Laboratory Analyses Quality Control (QC) Observations and Interpretations	
5.0	DISCUSSION OF FINDINGS AND CONCLUSIONS	10
5.1	Recognized Environmental Conditions	10
5.2	Affected Media	10
5.3	Evaluation of Data Quality	10
6.0	RECOMMENDATIONS	11
7.0	STATEMENT OF QUALITY AND PROFESSIONAL CERTIFICATION	12

Figures

Figure 1	USGS/Site Vicinity Map
Figure 2	Site Boundary and Surrounding Land Use Map
Figure 3	Soil Boring and Test Pit Locations
Figure 4	Temporary Monitor Well Locations

Tables

Table 1 Soil Analytical Summary
Table 1b Benzo(a)pyrene Conversion

Table 1b Benzo(a)pyrene Conversion Table
Table 2 Groundwater Analytical Summary

Appendices

Appendix A Field Sampling Logs, Well Construction Plans and Notes

Appendix B Laboratory Analytical Reports

1.0 EXECUTIVE SUMMARY

Cardno TBE has completed a Phase II Environmental Site Assessment of the property identified as the Washington Park Site located in, Palmetto, Manatee County, Florida (Parcel ID Nos. 2310800004, 2310600008, 2310200007, and 2519600007). The Site consists of approximately 81.5 acres of land with a current recorded land use of County-owned vacant land. A USGS vicinity map for the site is provided on **Figure 1** and the approximate site boundaries are depicted on **Figure 2**.

This assessment was prepared in general accordance with the *American Society of Testing and Materials (ASTM) Standard Practices for Environmental Site Assessments: Phase II ESA Process* (ASTM Designation: E1903-11). The purpose of this assessment was to evaluate the recognized environmental conditions (RECs) identified in the Phase I ESA, completed by Cardno TBE in March 2014 for the purpose of providing sufficient information regarding the nature and extent of contamination (if present). This information can be used to assist in making informed business decisions about the property; and where applicable, provide the level of knowledge necessary to satisfy the innocent purchaser defense under CERCLA.

The Phase I ESA identified the following recognized environmental conditions (RECs) at the subject property as defined by ASTM Standard Practice E1527-05:

- The subject site has documented on-site borrow pit activity. There is a potential for impacts associated with heavy equipment used for excavation and potential fill material from off-site sources during excavation.
- The subject site is located adjacent to a railroad; therefore, there is the potential for onsite impacts related to historical pesticide and herbicide use (that may have petroleum constituents) and metals.

Please note: this is a cursory summary of the Phase I ESA findings. The full report must be read in its entirety for a comprehensive understanding of these conclusions.

Phase II Scope Summary:

- Conduct limited test pit excavations to determine the general characteristic of on-site fill material with organic vapor analyzer (OVA) screening.
- Installation of eight soil borings within areas of concern based on site and test pit observations with OVA screening.
- Installation of four groundwater monitor wells based on the Phase I ESA findings, test pit and soil boring observations.
- Collection of soil and groundwater samples for laboratory analysis of petroleum hydrocarbons, low-level polycyclic aromatic hydrocarbons (PAHs), and 8 RCRA metals.

Phase II ESA Results:

- The test pit excavation activities identified plastic, metal, glass, brick, and/or concrete
 debris at all locations. Debris was observed from approximately 2 feet below land
 surface (bls) to depths of 8 feet bls in all borings installed along the southern portion
 of the property. No debris was encountered at the boring installed near the
 northwest corner of the site.
- Laboratory analysis of 10 soil samples collected at interval depths from five boring locations revealed limited soil impacts above residential direct-exposure Soil Cleanup Target Levels (SCTLs) for arsenic in six soil samples and benzo(a)pyrene in one soil sample. These impacts above residential direct-exposure SCTLs are vertically delineated in all but one sample location. The concentration of benzene was also detected above leachability SCTLs in three soil samples.
- Laboratory analysis of shallow groundwater samples collected from four temporary wells installed on-site revealed Groundwater Cleanup Target Level (GCTL) exceedances in samples collected from TMW-3 and TMW-4. The concentration of arsenic exceeded the GCTL in TMW-3 and the concentration of dibenz(a,h)anthracene exceeded the GCTL in TMW-4.

Recommendations:

- Additional soil and groundwater assessment is recommended to delineate the extent of identified GCTL and SCTL exceedances.
- A deed restriction on groundwater use is recommended due to the identified GCTL exceedances.
- If the property is not being considered for residential land use, no additional assessment appears warranted; however, institutional and/or engineering controls on the property may be required.

2.0 BACKGROUND

2.1 Site Description and Features

The subject property is located at 705 and 715 10th Avenue West, Palmetto, Manatee County, Florida (as depicted in **Figures 1 and 2**). The short legal description of the subject property parcel provided in County records, is as follows:

- Parcel No. 2310800004 (605 E 39th St, Palmetto, 8.5 acres)
 ALL THAT PART OF LOTS 53 & 54 LYING E OF A C L RR R/W & S OF PUBLIC RD PALMETTO GROVE & GARDEN CO PLAT P-83 PI#23108.0000/4
- Parcel No. 2310600008 (no address, combined total of 0.6 acres)
 THAT PART OF LOTS 21 & 33 LYING E OF RR PALMETTO GROVE & GARDEN CO PLAT P-82 PI#23106.0000/8
- Parcel No. 2310200007 (no address, 33 acres)
 THAT PART OF SE1/4 OF SW1/4 LY E OF RR R/W P-80 PI#23102.0000/7
- Parcel No. 2519600007 (no address, 39.4 acres)
 TRACTS 18,30 & 50 LESS THE S 32.5 FT, TRACTS 19,20 LY E OF RR R/W, TRACTS 31,32,51,52 P-41 PALMETTO GROVE & GARDEN CO PLAT PI#25196.0000/7

2.2 Site History and Land Use

Based on data contained in the Phase I ESA, the site appeared to be undeveloped vacant land until approximately 1973 when land movement/potential excavation was visible, on an aerial photograph, within the southeast quadrant of the subject site. This is consistent with the reported use of the subject site as a borrow pit as part of a highway construction project. Evidence of borrow pit/scarred land within the southeast quadrant of the subject site remained visible through approximately 2004.

2.3 Adjacent Property Use

The current surrounding land use is depicted on **Figure 2**. Land use around the subject site is primarily residential, with a commercial property (boat and RV storage) to the east.

2.4 Summary of Previous Assessments

Other than the Phase I ESA completed by Cardno TBE in March 2014, no assessment data directly related to the subject property has been documented. The Phase I ESA revealed the following REC's:

 The subject site has documented on-site borrow pit activity. There is a potential for impacts associated with heavy equipment used for excavation and potential fill material from off-site sources during excavation.

 The subject site is located adjacent to a railroad; therefore, there is the potential for onsite impacts related to historical pesticide and herbicide use (that may have petroleum constituents) and metals.

2.5 Purpose

The purpose of the Phase II ESA was to evaluate the RECs identified in the Phase I ESA in order to provide sufficient information regarding the nature and extent of contamination (if present). This information can be used to assist in making informed business decisions about the property; and where applicable, to provide the level of knowledge necessary to satisfy the innocent purchaser defense under CERCLA. The scope for this Phase II ESA was designed based on these criteria.

2.6 Limitations/Exceptions of Assessment

The conclusions and recommendations contained within this report are based on the data developed during the Phase II ESA investigation. This report was prepared for the Client, and is intended solely for their use. This report is not intended for third-party use without the expressed written consent of the Client and Cardno TBE. This report has been prepared in general accordance with ASTM E 1903-11 Standard Guide for Environmental Site Assessments: Phase II Environmental Site Assessment Process. No other warranty, expressed or implied, is made.

2.7 Limiting Conditions and Methodologies Used

No ESA can eliminate all uncertainty. Furthermore, any sample, either surface or subsurface, taken for chemical analysis may or may not be representative of a larger population. Professional judgment and interpretation are inherent in the process and uncertainty is inevitable. Additional assessment may be able to reduce the uncertainty. Even when Phase II ESA work is executed with an appropriate site-specific standard of care, certain conditions present especially difficult detection problems. Such conditions may include, but are not limited to, complex geological settings, the fate and transport characteristics of certain hazardous substances and petroleum products, the distribution of existing contamination, physical limitations imposed by the location of utilities and other man-made objects, and the limitations of assessment technologies.

Phase II ESAs do not generally require an exhaustive assessment of environmental conditions on a property. There is a point at which the cost of information obtained and the time required to obtain it outweigh the usefulness of the information and, in fact, may be a material detriment to the orderly completion of transactions. If hazardous substance or petroleum releases are confirmed on a parcel of property, the extent of further assessment is related to the degree of uncertainty that is acceptable to the user with respect to the real estate transaction. Measurements and sampling data only represent the site conditions at the time of data collection. Therefore, the usability of data collected as part of this Phase II ESA may have a finite lifetime depending on the application and use being made of the data. An environmental professional should evaluate whether the generated data are appropriate for any subsequent use beyond the original purpose for which it was collected.

3.0 PHASE II ESA ACTIVITIES

3.1 Sampling Objectives

3.1.1 Conceptual Site Model and Sampling Plan

The conceptual site model takes into consideration the potential distributions of contaminants with respect to their physical properties and anticipated fate and transport characteristics in the setting being assessed. The sampling plan was designed to provide for the collection of potentially contaminated environmental media, if they occur, at locations and depths where the highest concentrations are likely to occur.

The sampling plan developed for this project was based on a potentially variable direction of shallow groundwater flow, as well as the proximity of identified RECs.

3.1.2 Chemical Testing Plan/QAQC

The chemical testing plan was designed to detect the contaminants suspected to be present in the samples collected for comparison to established regulatory cleanup criteria. This testing plan included tests which provide quality assurance (QA) and techniques that provide quality control (QC) over the chemical analysis. A completed chain of custody record accompanied each sample shipment to the analytical laboratory. Chain of custody records provide written documentation regarding sample collection and handling, identify the persons involved in the chain of sample possession, and a written record of requested analytical parameters. In addition, trip blanks were included in all coolers containing samples for VOC analysis.

3.2 Phase II Investigation and Methods

3.2.1 Test Pit Investigation

On May 13, 2014, Cardno TBE and WD Environmental, Inc. advanced six test pits on site to determine the general characteristics of the on-site fill material. Test pits were advanced to the water table across the southern portion of the site as depicted on **Figure 3**. Locations were determined based on historical aerials as well as on-site observations and soils were screened from test pits with an Organic Vapor Analyzer (OVA) equipped with a Photoionization Detector (PID).

3.2.2 Soil Sample Collection

On May 15, 2014, Cardno TBE and Preferred Drilling Solutions, Inc. advanced eight (8) borings within the boundaries of the subject site to a depths between 5.5 to 15.5 feet below land surface (bls). At the time of the assessment, the water table was

encountered between 3 and 15 feet bls across the site. Soil boring locations are depicted on **Figure 3**.

Soil samples were recovered at approximately one-half foot bls, one foot bls, then recovered at two-foot intervals (starting at two feet bls) to the end of the boring. Samples were used for lithologic evaluation and were screened at these intervals for combustible vapors with an OVA equipped with a photoionization detector(PID). Copies of the field sampling logs are included in **Appendix A**.

None of the samples collected for screening exhibited PID readings above 10 parts per million (ppm). In addition, no soil staining or odors indicating excessive contamination were noted. Soil samples were collected for laboratory analysis from soil borings SB-1, 2, 4, 6 and 8 at two shallow intervals (each), as these borings were determined to determine the relationship between debris encountered and environmental impacts (since no significant PID readings were noted). Samples were submitted to an accredited laboratory for the following analyses:

- VOCs via EPA method 8260
- Semi-volatiles via EPA Method 8270
- 8 RCRA Metals via Method 6010/7471

3.2.3 Groundwater Monitor Well Installations/Sample Collection

Four (4) shallow temporary groundwater monitor wells were installed on May 15, 2014, as depicted on **Figure 4** (Temporary Monitor Well Locations). These wells consisted of 1.0-inch diameter Schedule 40 PVC pipe with 10 feet of pre-pack well screen and were installed per FDEP Standard Operating Procedures.

Wells were installed to depths of 10 to 13 feet bls using a Direct-Push Technology (DPT) rig. After installation, monitor wells were sampled not less than 24 hour after development. Copies of the field sampling logs and well construction details are included in **Appendix A.** Groundwater samples were submitted to an accredited laboratory for analysis utilizing the same parameters and guidelines as the soil samples.

4.0 ENVIRONMENTAL ASSESSMENT RESULTS

4.1 Subsurface Conditions

4.1.1 Test Pit Investigation

Test pit observations and Geophysical field observations and OVA results revealed the following:

- Plastic, metal, glass, brick, and/or concrete debris were observed at all locations
- All PID readings were below 10 ppm
- Saturated soils were observed at varying depths across the southern portion of the site (between 3 and 10 feet bls)

4.1.2 Site-specific Soil Lithology

Soil characterization observed during boring installation revealed primarily clayey fine sands or sandy clays to approximately 10 to 12 feet bls. A clay layer was encountered at depths varying from 10 to 15 feet bls in three of the eight borings advanced as part of groundwater monitor well installation. Limestone was encountered at two soil boring at approximately 5 feet bls (SB-4 and SB-6).

4.1.3 Site-specific Depth to Water Evaluation

After at least 24 hours had elapsed after well development and prior to groundwater sampling, depth to water (dtw) measurements were collected from the sampled monitor wells. Due to the distance between wells on this large site, as well as site features such as trees and vegetation, monitor wells were not surveyed to determine a groundwater contour.

4.2 Analytical Data

4.2.1 Soil Analytical Results

A comparison of the laboratory analytical results of the collected soil samples to Chapter 62-777 Soil Cleanup Target Levels (SCTLs) is summarized in **Table 1** and BaP Equivalent Calculations are summarized in **Table 1b**. In summary:

- The concentration of arsenic was detected above the SCTL for the residential direct-exposure criteria at the 0.5-2.0 ft bls interval at all sampled locations (SB-1, 2, 4, 6, and 8). The concentration of arsenic also exceeded the residential direct-exposure criteria at the 2.0-4.0 ft bls interval at one sampled location (SB-2).
- The concentration of benzene exceeded the SCTL for leachability in three soil samples (SB-6 @ 0.5-2.0 ft bls, SB-6 @ 2-4 ft bls and SB-8 at 0.5-2.0 ft bls).
- Laboratory analysis of the soil sample collected from SB-4 @ 0.5-2.0 ft bls revealed benzo(a)pyrene above its SCTL for the residential direct-exposure criteria, but well below the commercial/industrial direct-exposure criteria.

 All other analyzed parameters were not detected or were reported below their respective SCTLs.

4.2.2 Groundwater Analytical Results

A comparison of the laboratory analytical results of the shallow groundwater samples to Chapter 62-777 Groundwater Cleanup Target Levels (GCTLs) is summarized in **Table 2**. In summary:

- The concentration of arsenic was reported above its GCTL in TMW-3, but well below the Natural Attenuation Default Concentration (NADC).
- The concentration of dibenz(a,h)anthracene was reported above its GCTL in TMW-4, but well below the NADC.
- All other analyzed parameters were not detected or were reported below their respective GCTLs.

4.2.3 Laboratory Analyses Quality Control (QC) Observations and Interpretations

No significant QA/QC issues were encountered by Sun Labs. Samples were received in good condition. All spikes and surrogates were recovered within established limits, and all method-specified holding times were met. Minor exceptions noted on select quality control batch samples were primarily due to matrix interference and did not affect data quality or usability.

Based on the QA/QC statements issued by the laboratory, the laboratory data included in this report have been deemed reliable for the Environmental Professional to determine if the corresponding RECs have impacted the subject property.

Laboratory analytical reports are included as **Appendix B**.

5.0 DISCUSSION OF FINDINGS AND CONCLUSIONS

5.1 Recognized Environmental Conditions

Based on the results of this assessment, the recognized environmental conditions discussed in the Phase I ESA appear to have been evaluated. No additional RECs were encountered during this investigation.

5.2 Affected Media

Arsenic was detected at concentrations exceeding the residential direct-exposure SCTL throughout the site; impacts were vertically defined at four or the five sample locations. Arsenic also exceeded the GCTL in the well TMW-3 groundwater sample.

In addition to arsenic, PAHs (as BaP-equivalents) exceeded the residential direct-exposure SCTL at boring location SB-4. SVOCs also exceeded the GCTL in the monitor well TMW-4 location (note: well TMW-4 is not co-located with boring SB-4).

Leachability SCTL exceedances of benzene were identified at two soil boring locations at two different soil horizons (3 soil samples). Although GCTL exceedances of benzene were not identified in groundwater collected from temporary monitor well locations; it has not been determined if benzene has impacted groundwater on site because soil impacts were not colocated with the installation of a temporary monitor well.

5.3 Evaluation of Data Quality

The data gathered during this assessment is sufficient to determine whether hazardous substances or petroleum products were stored, released or disposed at the property.

6.0 RECOMMENDATIONS

Based on the results of this investigation:

- Additional soil and groundwater assessment is recommended to delineate the extent of identified GCTL and SCTL exceedances.
- Engineering or institutional controls may be appropriate for this property pending impact delineation and based on the intended land use.
- Confirmation groundwater samples are recommended at limited well locations with GCTL exceedances.

7.0 STATEMENT OF QUALITY AND PROFESSIONAL CERTIFICATION

This Phase II ESA was prepared for the Proposed Washington Park Site, in Manatee County, Florida. All data and calculations presented herein have been checked for accuracy and the basis for all conclusions and recommendations have been described. I further certify that this document meets or exceeds Cardno TBE's standards for editorial content, technical accuracy, and quality assurance verification.

Prepared by:

Jennifer Arndt Project Geologist II

Date: 2-10-14

I declare that I meet the definition of Environmental Professional as defined in 40 CFR Part 312.10 and that I have the specific qualifications based on education, training and experience to assess a property of the nature, history and setting of the subject property. I further certify that, in my professional judgment, this report meets the general requirements of ASTM Method E 1903-11, Standard Guide for Environmental Site Assessments: Phase II Environmental Site Assessment Process.

Reviewed by:

Terry W. Griffin, PG Sr. Project Manager

Date: 7/10-14

Figures

Washington Park Site (a/k/a Genesis Project) Palmetto, Manatee County, Florida

Figure 1 USGS/Site Vicinity Map

Washington Park Site (a/k/a Genesis Project) Palmetto, Manatee County, Florida

Figure 2 Site Boundary and Surrounding Land Use Map

Tables

Washington Park Site, Palmetto

Meth.	Parameter / CAS Number	CAS#	Units	DE-Residential	DE- Comm/Indust	t Leach-GW	SB-1@.50ft-2ft	t SB-1@2ft-4ft	# 4#	SB-2@.50ft-2ft	SB-2@2ft-4ft	SB-4@.50ft-2ft		SB-4@2ft-4ft	SB-6@.50ft-2ft		SB-6@2ft-4ft	SB-8@.50ft-2ft	SB-8@	SB-8@2ft-4ft
	Date Collected						5/15/2014 Result c	5/15/2014 Qual Result)14 Qual	5/15/2014 Result Qual	5/15/2014 Result Qual	5/15/2014 Besult	14 Qual	5/15/2014 Result Qual	5/15/2014 Result	5/15 Qual Result	5/15/2014 Result Qual	5/15/2014 Result Qual		5/15/2014 Result Qual
Metals																				
6010	Arsenic	7440-38-2	mg/kg	2.1	12	***	3.2	1.5		4.9	3.1	2.8		1.1	3.0	1.4	4	2.2	1.2	
6010	Barium	7440-39-3	mg/kg	120	130000	1600	15	18		28	38	28		70	17	15	2	28	13	
6010	Cadmium	7440-43-9	mg/kg	82	1700	7.5	0.097	0.098	-	0.24	0.21	0.26		0.060 U	0.52	0.24	-	0.16	0.062	2 U
6010	Chromium	7440-47-3	mg/kg	210	470	38	11	9.9		26	18	16		22	20	24	_	24	6.0	
6010	Lead	7439-92-1	mg/kg	400	1400	***	0.92	- 48		9.7	41	14		4.8	2.4	2.3	3	8.1	3.7	
6010	Selenium	7782-49-2	mg/kg	440	11000	5.2	0.18	U 0.20	n	0.17 U	0.18 U	0.18	n	0.18 U	0.19	U 0.20	20 U	0.19 U	U 0.18	U U
6010	Silver	7440-22-4	mg/kg	410	8200	17	0.19	U 0.21	n	0.18 U	0.19 U	0.19	n	0.19 U	0.21	U 0.22	22 U	0.20 U	U 0.20	U U
7471	Mercury	7439-97-6	mg/kg	3	17	2.1	0.0041	U 0.12		0.022	0.052	0.0041	n	0.040	0.016	0.052	52	0.027	0.013	3
Volatile	Volatile Organic Compounds																			
8260	1,1,1-Trichloroethane	71-55-6	mg/kg	730	3900	1.9	0.0011	U 0.0014	n	0.0011 U	0.0010 U	0.0011	n	0.00097 U	0.0011	U 0.00098	U 860	0.0011 U	U 0.00092	92 U
8260	1,1,2,2-Tetrachloroethane	79-34-5	mg/kg	0.7	1.2	0.001	0.00046	U 0.00056	n	0.00043 U	0.00041 U	0.00042	n	0.00039 U	0.00042	U 0.00039	039 U	0.00043 U	U 0.00037	37 U
8260	1,1,2-Trichloroethane	79-00-5	mg/kg	1.4	2	0.03	0.00041	U 0.00050	n	0.00038 U	0.00036 U	0.00038	n	0.00034 U	0.00037	U 0.00035	035 U	0.00038 U	U 0.00033	33 U
8260	1,1-Dichloroethane	75-34-3	mg/kg	390	2100	0.4	0.0011	U 0.0013	ס	0.0010 U	0.00095 U	0.00098	ם	0:00000 U	0.00098	U 0.00090	O60	0.00098	U 0.00085	35 U
8260	1,1-Dichloroethene	75-35-4	mg/kg	92	510	90:0	0.0012	U 0.0015	ס	0.0012 U	0.0011 U	0.0011	ם	0.0010 U	0.0011	U 0.0011	J11 U	0.0011 U	0.00099	99 U
8260	1,2,4-Trimethylbenzene	95-63-6	mg/kg	18	95	0.3	0.00097	0.00095	_	0.0014	0.0015	0.0014	_	0.00034 U	0.0013	0.0013	113	0.0010	0.00070	70
8260	1,2-Dichlorobenzene	95-50-1	mg/kg	880	2000	17	0.00043	U 0.00053	D	0.00041 U	O.00039	0.00040)	0.00037 U	0.00040	U 0.00037	037 U	0.00040	U 0.00035	35 U
8260	1,2-Dichloroethane	107-06-2	mg/kg	0.5	0.7	0.01	0.00047	U 0.00057	D	0.00044 U	0.00042 U	0.00043	٥ ت	0.00040 U	0.00043	U 0.00040	040 U	0.00043 U	U 0.00037	37 U
8260	1,2-Dichloropropane	78-87-5	mg/kg	9.0	6.0	0.03	0.00064	U 0.00078	D	0.00060 U	0.00057 U	0.00059)	0.00054 U	0.00059	U 0.00054	054 U	0.00059 U	U 0.00057	51 U
8260	1,3,5-Trimethylbenzene	108-67-8	mg/kg	15	80	0.3	0.00059	U 0.00072	n	0.00061	0.00053 U	0.00055	n	0.00050 U	0.00054	0.00066	1 990	0.00055 U	U 0.00047	47 U
8260	1,3-Dichlorobenzene	541-73-1	mg/kg	380	2200	7	0.00030	U 0.00037	D	0.00028 U	0.00027 U	0.00028)	0.00025 U	0.00028	U 0.00026	02e U	0.00028 U	U 0.00024	24 U
8260	1,3-Dichloropropene (Total)	542-75-6	mg/kg	1.4	2.2	0.002	0.00050	U 0.00061	D	0.00047 U	0.00044 U	0.00046)	0.00042 U	0.00046	U 0.00042	042 U	0.00046 U	U 0.00040	40 U
8260	1,4-Dichlorobenzene	106-46-7	mg/kg	6.4	6.6	2.2	0.00088	U 0.0011	n	0.00084 U	U.00079	0.00082)	0.00075 U	0.00081	U 0.00075	075 U	0.00082 U	U 0.00071	71 U
8260	2-Butanone (MEK)	78-93-3	mg/kg	16000	110000	17	0.0021	0.016		0.0077	0.0076	0.0082		0.0018 U	0.0020	∪ 0.018	18	0.011	0.0063	-
8260	2-Hexanone	591-78-6	mg/kg	24	130	1.4	0.0047	U 0.0057	n	0.0044 U	0.0042 U	0.0043	D	0.0040 U	0.0043	U 0.0040)40 U	0.0043 U	U 0.0037	17 U
8260	4-Methyl-2-pentanone (MIBK)	108-10-1	mg/kg	4300	44000	2.6	0.0027	U 0.0032	D	0.0025 U	0.0024 U	0.0025	ے ت	0.0022 U	0.0024	U 0.0023)23 U	0.0025 U	U 0.0021	U
8260	Acetone	67-64-1	mg/kg	11000	68000	25	0.036	1 0.12		0.032	0.0087 U	0.081		0.0082 U	0.049	0.059	59	0.040	0.0078	.8 U
8260	Benzene	71-43-2	mg/kg	1.2	1.7	0.007	0.0021	0.0041		0.0029	0.0041	0.0056		0.00080	0.0078	0.011	11	0.0093	0.0029	6
8260	Bromochloromethane	74-97-5	mg/kg	92	530	9.0	0.00042	U 0.00052	D	0.00040 U	0.00038 U	0.00039	٥ ص	0.00036 U	0.00039	U 0.00036	036 U	0.00039 U	U 0.00034	34 U
8260	Bromodichloromethane	75-27-4	mg/kg	1.5	2.2	0.004	0.00039	U 0.00048	D	0.00037 U	0.00035 U	0.00036	O O	0.00033 U	0.00036	U 0.00033	033 U	0.00036 U	U 0.00037	31 U
8260	Bromoform	75-25-2	mg/kg	48	93	0.03	0.00070	U 0.00085	n	0.00066 U	0.00063 U	0.00065	n	0.00059 U	0.00064	U 0.00060	O90	0.00065 U	U 0.00056	56 U
8260	Bromomethane	74-83-9	mg/kg	3.1	16	0.05	0.0014	U 0.0017	D	0.0013 U	0.0013 U	0.0013	D	0.0012 U	0.0013	U 0.0012	J12 U	0.0013 U	U 0.0011	1 U
8260	Carbon disulfide	75-15-0	mg/kg	270	1500	5.6	0.0013	0.0025	-	0.0013 U	0.0012 U	0.0012	D	0.0011 U	0.0012	U 0.0011	J11 U	0.0012 U	U 0.0011	1 U
8260	Carbon tetrachloride	56-23-5	mg/kg	0.5	0.7	0.04	0.0011	U 0.0013	D	0.0010 U	0.00095 U	0.00098	n	0.00000 U	0.00098	U 0.00090	U 060	0.00098 U	U 0.00085	35 U
8260	Chlorobenzene	108-90-7	mg/kg	120	650	1.3	0.00061	U 0.00075	D	0.00058 U	0.00055 U	0.00056	⊃	0.00052 U	0.00056	U 0.00052	052 U	0.00056 U	U 0.00049	49 U
J	C) Cardno								Page 1 of 3	nf3										

Washington Park Site, Palmetto

Meth.	Parameter / CAS Number	CAS#	Units	DE-Residental	DE- al Comm/Indust	t Leach-GW	SB-1@.50ft-2ft	30ft-2ft	SB-1@2ft-4ft		SB-2@.50ft-2ft	SB-2@2ft-4ft		SB-4@.50ft-2ft	SB-4@2ft-4ft		SB-6@.50ft-2ft	SB-6@2ft-4ft		SB-8@.50ft-2ft	SB-8@2ft-4ft	t-4ft
	Date Collected						5/15/2014 Result	2014 Qual	5/15/2014 Result	Qual	5/15/2014 Result Qua	5/15/2014 Result	4 Qual	5/15/2014 Result Qua	5/15/2014 Jail Result	Qual	5/15/2014 Result Qual	5/15/2014 Result	5/1 Qual Resu	5/15/2014 Result Qual	5/15/2014 Result	14 Qual
8260	Chloroethane	75-00-3	mg/kg	3.9	5.4	90:0	0.0011	Π	0.0013	Ο	0.0010 L	U 0.00095	Ο	U.000098	0.00090	O:0	0.00098 U	0.00090	0.00098	U 860	0.00085	n
8260	Chloroform	67-66-3	mg/kg	0.4	9.0	0.4	0.00097	0 Z	0.0012	ח	0.00092 L	U 0.00087	D	0.00000 U	0.00082	O:0	0.00089 U	0.00083	U 0.00090	n 060	0.00078	U
8260	Chloromethane	74-87-3	mg/kg	4	5.7	0.01	0.0012	n	0.0015	n	0.0012	U 0.0011	n	0.0011 U	0.0010	0	0.0011 U	0.0011	U 0.0011	J11 U	0.00099	Π
8260	cis-1,2-Dichloroethene	156-59-2	mg/kg	33	180	0.4	0.00097	0 Z	0.0012	n	0.00092	U 0.00087	n	U.000000	0.00082	U 0.0	0.00089 U	0.00083	U 0.00090	O60	0.00078	Π
8260	Dibromochloromethane	124-48-1	mg/kg	1.5	2.3	0.003	0.00020	0	0.00025	n	0.00019 L	U 0.00018	D	0.00019 U	0.00017	U 0.0	0.00019 U	0.00017	U 0.00019	019 U	0.00016	Π
8260	Dibromomethane	74-95-3	mg/kg	96	550	0.3	0.00023	3 N	0.00028	n	0.00022	U 0.00021	n	0.00021 U	0.00019	O:0	0.00021 U	0.00020	U 0.00021	021 U	0.00018	О
8260	Dichlorodifluoromethane	75-71-8	mg/kg	77	410	44	0.0011	_	0.0013	D	0.0010	U 0.00095	D	0.00098 U	0.00090	U 0.0	0.00098 U	0.00090	U 0.00098	O 860	0.00085	Π
8260	Ethylbenzene	100-41-4	mg/kg	1500	9200	9.0	0.020		0.016		0.0020	0.0020	-	0.0017	0.00063	о	0.0032	0.0061	0.0028	128	0.0011	-
8260	isopropylbenzene	98-82-8	mg/kg	220	1200	0.2	0.00061	- -	0.00075	n	0.00058 L	U 0.00055	D	0.00056 U	0.00052	O:0	0.00056 U	0.00072	1 0.00056	056 U	0.00049	О
8260	Methyl tert-Butyl Ether (MTBE)	1634-04-4	mg/kg	4400	24000	0.09	0.00080	0	0.00097	ח	0.00075 L	U 0.00071	D	0.00074 U	0.00067	O:0	0.00073 U	0.00068	U 0.00074	074 U	0.00064	Π
8260	Methylene Chloride	75-09-2	mg/kg	17	26	0.02	0.0019	n e	0.0027	-	0.0018	U 0.0017	О	0.0018 U	0.0016	Ū.	0.0018 U	0.0017	0.0019	119	0.0016	Π
8260	Styrene	100-42-5	mg/kg	3600	23000	3.6	0.00020	0	0.00025	ם	0.00019 L	U 0.00018	D	0.00019 U	0.00017	U 0.0	0.00019 U	0.00017	U 0.00019	019 U	0.00016	U
8260	Tetrachloroethene	127-18-4	mg/kg	8.8	18	0.03	0.00078	0	0.00095	n	0.00073	U 0.00070	D	0.00072 U	0.00066	U 0.0	0.00072 U	0.00066	U 0.00072	072 U	0.00062	Ο
8260	Toluene	108-88-3	mg/kg	7500	00009	0.5	0.011		0.0097		0.0024	0.0039		0.0036	0.00066	0	0.0055	0.0083	0.0049	949	0.0022	-
8260	trans-1,2-Dichloroethene	156-60-5	mg/kg	53	290	0.7	0.0011	_	0.0014	D	0.0011 L	U 0.0010	D	0.0011 U	0.00097	Ö.	0.0011 U	0.00098	U 0.0011	J11 U	0.00092	Π
8260	Trichloroethene	79-01-6	mg/kg	6.4	9.3	0.03	0.00074	4 U	0.00091	n	0.00070	U 0.00066	n	0.00069 U	0.00063	U 0.0	0.00068 U	0.00063	U 0.00069	N 690	0.00059	Ο
8260	Trichlorofluoromethane	75-69-4	mg/kg	270	1500	33	0.0011	_	0.0014	D	0.0011	U 0.0010	D	0.0011 U	0.00097	ō O	0.0011 U	0.00098	U 0.0011	U 110	0.00092	Ο
8260	Vinyl chloride	75-01-4	mg/kg	0.2	0.8	0.007	0.0016	n	0.0013	n	0.0010	U 0.00095	D	U.00098	0.00090	U 0.0	0.00098 U	0.00090	U 0.00098	O 860	0.00085	Π
8260	Xylenes (Total)	1330-20-7	mg/kg	130	700	0.2	0.0024	,	0.00057	_	0.0030	0.0040		0.0038	0.00011	0	0.0043	0.0018	0.0012	12	0.0016	
Semi-V	Semi-Volatile Organic Compounds & PAHs																					
8270	1-Methylnaphthalene	90-12-0	mg/kg	200	1800	3.1	0.0073	O .	0.0082	n	0.0074 L	0.011	-	0.0075	7200.0 r	O O	0.0077 U	0.0081	U 0.015	15 U	0.015	D
8270	2-Methylnaphthalene	91-57-6	mg/kg	210	2100	8.5	0.0062	n	0.0069	D	0.0063	∪ 0.015	-	0.0063 U	0.0065	Ö.	0.0065 U	0.0069	U 0.013	13 U	0.012	Π
8270	Acenaphthene	83-32-9	mg/kg	2400	20000	2.1	0.0046	D	0.0078	-	0.0047 L	U 0.0049	⊃	0.0047 U	0.0049	0	0.0049 U	0.0052	U 0.0094)94 U	0.0093	⊃
8270	Acenaphthylene	208-96-8	mg/kg	1800	20000	27	0.0049	n e	0.0054	Ο	0.0050 L	U 0.0051	n	0.083	0.0051	0	0.0051 U	0.0054	0.0099	U 660	0.0098	Ο
8270	Anthracene	120-12-7	mg/kg	21000	300000	2500	0.0038	U E	0.027		0.0038 L	U 0.0040	n	0.073	0.0040	.0	0.0040 U	0.0042	U 0.0076	J76 U	0.0076	Π
8270	Benz[a]anthracene	56-55-3	mg/kg	#	#	0.8	0.0033	n E	0.053		0.0034	0.018		0.20	0.0035	0	0.0035 U	0.0037	U 0.0067	U 290	0.019	-
8270	Benzo[a]pyrene	50-32-8	mg/kg	0.1	0.7	8	0.0044	0	0.042		0.0045 L	0.024		0.40	0.0047	0	0.0047 U	0.0049	U 0.0090	O60	0.019	-
8270	Benzo[b]fluoranthene	205-99-2	mg/kg	#	#	2.4	0.0060	n	0.070		0.0061	∪ 0.051		0.79	0.0063	0	0.0063 U	0.0066	U 0.012	12 U	0.040	-
8270	Benzo[ghi]perylene	191-24-2	mg/kg	2500	52000	32000	0.015	n	0.031	-	0.016 L	0.021	-	0.37	0.016	0	0.016 U	0.017	U 0.031	31 U	0.042	-
8270	Benzo[k]fluoranthene	207-08-9	mg/kg	#	#	24	0.0042	n	0.021		0.0043 L	0.014	-	0.23	0.0044	0	0.0044 U	0.0047	U 0.0085)85 U	0.020	-
8270	Chrysene	218-01-9	mg/kg	#	#	77	0.0027	0	0.053		0.0027	∪ 0.032		0.29	0.0028	.0	0.0028 U	0.0030	∪ 0.0055	1 22	0.017	-
8270	Dibenz[a,h]anthracene	53-70-3	mg/kg	#	#	0.7	0.017	n	0.019	Ω	0.017 L	U 0.017	n	0.091	0.017	0	0.017 U	0.018	U 0.034	34 U	0.033	n
8270	Fluoranthene	206-44-0	mg/kg	3200	29000	1200	0.0051	D	0.15		0.0052 L	0.024		0.24	0.0054	0	0.0054 U	0.0057	U 0.010	10 U	0.010	О
8270	Fluorene	86-73-7	mg/kg	2600	33000	160	0.0040	D	0.015	-	0.0041 L	U 0.0042	D	0.0041 U	J 0.0042	O O	0.0042 U	0.0044	U 0.0081	081 U	0.0080	⊃
8270	Indeno[1,2,3-cd]pyrene	193-39-5	mg/kg	#	#	9.9	0.015	⊃	0.026	-	0.016 L	U 0.016	⊃	0.32	0.016	0	0.016 U	0.017	U 0.031	31 U	0.031	Ο
Ü	Cardno									00000	ç											

C Cardno

Washington Park Site, Palmetto

Meth.	Parameter / CAS Number	CAS#	Units	Units DE-Residential	DE- Comm/Indust	Leach-GW	SB-1@.50ft-2ft		SB-1@2ft-4ft	SB-2@.50ft-2ft		SB-2@2ft-4ft		SB-4@.50ft-2ft		SB-4@2ft-4ft		SB-6@.50ft-2ft	SB-6@2ft-4ft	-4ft	SB-8@.50ft-2ft	2ft	SB-8@2ft-4ft	
	Date Collected						5/15/2014 Result O	Qual	5/15/2014 Result Qual	5/15/2014 Result	Qual	5/15/2014 Result	Qual	5/15/2014 Result Qual	5/15/2014 rai Result	2014 Qual		5/15/2014 Result Qual	5/15/2014 Result	4 Qual	5/15/2014 Result	Qual	5/15/2014 Result	Qual
8270	Naphthalene	91-20-3	mg/kg	55	300	1.2	0.012	Ū	0.014 U	0.012	0	0.013	n	0.012 U	0.013	n	0.013	13 U	0.014	Π	0.025	О	0.024	∩
8270	Phenanthrene	85-01-8	mg/kg	2200	36000	250	0.0062	Ū	0.13	0.0063	°	0.012	_	0.041	0.0065	5 U	0.0065	165 U	0.0069	Π	0.013	⊃	0.012	⊃
8270	Pyrene	129-00-0	mg/kg	2400	45000	880	0.015	Ū	0.12	0.016	0	0.043	_	0.30	0.016		0.0	0.016 U	0.017	n	0.031	Ω	0.031	Э
	BaP Equivalents	mg/kg	mg/kg	0.1	0.7	NA	NC		0.1	NC		0		9.0	NC		NC	0	NC		NC		0	

Table 1 Soil Analytical Summary

I = Reported value is between the laboratory method detection limit and the laboratory practical quantitation limit
*** = leachability criteria values may be derived using the SPLP test to calculate site-specific SCTLs, if required.
NA = Not Applicable
NC = Not Calculated

LEGEND:

Unless noted by 9, units have been converted to ug/L (water) or mg/kg (solids) for ease of comparison with Chapter 62-770 Cleanup Target Levels. Site concentrations for carcenogenic PAHs have been converted to Benzo(a)pyrene equivalents (SEE TABLE 1B) for each boring NOTES. This summary is provided for the convenience of our clients. The signed, hardcopy report is the official report.

Table 1b: Benzo(a)pyrene Conversion Table

For Direct Exposure Soil Cleanup Target Levels

 Site Location:
 Washington Park Site, Palmetto

 Soil Sample No.
 SB-1

 Sample Date
 5/15/2014

 Depth (ft):
 2-4 feet below land surface

Contaminant	Concentration (mg/kg)	Toxic Equivalency Factor	Benzo(a)pyrene Equivalents
Benzo(a)pyrene	0.053	1.0	0.0530
Benzo(a)anthracene	0.027	0.1	0.0027
Benzo(b)fluoranthene	0.070	0.1	0.0070
Benzo(k)fluoranthene	0.021	0.01	0.0002
Chrysene	0.053	0.001	0.0001
Dibenz(a,h)anthracene	0.010	1.0	0.0095
Indeno(1,2,3-cd)pyrene	0.026	0.1	0.0026

DE Residential = 0.1 mg/kg; DE Industrial = 0.7 mg/kg

Total Benzo(a)pyrene Equivalents = 0.1

The concentration shown does not exceed the Residential Direct Exposure SCTL of 0.1 mg/kg.

The concentration shown does not exceed the Industrial Direct Exposure SCTL of 0.7 mg/kg.

 Soil Sample No.
 SB-2

 Sample Date
 5/15/2014

 Depth (ft):
 2-4 feet below land surface

Contaminant	Concentration (mg/kg)	Toxic Equivalency Factor	Benzo(a)pyrene Equivalents
Benzo(a)pyrene	0.024	1.0	0.0240
Benzo(a)anthracene	0.018	0.1	0.0018
Benzo(b)fluoranthene	0.051	0.1	0.0051
Benzo(k)fluoranthene	0.014	0.01	0.0001
Chrysene	0.032	0.001	0.0000
Dibenz(a,h)anthracene	0.009	1.0	0.0085
Indeno(1,2,3-cd)pyrene	0.008	0.1	0.0008

DE Residential = 0.1 mg/kg; DE Industrial = 0.7 mg/kg

Total Benzo(a)pyrene Equivalents = 0.0

The concentration shown does not exceed the Residential Direct Exposure SCTL of 0.1 mg/kg.

The concentration shown does not exceed the Industrial Direct Exposure SCTL of 0.7 mg/kg.

 Soil Sample No.
 SB-4

 Sample Date
 5/15/2014

 Depth (ft):
 0.5-2 feet below land surface

Contaminant	Concentration (mg/kg)	Toxic Equivalency Factor	Benzo(a)pyrene Equivalents
Benzo(a)pyrene	0.400	1.0	0.4000
Benzo(a)anthracene	0.200	0.1	0.0200
Benzo(b)fluoranthene	0.790	0.1	0.0790
Benzo(k)fluoranthene	0.230	0.01	0.0023
Chrysene	0.290	0.001	0.0003
Dibenz(a,h)anthracene	0.091	1.0	0.0910
Indeno(1,2,3-cd)pyrene	0.320	0.1	0.0320

DE Residential = 0.1 mg/kg; DE Industrial = 0.7 mg/kg

Total Benzo(a)pyrene Equivalents = 0.6

The concentration shown EXCEEDS the Residential Direct Exposure SCTL of 0.1 mg/kg.

The concentration shown does not exceed the Industrial Direct Exposure SCTL of $0.7\ mg/kg$.

Table 1b: Benzo(a)pyrene Conversion Table For Direct Exposure Soil Cleanup Target Levels

Site Location: Washington Park Site, Palmetto

Soil Sample No. SB-8

Sample Date 5/15/2014

Depth (ft): 2-4 feet below land surface

Contaminant	Concentration (mg/kg)	Toxic Equivalency Factor	Benzo(a)pyrene Equivalents
Benzo(a)pyrene	0.019	1.0	0.0190
Benzo(a)anthracene	0.019	0.1	0.0019
Benzo(b)fluoranthene	0.040	0.1	0.0040
Benzo(k)fluoranthene	0.020	0.01	0.0002
Chrysene	0.017	0.001	0.0000
Dibenz(a,h)anthracene	0.017	1.0	0.0165
Indeno(1.2.3-cd)pyrene	0.016	0.1	0.0016

DE Residential = 0.1 mg/kg; DE Industrial = 0.7 mg/kg

Total Benzo(a)pyrene Equivalents =

The concentration shown does not exceed the Residential Direct Exposure SCTL of 0.1 mg/kg.

The concentration shown does not exceed the Industrial Direct Exposure SCTL of 0.7 mg/kg.

Table 2 Groundwater Analytical Summary

Washington Park Site, Palmetto

Method	Parameter	CAS#	Units	GCTL	NADC	TMW-1		TMW-2	2	TMW-S	3	TMW-4	1
	Date Collected					5/19/2014 Result	Qual	5/19/2014 Result	4 Qual	5/19/201 Result	4 Qual	5/19/201 Result	4 Qual
Metals						ı	Quui		Quui		Quui		Qua
6010	Arsenic	7440-38-2	ug/L	10	100	5.0	U	5.0	U	52		5.0	U
6010	Barium	7440-39-3	ug/L	2000	20000	180		62		81		65	
6010	Cadmium	7440-43-9	ug/L	5	50	0.93	U	0.93	U	0.93	U	0.93	U
6010	Chromium	7440-47-3	ug/L	100	1000	2.0	U	2.0	U	2.0	U	2.0	U
6010	Lead	7439-92-1	ug/L	15	150	4.7	U	4.7	U	4.7	U	4.7	U
6010	Selenium	7782-49-2	ug/L	50	500	4.4	U	4.4	U	4.4	U	11	- 1
6010	Silver	7440-22-4	ug/L	100	1000	2.1	U	2.1	U	2.1	U	2.1	U
7470	Mercury	7439-97-6	ug/L	2	20	0.018	U	0.018	U	0.018	U	0.018	U
Volatile O	rganic Compounds												
8260	1,1,1-Trichloroethane	71-55-6	ug/L	200	2000	0.19	U	0.19	U	0.19	U	0.19	U
8260	1,1,2,2-Tetrachloroethane	79-34-5	ug/L	0.2	2	0.19	U	0.19	U	0.19	U	0.19	U
8260	1,1,2-Trichloroethane	79-00-5	ug/L	5	500	0.92	U	0.92	U	0.92	U	0.92	U
8260	1,1-Dichloroethane	75-34-3	ug/L	70	700	0.23	U	0.23	U	0.23	U	0.23	U
8260	1,1-Dichloroethene	75-35-4	ug/L	7	70	0.34	U	0.34	U	0.34	U	0.34	U
8260	1,2,4-Trimethylbenzene	95-63-6	ug/L	10	100	0.37	U	0.37	U	0.37	U	0.37	U
8260	1,2-Dichlorobenzene	95-50-1	ug/L	600	6000	0.40	U	0.40	U	0.40	U	0.40	U
8260	1,2-Dichloroethane	107-06-2	ug/L	3	300	0.24	U	0.24	U	0.24	U	0.24	U
8260	1,2-Dichloropropane	78-87-5	ug/L	5	50	0.28	U	0.28	U	0.28	U	0.28	U
8260	1,3,5-Trimethylbenzene	108-67-8	ug/L	10	100	0.24	U	0.24	U	0.24	U	0.24	U
8260	1,3-Dichlorobenzene	541-73-1	ug/L	210	2100	0.34	U	0.34	U	0.34	U	0.34	U
8260	1,3-Dichloropropene (Total)	542-75-6	ug/L	0.4	40	0.11	U	0.11	U	0.11	U	0.11	U
8260	1,4-Dichlorobenzene	106-46-7	ug/L	75	750	0.21	U	0.21	U	0.21	U	0.21	U
8260	2-Butanone (MEK)	78-93-3	ug/L	4200	42000	2.1	U	2.1	U	2.1	U	2.1	U
8260	2-Hexanone	591-78-6	ug/L	280	2800	1.5	U	1.5	U	1.5	U	1.5	U
8260	4-Methyl-2-pentanone (MIBK)	108-10-1	ug/L	560	5600	1.3	U	1.3	U	1.3	U	1.3	U
8260	Acetone	67-64-1	ug/L	6300	63000	8.3	-1	8.0	- 1	12	- 1	6.9	U
8260	Benzene	71-43-2	ug/L	1	100	0.23	U	0.23	U	0.23	U	0.23	U
8260	Bromochloromethane	74-97-5	ug/L	91	910	0.18	U	0.18	U	0.18	U	0.18	U
8260	Bromodichloromethane	75-27-4	ug/L	0.6	60	0.19	U	0.19	U	0.19	U	0.19	U
8260	Bromoform	75-25-2	ug/L	4.4	440	0.35	U	0.35	U	0.35	U	0.35	U
8260	Bromomethane	74-83-9	ug/L	9.8	98	0.43	U	0.43	U	0.43	U	0.43	U
8260	Carbon disulfide	75-15-0	ug/L	700	7000	0.35	U	0.35	U	0.35	U	0.35	U
8260	Carbon tetrachloride	56-23-5	ug/L	3	300	0.18	U	0.18	U	0.18	U	0.18	U
8260	Chlorobenzene	108-90-7	ug/L	100	1000	0.19	U	0.19	U	0.19	U	0.19	U
8260	Chloroethane	75-00-3	ug/L	12	1200	0.36	U	0.36	U	0.36	U	0.36	U
8260	Chloroform	67-66-3	ug/L	70	700	0.19	U	0.19	U	0.19	U	0.19	U
8260	Chloromethane	74-87-3	ug/L	2.7	270	0.32	U	0.32	U	0.32	U	0.32	U
8260	cis-1,2-Dichloroethene	156-59-2	ug/L	70	700	0.22	U	0.22	U	0.22	U	0.22	U
8260	Dibromochloromethane	124-48-1	ug/L	0.4	40	0.33	U	0.33	U	0.33	U	0.33	U
8260	Dibromomethane	74-95-3	ug/L	70	700	0.25	U	0.25	U	0.25	U	0.25	U
8260	Dichlorodifluoromethane	75-71-8	ug/L	1400	14000	0.42	U	0.42	U	0.42	U	0.42	U
8260	Ethylbenzene	100-41-4	ug/L	30	300	0.20	U	0.20	U	0.20	U	0.20	U
8260	isopropylbenzene	98-82-8	ug/L	0.8	8	0.26	U	0.26	U	0.26	U	0.26	U
8260	Methyl tert-Butyl Ether (MTBE)	1634-04-4	ug/L	20	200	0.28	U	0.28	U	0.28	U	0.28	U
8260	Methylene Chloride	75-09-2	ug/L	5	500	0.65	U	0.65	U	0.65	U	0.65	U
8260	Styrene	100-42-5	ug/L	100	1000	0.23	U	0.23	U	0.23	U	0.23	U
8260	Tetrachloroethene	127-18-4	ug/L	3	30	0.36	U	0.36	U	0.36	U	0.36	U
8260	Toluene	108-88-3	ug/L	40	400	0.20	U	0.43	1	0.20	U	0.20	U
8260	trans-1,2-Dichloroethene	156-60-5	ug/L	100	1000	0.22	U	0.22	U	0.22	U	0.22	U
8260	Trichloroethene	79-01-6	ug/L	3	30	0.48	U	0.48	U	0.48	U	0.48	U
8260	Trichlorofluoromethane	75-69-4	ug/L	2100	21000	0.51	U	0.51	U	0.51	U	0.51	U
8260	Vinyl chloride	75-01-4	ug/L	1	100	0.25	U	0.25	U	0.25	U	0.25	U
8260	Xylenes (Total)	1330-20-7	ug/L	20	200	0.22	U	0.22	U	0.22	U	0.22	U

Table 2 Groundwater Analytical Summary

											1		\neg
Method	Parameter	CAS#	Units	GCTL	NADC	TMW-1		TMW-2		TMW-3		TMW-4	
ou	Date Collected	57 to	0	00.1		5/19/2014		5/19/2014		5/19/2014		5/19/2014	
	Date Collected					Result	Qual	Result	Qual	Result	Qual	Result	Qual
PAHs													
8270	1-Methylnaphthalene	90-12-0	ug/L	28	280	0.010	U	0.010	U	0.010	U	0.010	U
8270	2-Methylnaphthalene	91-57-6	ug/L	28	280	0.011	U	0.011	U	0.011	U	0.011	U
8270	Acenaphthene	83-32-9	ug/L	20	200	0.14		0.035		0.012	1	0.0043	U
8270	Acenaphthylene	208-96-8	ug/L	210	2100	0.0092	U	0.0092	U	0.0092	U	0.0092	U
8270	Anthracene	120-12-7	ug/L	2100	21000	0.065		0.016	С	0.032	1	0.016	U
8270	Benz[a]anthracene	56-55-3	ug/L	0.05	5	0.015	- 1	0.010	U	0.016	- 1	0.019	1
8270	Benzo[a]pyrene	50-32-8	ug/L	0.2	20	0.014	U	0.014	U	0.014	U	0.014	U
8270	Benzo[b]fluoranthene	205-99-2	ug/L	0.05	5	0.018	- 1	0.014	U	0.014	U	0.024	1
8270	Benzo[ghi]perylene	191-24-2	ug/L	210	2100	0.013	С	0.013	С	0.013	U	0.028	- 1
8270	Benzo[k]fluoranthene	207-08-9	ug/L	0.5	50	0.014	- 1	0.012	U	0.012	U	0.027	- 1
8270	Chrysene	218-01-9	ug/L	4.8	480	0.022	- 1	0.011	U	0.011	U	0.035	- 1
8270	Dibenz[a,h]anthracene	53-70-3	ug/L	0.005	0.5	0.0092	С	0.0092	С	0.0092	U	0.17	
8270	Fluoranthene	206-44-0	ug/L	280	2800	0.032	- 1	0.015	U	0.015	U	0.015	U
8270	Fluorene	86-73-7	ug/L	280	2800	0.0067	U	0.024	1	0.0067	U	0.0067	U
8270	Indeno[1,2,3-cd]pyrene	193-39-5	ug/L	0.05	5	0.011	С	0.011	С	0.011	U	0.020	1
8270	Naphthalene	91-20-3	ug/L	14	140	0.017	U	0.068	٧	0.017	U	0.094	V
8270	Phenanthrene	85-01-8	ug/L	210	2100	0.022	IV	0.014	U	0.026	IV	0.014	U
8270	Pyrene	129-00-0	ug/L	210	2100	0.019	- 1	0.013	U	0.013	U	0.013	U

NOTES:
This summary is provided for the convenience of our clients. The signed, hardcopy report is the official report.
Regulatory and Guidance Limits are taken from FAC 62-770.
I Reported value is between the laboratory method detection limit and the laboratory practical quantitation limit
V = Analyte was detected inboth the sample and the associated method blank

Appendix A Field Sampling Logs, **Well Construction Plans and Notes**

			<u></u>		<u> </u>		· · · · · · · · · · · · · · · · · · ·					ge 1 of	
Boring	g/Well N		3-1			Permit 1	Number:			FDEP Facilit	y Ident	tificatio	n Number:
Site N	ame:					Borehol	le Start Da	ate: 5-15-14	Borehole Start	Time: 09100	Ĵ	T	AM D PM
	١	Nashir	ngton Pa	ırk			End Da	nte: 5215-14	End 7	Γime: <i>091</i> \$	U	X	AM 🗀 PM
Enviro	nmenta					Geologi		neer's Name:		Environment		nnician	's Name:
			Ino TBE							<u> </u>		na Kres	
Drillir	ng Comp	-	5		Paveme	No. of the last	eness (incl	hes): Borehole Dian	, ,	Bor	ehole I	Depth (feet):
Drillir	Pret ng Meth		Orilling	Annaren	t Boreho	<u> </u>	in feet	Measured Well DTW	3.25	OVA (list mo	ndel an	d check	c type).
ווווווווווווווווווווווווווווווווווווווו	_	VDP					t): 5-6		,	MiniRae 3			FID PID
Dispo	sition of	Drill O	Cuttings [Drum Spread	▼ Backfill	Stoc	kpile		Other
Î			nultiple i				5,	<u>. J</u>		Lorona .		W- 1991 1	
			(check o			Well	☐ Gro	out Bentonite	e Z Back	511 <u> </u>	Other	(descri	be)
	i			1	l	ĺ						i i	Lob College
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)	(include grain size ba and o	ther remarks)		USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)
WA				-		0,0	,50	Fist, Brown, 3090, NOO Clayey sand	ghilan	ncks		0	58-1
					and disconnecting or self-	1,3	1	30 20 100	acr	090, MP		\mathcal{D}	1501-21
4				`				clarex some) oder		10	e 09:10
OP				W. Comment		2.4		+	¥	+			
<i>V</i> .							V3	F.S., P. G. G.	ay, wood	d foretall		D	
	ļ			-		2,2		Conveta Bis	E, NOO	da			
A. Constitution of the Con					1007	0 ~	4		,			M	86-1 21-41 609,25
						28						w	21-4
A CONTRACTOR OF THE PARTY OF TH						1,8	5		-	_			(69,2)
							1/6	F.S., PK.	Granz IN	rod /		5	
				-	and the same of th	1,2	- 0	plastic de	12.05 200	rder			
After the paper of							4	plastic ac	way ou	1			
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1,3				/			40 /
						1.4	8	4		<i>f</i>		4	Note; Discrette
				Common		'` '							vocs at
							<u> </u>						1' and
and September 1							10						3 fm
			1	1			10						0/1
							11						samples.
100	1	1	1	1	1	1	1 12	1			1	1	I

								and the species of the second section is a second s				eloi_	
Boring	y/Well N GG	umber -2	TML	J-1		Permit N	Number:			FDEP Facilit	y Ident	ificatio	on Number:
Site N	ame:	/				Borehol	e Start Da	ite: 5-15-14	Borehole Start	Time: 0915	5	1	AM PM
	١	Vashir	ngton Pa	rk			End Da	te: 5-15-14	End '	Time: 10 / 50)	Z.	AM PM
Enviro	nmenta					Geologi	st's/Engir	neer's Name:		Environment			
D :11:			lno TBE		n	-4 Th: -1		nes): Borehole Diar	matar (inahaa):	Por		a Kres Depth (
Drillir	ng Comp Pref	-	Orilling		Paveme		mess (incl	nes): Borenote Diar	3.25	Boi	enoie i	Jepin (<u> </u>
Drillir	ng Meth			Apparen	t Boreho		in feet	Measured Well DTV	V (in feet after	OVA (list mo	odel an	d checl	k type):
	HA	VDP		from so	il moista	ire conten	t): >	water recharges in	well): 5, //	MiniRae 3	000		FID 🔽 PID
Dispo	sition of	Drill (Cuttings [check m	ethod(s))]:	I	Drum K Spread	Backfill	Stoc	kpile		Other
(descr	ibe if ot	her or 1	nultiple i	tems are	checke	d):							
Boreh	ole Con	pletion	ı (check c	one):	K	Well	☐ Gro	out Bentonit	e 🗍 Back	fill [Other	(descri	be)
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)	(include grain size ba and c	other remarks)		USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)
OP				Constraint		0,0	150	Sandy day Brown, No	15, Erry	-drauge-		<i>b</i>	5B-2
A continued to					+	0.8	_ '	PRWH, NO	oan 1				150-2
						3,2	V2	S. Account of the Control of the Con			į.	D	6/0/00
							L3					10	
					-	2,6	-		+				55-2
						4,1	_4	Clayey sav	nds, Giron	41 -00		M	SB-2 21-41 @10:15
						108	5		Elitrisis annual			w	(2/0,12
							6	Es Gran	word of	le Gerts		5	
TO STATE OF THE PARTY OF THE PA				E-maile symm		1,3		F.S., Gray	, , , , , , ,				
						1,4	7		A				
none money particular						1,8	8	clayer s	and Gro	y, organiz			
				į.			9						·
						1 ,	10	Fis, Gray	1 organic	oda oda			
							11	Clay 15+184	, Gray - 6	eren 1 go			

						Pag	ge 1 of	
Boring/Well Number: / TM	W-2	Permit N	Number:		FDEP Facilit	y Ident	tificatio	on Number:
Site Name:		Borehol	e Start Da	te: 5-15-14 Borehole Start	Time: 10 (57	8	K.	АМ 🗍 РМ
Washington Park			End Da	te: 5-15-14 End?	Time: [2! 4	0		ам 🔀 РМ
Environmental Contractor:		Geologi	st's/Engir	neer's Name:	Environment		hnician	's Name:
Cardno TBE						Dar	a Kres	ss
Drilling Company:	Paveme	200	ness (incl	· '	Bor	ehole I	Depth (feet):
Preferred Drilling	170	Gra		3.25	O17.4 (1"-+		10)
Drilling Method(s): Ap HA/DP fi	oparent Borehol	le DIW ()	in reet	Measured Well DTW (in feet after water recharges in well): 3, 5)	OVA (list mo MiniRae 3			k type): FID PID
					1			
			≇ L	Drum Spread Backfill	I Stoc	крпе	ł:	Other
(describe if other or multiple item		···			- Name			
Borehole Completion (check one):	Well	∐ Gro	ut 🗌 Bentonite 🗐 Back	fill [Other	(descri	be)
SPT Blows (per six inches) Sample Recovery (inches) Sample Depth Interval (feet) Sample Type	Filtered OVA Unfiltered OVA	Net OVA	Depth (feet)	Sample Description (include grain size based on USCS, ode and other remarks)		USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)
DP		1	1 30/	Clayty Sands, Gray Shill and rocks, 2	-Brun, coder		0	NO SOIL
	A STATE OF THE STA	1,2	*				D	Sample
	And the second section of the second	0.9	2	+			m	
of colors		0,3		F.S., Gray, wood	debros,		5	
	Control of the Contro	2,0	4	F.S., Gray, wood				
			<u>i</u> 5	4				
		0,1	16	day sy souls, Gray	1 odar		S. C.	
	Marinia mandrida		7	+	L		Approximation of the second	
			_ ′	F.S., Gray, No od			/	
			- 8	day by Sand, Gran	oder -			
				clayey Sand, Gray- med. Stiff, nooder	learne .			
4			10	clay, Gray-Giren	, 54(4)			
			11	, , , , , , , , , , , , , , , , , , , ,				
			12				1	

				ge 1 of				
Boring/Well Number: GB - Y	Permit Number:		FDEP Facility Iden	tification Number:				
Site Name:	Borehole Start D	ate: 5-15-14 Borehole Start	Time: //;25	AM PM				
Washington Park	End D	ate: 5-15-14 End	Time: 11.45	Z AM T PM				
Environmental Contractor: Cardno TBE	Geologist's/Engi		Environmental Tec					
Drilling Company:	Pavement Thickness (inc	hes): Borehole Diameter (inches):		Depth (feet):				
Preferred Drilling	Grass	3.25		5,5				
	nt Borehole DTW (in feet	Measured Well DTW (in feet after	OVA (list model ar					
		water recharges in well):	MiniRae 3000	FID PID				
	ll Cuttings [check method(s)]:							
(describe if other or multiple items a		- Sacota						
Borehole Completion (check one):	□ Well □ Gr	out Bentonite Back	fill Other	(describe)				
SPT Blows (per six inches) Sample Recovery (inches) Sample Depth Interval (feet)	Depth (feet) Net OVA Filtered OVA	Sample Description (include grain size based on USCS, od and other remarks)	ymbol	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)				
	1,8 ,85 1 3,1 2 4 1,8 5 1,8 5 6 6 7 8 9 10 11	Clayey sand, shell rocker moder M.G.S., Gray - DK.E glass/metal debis, A.G.S., Gray - It.E Limerock, chaulky W. Refusal of S.	aray,	D 56-4 D 11/30 D 86-4 D 81-41 M 211:40				

						576a ,	Pag	e 1 of _	
Boring/Well Number: 9B-5 / TM	W-3	Permit 1	Number:			FDEP Facilit	y Ident	ificatio	n Number:
Site Name:		Borehol	e Start Da	ite: 5-15-14	Borehole Start	Time: 12.5	TO .		АМ 🖟 РМ
Washington Pa	ark		End Da	te: 5-15-14	End 7	Γime: 13/2	5		AM 🛱 PM
Environmental Contractor:	<u></u>	Geologi		neer's Name:		Environment			
Cardno TBE					Dana Kress				
Drilling Company:	Pavem	-27	ness (incl	nes): Borehole Diar	neter (inches):	Bor	ehole I	Depth (feet):
Preferred Drilling	IA Dank		rass	Measured Well DTV	3.25	OVA (list mo	del on	d obsol	z trma):
Drilling Method(s): HA/DP	Apparent Boreh			water recharges in					
Disposition of Drill Cuttings									
(describe if other or multiple			P 1	Spread Spread	1 Backin	p	p.110	P	Other
Borehole Completion (check			T C	E Bontonit	o F Doole	en E	74h	(descri	
Borenoie Completion (check	one).	well	L. Gro	out <u>I Bentoniu</u>	e j Back	IIII [Jiner	(descri	je)
SPT Blows (per six inches) Sample Recovery (inches) Sample Depth Interval (feet) Sample Type	Filtered OVA Unfiltered OVA	Net OVA	Depth (feet)	(include grain size ba and o	ther remarks)		USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)
DP		0,0	1500	F.G.S., Brown	n, rocks o	and		b	10
		0.1	1	sh(1)	vu oder			D	somple
					1			1	P
		1,1		4	0	-		b	
		0.9	3	F.G.S., Gr dabos, N L F.G.S., Bla Concrete de	o oder	n, Conemti		D	
		0.8	4		+	,		D	
		1 , ,	_	F.G.S., Bla	ack, rocks	and			
	And the second second	1,1	5	FoG. So, Br	RONS , OVE	Brown		M	
	,	0,6	6	F.G.S., Br Shill and C	concrete d	lebis, no oda		MW	
		0,3	7					5	
20 ct 1 ct		0,8	8		4	A		elle vanishende en	
		/	9	clayey sa	nd, Gray,	nuedov			
			10	Clayty sa	nd, Gra	t josedi			
		1	13/12	1	4			1	

Page 1 of FDEP Facility Identification Number: Boring/Well Number: Permit Number: Borehole Start Date: 5-15-14 Borehole Start Time: 13/35 AM R PM Site Name: □ AM ☑ PM End Date: 5-15-14 End Time: /4//0 Washington Park Environmental Technician's Name: Geologist's/Engineer's Name: Environmental Contractor: Dana Kress Cardno TBE Borehole Depth (feet): Pavement Thickness (inches): Borehole Diameter (inches): Drilling Company: Grass Preferred Drilling Apparent Borehole DTW (in feet from soil moisture content): 14-15? Measured Well DTW (in feet after water recharges in well): NA Apparent Borehole DTW (in feet OVA (list model and check type): Drilling Method(s): MiniRae 3000 □ FID ☑ PID HA/DP Stockpile . Disposition of Drill Cuttings [check method(s)]: Drum Spread Backfill Other (describe if other or multiple items are checked): ☑ Backfill Grout Bentonite Other (describe) Borehole Completion (check one): Well Lab Soil and Sample Recovery (inches) Moisture Content Sample Depth Interval (feet) Unfiltered OVA (per six inches) USCS Symbo Filtered OVA Groundwater Sample Type Depth (feet) SPT Blows Net OVA Sample Description Samples (list (include grain size based on USCS, odors, staining, sample number and other remarks) and depth or temporary screen interval) clayey sand, Gray-Brown,

clayey sand, Gray-Brown,

line rock, 5/ass dbas, no b 1501-21 0 D Clayey sand, DK.Gray-Black, wood dehis, wooder b 0 O E.S., Sl. dayty, Gray, ng

Ror	ing/Wel	1 Numb	Are	Iron	T11	T 1 ~	innefestamanagassas väldidel kessappasanna					
DOI	ing, W	3-6		FDEP	racility	identific	ation Nur	nber: Site Name: Washington Pon K	Borehol			-15-14
Sample Type		(inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)	Sample Description (include grain size based on USCS, odors, and other remarks)	staining,	USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)
						0,0	131415161718192021222324252627282930	E.S., Sl. dayey, Gray, L Clay, Gray-Gren, St. NO odar 15.5' Refersal	NS odar		MU D	

									Pag	elof_	
Boring/Well Number:	<u> </u>		Permit N	Vumber:				FDEP Facilit	y Ident	ificatio	n Number:
93-7/TMh	-4										
Site Name:			Borehol	e Start Da	ate: 5	-15-14	Borehole Start	Time: 14:0	15		AM 🌠 PM
Washington Pa	ark			End Da	ite:	5-15-14	End 7	Time: 15,3			AM PM
Environmental Contractor:			Geologi	st's/Engi	neer's N	lame:		Environment			
Cardno TBE		TDev	ant TL:-1	maga /:1	2001.	Dorehala Dia-	neter (inches):	ID.~		a Kres	
Drilling Company: Preferred Drilling		raveme	Borehole Diameter (inches): Borehole Diameter (inches): 3.25					ehole Depth (feet):			
Drilling Method(s):	Apparer	ıt Boreho	le DTW (i		Me	<u>I</u> asured Well DTW		OVA (list mo	odel and check type):		
HA/DP	from so	oil moistr	ire content	t): 6	w	ater recharges in	well): 8,5	MiniRae 3	000		FID 🔽 PID
Disposition of Drill Cuttings	check m	rethod(s))]:	Ī I	Drum	Spread	Backfill	T Stoc	kpile		Other
(describe if other or multiple	items are	e checke	d):								
Borehole Completion (check	one):	K	Well	Gro	out	Bentonite	e 🗍 Backt	611	Other	(descri	be)
SPT Blows (per six inches) Sample Recovery (inches) Sample Depth Interval (feet) Sample Type	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)	,	ide grain size ba and o	e Description sed on USCS, odd ther remarks)		USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)
OP		State		, 50/	Clay	ty sand	rock, w	Gray,		00	no sample
grander and a second a second and a second a	, maroniore	Da specier	0.1		シト	211000	1			6	Sample
	and the second s		1.1	2		S ANTON	+	Tany			
	, seemen		1,2	3	day	yry San	2, Gray	der		0	
	reson	1000 BOOK TO THE REAL PROPERTY OF THE REAL PROPERTY	0.8	4			A COLUMN TO A COLU			b	
			1000	5	4	~	1 2.	· Carr		p	
A Security Control of the Control of			0,9	/6	Clay	rey sam	d, Brow	N-Gray		m/w	
	₩ 166 Cartesial	EAP-STEED CO.	1,3			thousand	, and the same of			1	
The state of the s		posso roznomentiva	0.1					_	ļ !	1	
	**************************************	ganting transcating factors of the	0,3	8	cl	aven so	and 1 Hi	Gray,		The state of the s	
				9	1	ro o dor		, /		07400 th 2016 to 2016 to 2016	
			,	10		Control was a control of the control	;	No. of Contract Contr			
				11			The state of the s	ſ			
				12.512		+	4	Etro,	1	14	

												elof_	
Boring	/Well N					Permit N	Number:			FDEP Facilit	y Ident	ificatio	n Number:
		4	15-8				ā. ~	Em 15 11	D 1.1 C	Time of the	773	-	
Site Na	ame:					Borehol			Borehole Start				AM R PM
	V	Vashir	igton Pa	ırk				te: 5-15-14	End T	Time: /6 ! 6			
Enviro	nmental					Geologi	st's/Engir	neer's Name:		Environment			
TD :11:			no TBE		D	and The ale	ness (incl	hes): Borehole Dian	neter (inches):	Bor		a Kres Depth (
Drillin	g Comp Pref	-	Orilling		Paveme		ness (ilici	nes). Borellole Dial	3.25	Bor	choic i	Sepin C	φοι). >
Drillin	g Metho			Apparen	t Boreho	le DTW (i	in feet	Measured Well DTV	V (in feet after	OVA (list mo	odel an	d checl	(type):
		JDP		from so	oil moisti	ire conten	t): Y-5	water recharges in	well): NA	MiniRae 3	000		FID 🔽 PID
Dispos	sition of	Drill C	Cuttings [check m	ethod(s)]:	П	Drum Spread	▼ Backfill	Stoc	kpile		Other
(descr	ibe if oti	her or n	nultiple i	items are	checke	d):			•				
-			(check o				Gro	out Bentonit	e K Back	fill 🗀	Other	(descri	be)
			,	,	Evenn ²				,	to the state of			*
		_S	_							- Marian		3	Lab Soil and
Sai	San Inte	Sample Recovery (inches)	SI (per	Unfiltered OVA	Filt		De	C1	a Description		USCS Symbol	Moisture Content	Groundwater
Sample Type	Sample Depth Interval (feet)	ple Reco	SPT Blows (per six inches)	tere	Filtered OVA	Net OVA	Depth (feet)	Sampi (include grain size ba	e Description used on USCS, od	ors, staining,	SS	ıre (Samples (list sample number
Туј	Dep l (fee	ecov	low	0 0	VO	VA	(feet		ther remarks)		mb	Cont	and depth or
)e	t) t)	/ery	es)	VA	A							ent	temporary screen interval)
ЦA	parter of contrast parts.	2000-100 to 1000-1000-1000-1000-1000-1000-1000-100			and the same of th	0.0	. 500	M.G.S., Gray	-Boymen 11	noc(65		D	56-8
HA						0,0	1	and concre	te debrss, a	Noder		0	1501-21
-	1					"		M.G.S. Gra	ry-Brown	, rocks/	İ		@ 16100
				e e e e e e e e e e e e e e e e e e e		0,2		Shill/concr	it de bos,	wooder		D	C 10,00
									•				
				-	 	0.4		4-	Ť	+		M	
and the control of th								E.S. Brown	m-14.1	Bruwn,		1.	5B-8
), 1	4	Lise, Bron	,	,		m/W	21-4
							V 5					6	5B-8 21-41 @16,15
and the second		1		***************************************		0.8					İ		
1	ļ					0.9	V6		•	+		5	
	†			Constitution of the Parket		' '		1		•		12	
							7						
							8						
							<u> </u>						
							10						
							10						
							11						
							- ''						
							12						

	WELL CONSTRUCTIO	N DATA				
Well Number: Site Name:		FDEP Facility I.D. Number				
TMW-1 Washing	Well Purpose: Perched M	-	5-15-14			
Well Location and Type (check appropriate boxes):	Well Purpose: Perched M	onitoring	Well Install Method:			
On-Site Right-of-Way		ater-Table) Monitoring	DOT			
Off-Site Private Property	Intermedia	termediate or Deep Monitoring				
Above Grade (AG) Flush-to-Grade	Remediatio	on or Other (describe)	Surface Casing Install Method:			
If AG, list feet of riser above land surface: 🧘			NA			
	ole Diameter Manhole Diameter	Well Pad Size:	NA			
(feet): (feet): (inche	es): 3,25 (inches): NA		by feet			
Riser Diameter and Material: Riser/Scre	Kupani		feet			
1" PUC Sch. 40 Connectio	ns: Other (describe)	from <u>O</u>	feet to feet			
Screen Diameter and Material:	Screen Slot Size:	Screen Length:	feet			
1" PUC Sch.40	0,010	from	feet to // feet			
	1 st Surface Casing I.D. (inches): 1 st Surface Casing Length	r: feet			
1 st Surface Casing Material:		from 0				
also check: Permanent Pempora						
2 nd Surface Casing Material:	2 nd Surface Casing I.D (inches					
also check: Permanent Tempora	ry	from 0	feet tofeet			
3 rd Surface Casing Material:	3 rd Surface Casing I.D. (inches	s): 3 rd Surface Casing Lengt	h:feet			
also check: Permanent Temporar	y /	from 0	feet tofeet			
	er Around Screen (check one):	Filter Pack Length:	/() feet			
70/30 Sand X Yes	I No	from (feet to // feet			
Filter Pack Seal Material and	2 170	Filter Pack Seal Length:	·			
	-6	_				
20/03/	77,		feet to feet			
Surface Seal Material:	=(Surface Seal Length:				
30/6)	Te>.	from C	feet to feet			
	WELL DEVELOPME	NT DATA				
Well Development Date: Well	Development Method (check one):	Surge/Pump [Pump Compressed Air			
	Other (describe)					
	rifugal Peristaltic Depth t	o Groundwater (before develo	ping in feet):			
Submersible Other (describe)	iniugai • 1 onotano	5.11				
Pumping Rate (gallons per minute):	Maximum Drawdown of Groundw	ater During Well Purged	Dry (check one):			
ramping reaso (gamono por manaro).	Development (feet):	Yes	No No			
Pumping Condition (check one): Total De	velopment Water Develo	pment Duration Developmen	nt Water Drummed			
		es): $<$ (check one):				
T		Appearance (color and odor) A				
Water Appearance (color and odor) At Start of		- 1				
Cloudy, Brown	gl, Salpha	clear, 51.	, salpha.			
	NSTRUCTION OR DEVI	LOPMENTEREMAL	lks::::::::::::::::::::::::::::::::::::			
WILLS CO	CORRECT OF STREET					

W	ELL CONSTRU	CTION I)ATA			
Well Number Site Name: Washington	Park Palmets	O,FC	FDEP Facilit	y I.D. Numbe		stall Date(s):
Well Location and Type (check appropriate boxes): On-Site Right-of-Way	Park, Palmett Well Purpose: Pe				Well Install	Method:
Off-Site Private Property	1	•	r-Table) Monitoring r Deep Monitoring			PT
Above Grade (AG) Flush-to-Grade			Other (describe) Surface Casing Ins			ng Install Method:
If AG, list feet of riser above land surface: 1,70						VA
	Diameter Manhole Diar	ı	Well Pad Siz		NA	£4
		NA	Riser Length		eet	feet
Riser Diameter and Material: Riser/Screen Connections:	Flush-Threaded Other (describe)		Ū	rom <u>O</u>		Ofeet
Screen Diameter and Material:	Screen Slot Size:		Screen Leng	th: <u>/0</u> f	eet	
1" PUC Sch. 40	0,010		f	rom <u>C</u>	feet to	/() feet
1st Surface Casing Material:	1 st Surface Casing I.D.	(inches):	1st Surface C	Casing Length	·	feet
also check: Permanent Pemporary			- f	from 0	feet to	feet
2 nd Surface Casing Material	2 nd Surface Casing I.D	(inches):	2 nd Surface	Casing Length	:	feet
also check: Permanent Temporary		:	t	from 0	feet to	feet
3 rd Surface easing Material:	3 rd Surface Casing I.D	. (inches):	3 rd Surface	Casing Length	:	feet
also check: Permanent Temporary				from 0	feet to	feet
	ound Screen (check one):	Filter Pack	Length:	10	feet
70/30 Sand X Yes	_ No			from	feet to	<u>/O</u> feet
Filter Pack Seal Material and			Filter Pack	Seal Length:	,50	feet
Size: 30/65 F,5	,			from <u>O</u>	feet to	e TO feet
Size: 30/65 F,5 Surface Seal Material: 30/65 F,			Surface Sea	l Length:	<u>170</u>	
30/65 Fe	٤.			from <u>U</u>	feet to	<u>50</u> feet
X	WELL DEVELO	PMENT	DATA			
	relopment Method (chec her (describe)		Surge/Pu	ımp []	Pump [Compressed Air
Development Pump Type (check): Centrifuga Submersible Other (describe)	al Peristaltic	Depth to Gro		efore develop	ing in feet):	
7-8-1	aximum Drawdown of G	roundwater I	Ouring	Well Purged Yes		ne): No
Pumping Condition (check one): Total Develop Continuous Intermittent Removed (gal	/ 1	Developmen (minutes):		Development (check one):	Water Drum	
Water Appearance (color and odor) At Start of Dev				and odor) At		
Cloudy, Gray- Brown	=	i i		Mon		•
				1		
WELL CONST	RUCTION OR	DEVELO	PMENT	REMAR	KS	

W	ELL CONSTRUCTION	N DATA	
Well Number: Site Name: Washington	Park, Palmetto, FC	FDEP Facility I.D. Number	Well Install Date(s):
Well Location and Type (check appropriate boxes): On-Site Right-of-Way Off-Site Private Property Above Grade (AG) Flush-to-Grade If AG, list feet of riser above land surface:	Well Purpose: Perched Mc Shallow (W: Intermediat	e or Deep Monitoring	Well Install Method: PT Surface Casing Install Method: NA
	Diameter Manhole Diameter 3, 25 (inches): MA		NA by feet
1" PUC Sch, 40 Connections:	Other (describe)	from 0	feet to 3 feet
Screen Diameter and Material:	Screen Slot Size:	Screen Length: 10 from 3	feet to 13 feet
1 st Surface Casing Material: also check: Permanent Pemporary	1 st Surface Casing I.D. (inches)	1 st Surface Casing Length: from 0	feet feet tofeet
2 nd Surface Casing Material also check: Permanent Temporary	2 nd Surface Casing I.D (finches)	from 0	feet tofeet
3 rd Surface Casing Material: also check: Permanent Temporary	3 rd Surface Casing I.D. (inches)	from 0	feet tofeet
Filter Pack Material and Size: Prepacked Filter Ar	ound Screen (check one):	Filter Pack Length: from/	feet to 13 feet
Filter Pack Seal Material and Size: 30/65 F,5		Filter Pack Seal Length: from	feet feet to feet
Surface Seal Material: 30/65 F	-S,	Surface Seal Length:	feet feet to feet
	WELL DEVELOPMEN		
	velopment Method (check one): her (describe)	7	ump Compressed Air
Development Pump Type (check): Centrifug Submersible Other (describe)	al Peristaltic Depth to	Groundwater (before developed as 3 3	
1	aximum Drawdown of Groundwa evelopment (feet): 2, 5	ter During Well Purged I	Ory (check one):
Pumping Condition (check one): Total Development Continuous Intermittent Removed (ga	A second		Water Drummed Yes No
Water Appearance (color and odor) At Start of Dev	*	ppearance (color and odor) At	
. , , , , , , , , , , , , , , , , , , ,	RUCTION OR DEVE		

W	ELL CONSTRU	CTION 1	DATA		
Well Number: Site Name: Washington	Park, Palmet	to, FC	FDEP Facilit	y I.D. Numbe	r: Well Install Date(s):
On-Site Right-of-Way	₩ SI	nallow (Water	-Table) Mon	itoring	Well Install Method:
☐ Off-Site Private Property Above Grade (AG) ☐ Flush-to-Grade		ntermediate on emediation or	- 1	Surface Casing Install Method:	
If AG, list feet of riser above land surface: 🏻 🎜 🧻					NA
Borehole Depth (feet): 17,5 (inches): "	Diameter Manhole Diameter (inches):	meter NA-	Well Pad Siz	feet	NA by feet
Riser Diameter and Material: Riser/Screen Connections:	Flush-Threaded Other (describe)		Riser Length fi		eet feet to <u>Z.S</u> feet
Screen Diameter and Material:	Screen Slot Size:		Screen Leng	th: <u>/0</u> f	
1st Surface Casing Material:	1 st Surface Casing I.D	. (inches):		Casing Length:	
also check: Permanent Pemporary			f	rom 0	feet tofeet
2 nd Surface Casing Material	2 nd Surface Casing I.L	(inches):	2 nd Surface (Casing Length	: feet
also check: Permanent Temporary				rom 0	
3 rd Surface easing Material:	3 rd Surface Casing I.D). (inches):		Casing Length	
also check: Permanent Temporary			f	rom 0	feet to feet
Filter Pack Material and Size: Prepacked Filter Ar	ound Screen (check one	e):			
70/30 Sand 1 Yes	No		f	from 1 50	feet to 125 feet
Filter Pack Seal Material and Size: 30 /65 F.5	<i>y</i>		}	Seal Length: from	feet to feet
Size: 30/65 F.5 Surface Seal Material: 30/65 F.			Surface Sea	Length:	_cso_ feet
50/05 1,	~ · ·			10III <u>()</u>	feet to , 50 feet
	WELL DEVELO	PMENT	DATA		
5 15 116	relopment Method (chec her (describe)		Surge/Pu	mp F	Cump Compressed Air
	al Peristaltic	Depth to Gro	oundwater (be	efore developi	ing in feet):
	aximum Drawdown of G	Froundwater I	During	Well Purged I Yes	Ory (check one): No
Pumping Condition (check one): Total Develop Continuous Intermittent Removed (gal	A STATE OF THE STA	Developmen (minutes):	No. of Contract, Name of Contr	Development (check one):	Water Drummed Yes No
Water Appearance (color and odor) At Start of Dev	elopment:	Water Appea	arance (color	and odor) At	End of Development:
don't, Brown,	rom		dea	, Nov	L.
				ŧ	

WELE CONSTRUCTION OR DEVELOPMENT REMARKS

DEP-SOP-001/01 FT 1000 General Field Testing and Measurement

j	INSTRUM				DINSTRUMEN			ECORDS ENT#_598	1 - 9052+3	
	PARAMET					· · · · · · · · · · · · · · · · · · ·				
		PERATUR	•	CONDUCT	ivity □s	ALINITY	☐ pH	☐ ORP		
	☐ TURI			RESIDUAL			1 OTHER / Wippon Isobaty/fine			
·	values, and t	he date th	ne standards	were prepa	ndards used for ca ared or purchased		he origin of the	standards, the	standard	
	Standa	ard A	0.0 Amb	rent s	15			18-6	on, exp.	
	Standa	ard B <u>/</u>	Wppm Is	-olarty/fu	er Ligard tec	hnday	1-0+# LTG	293-100	,	
	Standa	ard C	¥ -			, , , , , , , , , , , , , , , , , , ,				
	DATE (yy/mm/dd)	TIME (hr:min)	STD (A, B, C)	STD VALUE	INSTRUMENT RESPONSE	-% DEV	CALIBRATED (YES, NO)	TYPE (INIT; CONT)	SAMPLER INITIALS	
Naghanaten	14/05/13	09/00	A	0,0	0,0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	y es	durt	DUL	
Nagroyten ParlC			B	100	99.9		x e5	MA	ple	
40.1		141,30	1	0,0	0,1	,	check	end	put	
	1	1	B	100	99.3		chesc	enx	pull	
	14/05/15	08/30	A	000	0,0)	V-62	· last	one	
	1.	4	B	100	100,3		yes	Int	gua	
	.]	16:45	1	0.0	0,2	(Lak	end	DUC	
	4	1	B	100	1027		chede	Pul	pax	
and a second										
	-									
						1				
		1		1	J		<u>L</u>	J	_L	

Revision Date: February 1, 2004

SITE NAME: (Na sla	na ton	Pari	_	SIT LO	E CATION:	Pa	met	OFL			
	TMW-1	0		SAMPLE ID:	TN	1-1			, D.	ATE: 5.1	9.14	
				F	URG	ING DA	ГА					
WELL	1	TUBING	ER (inches):	WELL SO		NTERVAL et to 13 fe	S S	STATIC DE	R (feet): 5.5	PURG OR BA	E PUMP TYPE JII FR	· PP
DIAMETER WELL VOLU	(inches): JME PURGE:	1 WELL VOL	=R (inches): JME = (TOTA	L WELL DEPTH	- STA	TIC DEPTH T	O WAT	ER) X	WELL CAPACIT	Y 7	112-14	-(-(
(only fill out	if applicable)	0.30	⊃ _{= (}	13 feet	_ 5	5.54		feet) X	0.04	gallons/foot	0.30	gallons
	T VOLUME PUI	RGE: 1 EQUI	PMENT VOL.	= PUMP VOLUME	+ (TUB	ING CAPACI	ΓΥ	X TUI	BING LENGTH) +	FLOW CELL	. VOLUME	
(offig fail out	applicable)			= gallons	s + (ns/foot	X	feet) +		gallons =	gallons
	MP OR TUBING VELL (feet):	7	FINAL PUMI DEPTH IN V	P OR TUBING VELL (feet):	7	PURGIN INITIATE	D AT:	1017	PURGING ENDED AT:		TOTAL VOLUM PURGED (gall	
		CUMUL.		DEPTH	pН		CC	DND.	DISSOLVED OXYGEN	TURBIDITY	COLOR	ODOR
TIME	VOLUME PURGED	VOLUME PURGED	PURGE RATE		andard Inits)	TEMP.	المسلب	e units) os/cm	(circle units)	(NTUs)	(describe)	1
	(gallons)	(gailons)	(gpm)	(teet)				1S/cm)	% saturation	-/-0	11. 1	Clareda
1023	0.30	0.30	0.05		.53				1.18	80.0		Cloudy None
1026	0.15	0.45	0.05	6.56 6	.56	24.57		03.0	0.98	65.0	It bin lu	John None
1029	0.15	0.60	0.05		.57 .58	24.54	-	07.0	0.77	30.0	Clear	
1032	0.15	0.75	0.05	-	.59	25.15		9.0	0.73	24.0	Clear	
1035	0.15	0.90	0.05		.60				0.70	17.0	clear	
1038	0.15	1.20	0.05		.61	25.23			0.66	17.0	Clear	
1041	0.15	1.35		6.64 6		25.34			0.64	13.0	clear	None
1047	0.15	1.50	0.05	6.656	.62	25.55	21	06.0	0.62	8.1	clear	None
1047	4 0	 1-*	el vol				,					
	707	100 00										
WELL CAP	PACITY (Gallon ISIDE DIA. CAF	s Per Foot): (0.75" = 0.02; =t \: 1/8" = 0			06; 2" = 0.1 1/4" = 0.00	16; ; 26:	3" = 0.37; 5/16" = 0.				12" = 5.88 1/8" = 0.016
	EQUIPMENT C			BP = Bladder Pum		ESP = Electric				eristaltic Pump	o; O = Oth	ner (Specify)
				/	/	PLING D	ATA					
- 4	BY (PRINT) / A	- 1		SAMPLER(S) 81	SNATUF	RE(S):			SAMPLING INITIATED A	T: 1047	SAMPLING ENDED AT	1057
PUMP OR	rus Wile	son/las	dro	TUBING	-/4	DI		FIELD	-FILTERED: Y		_1	ZE:μm
	WELL (feet):	7		MATERIAL COD	É:	PE		Filtrati	on Equipment Ty	rpe:		
FIELD DEC	CONTAMINATIO	ON: PUM	IP Y		UBING		replace	ed)	DUPLICATE:		<u> </u>	0.1101 =
	PLE CONTAINE		ATION			RESERVATI	NC	FINAL	INTEND ANALYSIS A	ND/OR E	AMPLING QUIPMENT	SAMPLE PUMP FLOW RATE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED		TOTAL VOL ED IN FIELD	(mL)	PH	METHO		CODE	(mL per minute)
[MW-1	3	6	40 ML	HC1+Ice					UOC 42		zfpp	80
TMW-1	1		125 ML	Ice					PAH		APP	200
Tmw-1		PE :	250ML	Nitric +Ice	2				RCRA	8	APP	200
REMARKS:												
16.	Tubing May be warning in sunlight. At 1036 moved into shadies place. Temp still rising.											
	LCODES:	AG = Amber		= Clear Glass;		olyethylene;			ylene; S = Silic			other (Specify)
	SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;											
RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify) NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.												

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

Color It brown/ white = cloudy, light brown color.

Pumped to five well volumes to let turb: dity come down for RCRAG Sample.

SITE NAME: (Nash	na tor	Par	<u>r_</u>	SI	TE CATION:	Palm	etti	o, FL			
WELL NO:	TMW.			1		1W-2			·	ATE: 4	5-19-1	4
					PURC	ING DA	ГА					
WELL DIAMETER	(inches):	TUBING DIAMET	ER (inches);	14 DEPTH	1.7 fe	INTERVAL et to 11.7 fe	STATI et TO W	ATER	(feet): 4.9	0 OF	JRGE PUMP T R BAILER:	YPE PC
(only fill out	if applicable)	0.24	b = (L WELL DEPTH	t- L	1.90	feet)	Х	0.04	gallons/fe	oot = 0.	28 gallons
	T VOLUME PUI if applicable)	RGE: 1 EQU	IPMENT VOL.	= PUMP VOLUM = gallor			Y X	IUB	ING LENGTH) -		ELL VOLUME gallons	= galions
	MP OR TUBING	+36	FINAL PUM	P OR TUBING	1	PURGING		4	PURGING ENDED AT:	1127	TOTALLIC	
DEPTHIN	WELL (feet):		DEPTHING	DEPTH	0	INITIALL	COND.	-	DISSOLVED	1182	1 OKOLD	92(10113).
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	TO (s	pH tandard units)	TEMP. (°C)	(circle units umbos/en or us/cm	-	OXYGEN (circle units) mg/Lor % saturation	TURBID (NTU:		
1121	0.30	0.30	0.0	4	.42	25.25	1196.		0.38	4.1	Clea	
1124	0.30	0.60	0.00		.40	25.21	1191.0		0.34	3.3	/	
1127	0.30	0,90	0.00	4.91 6	.79	25.08	1195.	<u> </u>	0.31	2.4	clea	SNONE
								-				
		•										
			1									
	ACITY (Gallons SIDE DIA, CAP					06; 2" = 0.1 1/4" = 0.002		.37; '= 0.0		5" = 1.02; .006: 1	6" = 1.47; 1/2" = 0.010;	12" = 5.88 5/8" = 0.016
	EQUIPMENT C			BP = Bladder Pun		ESP = Electric				eristaltic P		Other (Specify)
						PLING DA	ATA					
	BY (PRINT) /A		Ino	SAMPLER(S)	SNATUR	RE(S):			SAMPLING INITIATED AT	r: 112) SAMPL ENDED	
PUMP OR	TUBING WELL (feet):	6		TUBING MATERIAL COD	E:	PF			FILTERED: Y n Equipment Ty		FILTER	SIZE: µm
	CONTAMINATIO		AP Y (N		rubing	Y (1)	eplaced)		DUPLICATE:	·	⊕	
SAMF	PLE CONTAINE	R SPECIFICA	ATION			RESERVATIO			INTENDE ANALYSIS A		SAMPLING EQUIPMENT	SAMPLE PUMP FLOW RATE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED .		TOTAL VOL ED IN FIELD (mL) FIN	IAL H	METHO		CODE	(mL per minute)
TMW-2	3		40mL	HoltEre			-		VOC 82	60	RFPI	80
[mw-2	(A6	125mL	Ice		_			PAH		APP	404
TMW-2	'			N:tret Ice	-	. —			RCRA	4	ACC	400
					+							
REMARKS	:											
MATERIAL	MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)											
SAMPLING	SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)											

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. Stabilization Criteria for range of variation of last three consecutive readings (see FS 2212, section 3)

NAME: Washington Park SITE LOCATION: Palmetto, FL												
WELL NO:	Tmw-				D: TM			•	ATE: 5	19.14		
PURGING DATA												
	JME PURGE:	1 WELL VOLU	IME = (TOTA	AL WELL DEPT	H - STA	TIC DEPTH I	O WATER) X	R (feet): ノ・ン WELL CAPACIT	OR BA	E PUMP TYP	PF	
(only fill out if applicable) O.SO = (15 feet - 7.55 feet) X O.O.4 gallons/foot = 0.30 gallons EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME (only fill out if applicable)												
= gallons + (gallons/foot X feet) + gallons = gallons												
DEPTH IN WELL (feet): 9 INITIATED AT: 12 9 ENDED AT: 12 13 PURGED (gallons): 0.00												
TIME	VOLUME PURGED (gallons)	CUMUL, VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) umbos/em or uS/cm	OXYGEN (circle units) mg/Lor % seturation	TURBIDITY (NTUs)	(describe) (describe)	
1209	0.30	0.30	·				3701.0	0.40	11.0	Clear		
1212	0.15			8.30		27.71		0.34	9.6	Clear		
1215	0.15	0.60	0.05	8.30	7.04	27.99	3721.0	0.29	4.8	Clear	None	
						1						
		· · · · · · · · · · · · · · · · · · ·										
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer, BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)												
CAMPLED	BY (PRINT) / A	EEU LATION!	Т	SAMPLER(S)		PLING DA	AIA		····································	1		
	es Wils		dro	SAMPLER(S)	SIGNATUR	.L(0).	/	SAMPLING INITIATED A	T: 1215	SAMPLING ENDED A	G T: /224	
PUMP OR		9		TUBING MATERIAL &	ODE.	PF		-FILTERED: Y		FILTER SI	ZE:μm	
	ONTAMINATIO	ON: PUMI	y (TUBING	Y 47(i	eplaced)	DUPLICATE:	· Y			
SAMPLE	PLE CONTAINE # CONTAINERS	MATERIAL	TION VOLUME	SAMPLE PRESERVATION PRESERVATIVE TOTAL VOL FINAL USED ADDED IN FIELD (mL) pH				ANALYSIS AND/OR EQUIPMENT FLOW RA			SAMPLE PUMP FLOW RATE (mL per minute)	
10 CODE	3	C6	40mL	HCIFFCE		- LD IIV I IELD	(IIIL) pii	VOC 82	160 F	ZFPP	80\$ 80	
TMW-3	(25mL	ILP		_		PAH		APP	200	
TMW-3	•			N:4nc+Ic	e	_		RCRAC	6	APP	200	
											· 	
REMARKS	:											
MATERIAL	MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)											
SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer, BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)												

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. Stabilization Criteria for range of variation of Last three consecutive readings (see FS 2212, section 3)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Revision Date: February 12, 2009

SITE NAME: Washington Park SITE LOCATION: Palmetto, FL												
WELL NO:	Tww	()		I .	ID: Tu				•	ATE: 4	5.19.14	
PURGING DATA												
WELL TUBING TUBING WELL SCREEN INTERVAL STATIC DEPTH TOWATER (inches): 14 DEPTH: 5 feet to 15 feet TO WATER (feet): 7-27 OR BAILER:												
WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY (only fill out if applicable) 0.3 (= (15												
EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME (only fill out if applicable) = gallons + (gallons/foot X feet) + gallons = gallons												
INITIAL PUMP OR TUBING DEPTH IN WELL (feet): 1 PURGING INITIATED AT: 1243 PURGING ENDED AT: 1307 TOTAL VOLUME PURGED (gallons): 0.										ME		
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	CO (circle	ND. units)	DISSOLVED OXYGEN (circle units) mg/Lor % saturation	TURBIDIT (NTUs)	TY COLOR	ODOR
1255	0.31	0.31	0.026	9.43	6.44	28.54			0.16	26.0	7	Slight Solf
1258	0.074	0.39	0.026	10	6-66	28.69	V. V.	19.0	0.14	20.0		51. Sulfur?
1301	0.078	0.47	0.026		6.67	28.81	1500	46.0	0.19	15.0		Sl. Sulfur?
1304	0.074	0.55		1	6.67	28.80			0.17	13.0	10	31. Sulfur
1307	0.078	0.63	0.026	9.85	6.67	29.01	28	10.0	0.15	5.1	(5 lay	51.5 mfm
			-	-								
			-			-	-					
						<u> </u>						
							<u> </u>					
WELL CAP	PACITY (Galloni ISIDE DIA. CAF	s Per Foot):	0.75" = 0.02; (Ft): 1/8" = 0	1" = 0.04;	1.25" = 0.0	06; 2" = 0. 1/4" = 0.00	16; 3 26:	" = 0.37; 5/16" = 0.		5" = 1.02; 1.006; 1/2		12" = 5.88 5/8" = 0.016
	EQUIPMENT C			BP = Bladder		ESP = Electri		ersible Pur	mp; PP = P	eristaltic Pur	mp; O = Ot	her (Specify)
						LING D	ATA					
SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLED BY (PRINT) / AFFILIATION: SAMPLING INITIATED AT: 1307 ENDED AT: 1322										3 T: 1322		
PUMP OR		DA/CA	caps	TUBING /	_/\	DI			-FILTERED: Y	D		ZE: μm
	WELL (feet):	11		MATERIAL		1 C		>	on Equipment Ty DUPLICATE:		(N)	
	CONTAMINATIO			<u> </u>	TUBING		replace		INTEND		SAMPLING	SAMPLE PUMP
SAMPLE CONTAINER SPECIFICATION SAMPLE # MATERIAL VOLUME				SAMPLE PRESERVATION PRESERVATIVE TOTAL VOL FINA				FINAL	ANALYSIS A	ND/OR	EQUIPMENT CODE	FLOW RATE (mL per minute)
ID CODE	CONTAINERS	CODE	VOLUME	USED	. ADD	ED IN FIELD	(mL)	pН			RCODE	80
TMW-4		CG	YOAL	HUIT	il				VOC45	260	100	100
TMW-4	3	AG PE	125ML	Ice					RCAA	1	100	100
TMW-4		4 6	250mc	NitrictI	- ()				- CHIT		ACC	, , , ,
							-				-	
REMARKS		J	l	<u> </u>					1.1			
Low 13:07 Turbidity was taken pre-flowcell. MS/MSD												
	L CODES:		r Glass; CG			olyethylene;		Polypropy		<u> </u>	···········	Other (Specify)
SAMPLIN	G EQUIPMENT	CODES;	APP = After P RFPP = Rever					ler Pump; od (Tubing	ESP = Elec g Gravity Drain);		sible Pump; her (Specify)	

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. Stabilization Criteria for range of variation of last three consecutive readings (see FS 2212, section 3)

DEP-SOP-001/01 FT 1000 General Field Testing and Measurement

Form FD 9000-8: FIELD INSTRUMENT CALIBRATION RECORDS YSI 556MPS INSTRUMENT # 04L2063 **INSTRUMENT** (MAKE/MODEL#) PARAMETER: [check only one] CONDUCTIVITY ☐ ORP ☐ SALINITY ☑ pH ☐ TEMPERATURE ☐ RESIDUAL CI ₩ DO ☐ OTHER ☐ TURBIDITY STANDARDS: [Specify the type(s) of standards used for calibration, the origin of the standards, the standard values, and the date the standards were prepared or purchased] Standard A DO, PIH, o 1000 MS/cm Exp: 01/15 100 M3/ Lot : 4AA133 Standard B Conductonce km Exp: 01/15 4 64: 6359207 4 649: 02/15 7 Exp: 09/14 pH 10 Exp: 10/15 Standard C INSTRUMENT CALIBRATED TYPE SAMPLER STD DATE STD TIME (INIT, CONT) INITIALS RESPONSE % DEV (YES, NO) (hr:min) **VALUE** (yy/mm/dd) (A, B, C) 99.7 TAW 14/05/19 No CONT 0940 100.00 No CONT B 110 100 INIT B Yes 100 100 No CONT 885 1000 Yes INIT SAW 3 1000 1000 C 4.16 No CONT JAW 4.0 7.04 JAW No C 7.0 CONT 9.74 CONT SAW C 1)0 10.0 NO CONT 1550 A 100.0 B No CONT 1000 1001 4.17 No C 4.0 CONT 7.07 110 0 7.0 CONT 9.71 CONT 10.0

Revision Date: February 1, 2004

DEP-SOP-001/01 FT 1000 General Field Testing and Measurement

				D INSTRUMEN				_		
INSTRUMENT (MAKE/MODEL#) (MAKE/MODEL#) INSTRUMENT # 5362-										
PARAMET	TER: [c	heck only d	one]							
□ тем	PERATUR	RE 🗌 (CONDUCT	ALINITY	□ pH □ ORP					
X IURI	BIDITY		□ отн	ER						
values, and t	the date th	ne standards	were prepa	ndards used for ca ared or purchased	1		standards, the	standard		
Standa	ard A	1.0 NTU	(ot	C361847 - C364881	Exp: (02/15				
Standa	ard B	0.0 NTU	- lot	· C364881	Exp'.	06/15				
	ard C				•					
DATE (yy/mm/dd)	TIME (hr:min)	OF THE SECOND SECURITION OF THE SECOND SECON		INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER INITIALS		
14/05/19	0940	A	1.0	0.9		No	CONT	JAW		
	1	B	10.0	10		No	CONT	SAW		
	1550	A	1.0	1.0		No	CONT	SAW		
1	7	B	10.0	10.0		No	CONT	SAW		
·			-							
	L. L. L. L. L. L. L. L. L. L. L. L. L. L									
							•			
	-									
					1					
And the state of t										

Revision Date: February 1, 2004

Appendix B

Laboratory Analytical Reports

Jennifer Arndt Cardno TBE, Inc. 380 Park Place Blvd, Suite 300 Clearwater, FL 33759

May 23, 2014

SunLabs Project Number: 4051601

Client Project Description: BF-Washington Park

Dear Mrs. Arndt,

Enclosed is the report of laboratory analysis for the following samples:

Sample Number	Sample Description	Date Collected	Date Received
4051601-01	SB-1@.50ft-2ft	05/15/14 09:10	05/16/14 08:35
4051601-02	SB-1@2ft-4ft	05/15/14 09:25	05/16/14 08:35
4051601-03	SB-2@.50ft-2ft	05/15/14 10:00	05/16/14 08:35
4051601-04	SB-2@2ft-4ft	05/15/14 10:15	05/16/14 08:35
4051601-05	SB-4@.50ft-2ft	05/15/14 11:30	05/16/14 08:35
4051601-06	SB-4@2ft-4ft	05/15/14 11:40	05/16/14 08:35
4051601-07	SB-6@.50ft-2ft	05/15/14 13:40	05/16/14 08:35
4051601-08	SB-6@2ft-4ft	05/15/14 13:50	05/16/14 08:35
4051601-09	SB-8@.50ft-2ft	05/15/14 16:00	05/16/14 08:35
4051601-10	SB-8@2ft-4ft	05/15/14 16:15	05/16/14 08:35
4051601-11	Trip Blank	05/15/14 00:00	05/16/14 08:35

Narrative

Unless otherwise noted below or in the report and where applicable:

- Samples were received at the proper temperature and analyzed as received.
- Sample condition upon receipt is reported on the chain-of-custody attached to this report.
- Results for all solid matrices are reported on a dry weight basis.
- Appropriate calibration and QC criteria were satisfactorily met.
- All applicable holding times for analytes have been met.
- Copies of the chains-of-custody, if received, are attached to this report.

QC Batch B005066 had an exception for VOCs on the MS,MSD, and RPD. The LCS and LCSD were acceptable, so the out of control was attributed to matrix.

QC Batch B005082 had an exception for Lead on the MS. The LCS and LCSD were acceptable, so the out of control was attributed to matrix.

QC Batch B005093 had an exception for Carbon tetrachloride on the MS and MS/MSD RPD. The LCS and LCSD were acceptable, so the out of control was attributed to matrix.

QC Batch B005098 had an exception for VOC's on the MS. The LCS and LCSD were acceptable, so the out of control was attributed to matrix.

If you have any questions or comments concerning this report, please do not hesitate to contact us.

Michael W. Palmer

Vice President, Laboratory Operations

Unless Otherwise Noted and Where Applicable:

The result herein relate only to the items tested or to the samples as received by the laboratory. This report shall not be reproduced except in full, without the written approval of SunLabs. All samples will be disposed of within 60 days of the date of receipt of the samples. All results meet the requirements of the NELAC standards. Uncertainty values are available upon request.

SunLabs Project Number 4051601 Cardno TBE, Inc.

Project Description

BF-Washington Park

May 23, 2014

SunLabs Sample Number: Sample Designation: 4051601-01

Matrix:

Soil

SB-1@.50ft-2ft

Date Collected: Date Received: 05/15/14 09:10

			Date N	ecciveu.		05/10	/14 06:33		
Parameters	Method	Units	Results	Dil Factor	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
Mercury by EPA 7471					Metho	d Qualifier	:		
Mercury	EPA 7471	mg/kg dry	0.0041 U	1	0.0041	0.016	7439-97-6	05/19/14 16:28	05/19/14 11:01
Percent Solids					Metho	d Qualifier	:		
% Solids	EPA 160.3	%	90	1			NA	05/19/14 09:15	05/16/14 14:07
Polynuclear Aromatic Hydrocarbons by	y Method 8270				Metho	d Qualifier	:		
Surrogate: 2-Fluorobiphenyl (1-191)	EPA 8270	%	65.6	1			321-60-8	05/22/14 03:55	05/19/14 17:40
Surrogate: p-Terphenyl-d14 (8-178)	EPA 8270	%	86.4	1			1718-51-0	05/22/14 03:55	05/19/14 17:40
1-Methylnaphthalene	EPA 8270	mg/kg dry	0.0073 U	1	0.0073	0.029	90-12-0	05/22/14 03:55	05/19/14 17:40
2-Methylnaphthalene	EPA 8270	mg/kg dry	0.0062 U	1	0.0062	0.024	91-57-6	05/22/14 03:55	05/19/14 17:40
Acenaphthene	EPA 8270	mg/kg dry	0.0046 U	1	0.0046	0.019	83-32-9	05/22/14 03:55	05/19/14 17:40
Acenaphthylene	EPA 8270	mg/kg dry	0.0049 U	1	0.0049	0.020	208-96-8	05/22/14 03:55	05/19/14 17:40
Anthracene	EPA 8270	mg/kg dry	0.0038 U	1	0.0038	0.015	120-12-7	05/22/14 03:55	05/19/14 17:40
Benz[a]anthracene	EPA 8270	mg/kg dry	0.0033 U	1	0.0033	0.013	56-55-3	05/22/14 03:55	05/19/14 17:40
Benzo[a]pyrene	EPA 8270	mg/kg dry	0.0044 U	1	0.0044	0.018	50-32-8	05/22/14 03:55	05/19/14 17:40
Benzo[b]fluoranthene	EPA 8270	mg/kg dry	0.0060 U	1	0.0060	0.024	205-99-2	05/22/14 03:55	05/19/14 17:40
Benzo[ghi]perylene	EPA 8270	mg/kg dry	0.015 U	1	0.015	0.061	191-24-2	05/22/14 03:55	05/19/14 17:40
Benzo[k]fluoranthene	EPA 8270	mg/kg dry	0.0042 U	1	0.0042	0.017	207-08-9	05/22/14 03:55	05/19/14 17:40
Chrysene	EPA 8270	mg/kg dry	0.0027 U	1	0.0027	0.011	218-01-9	05/22/14 03:55	05/19/14 17:40
Dibenz[a,h]anthracene	EPA 8270	mg/kg dry	0.017 U	1	0.017	0.064	53-70-3	05/22/14 03:55	05/19/14 17:40
Fluoranthene	EPA 8270	mg/kg dry	0.0051 U	1	0.0051	0.020	206-44-0	05/22/14 03:55	05/19/14 17:40
Fluorene	EPA 8270	mg/kg dry	0.0040 U	1	0.0040	0.015	86-73-7	05/22/14 03:55	05/19/14 17:40
Indeno[1,2,3-cd]pyrene	EPA 8270	mg/kg dry	0.015 U	1	0.015	0.064	193-39-5	05/22/14 03:55	05/19/14 17:40
Naphthalene	EPA 8270	mg/kg dry	0.012 U	1	0.012	0.049	91-20-3	05/22/14 03:55	05/19/14 17:40
Phenanthrene	EPA 8270	mg/kg dry	0.0062 U	1	0.0062	0.024	85-01-8	05/22/14 03:55	05/19/14 17:40
Pyrene	EPA 8270	mg/kg dry	0.015 U	1	0.015	0.061	129-00-0	05/22/14 03:55	05/19/14 17:40

SunLabs **Project Number**

4051601

Cardno TBE, Inc.

Project Description

BF-Washington Park

May 23, 2014

SunLabs Sample Number: Sample Designation:

4051601-01

SB-1@.50ft-2ft

Matrix:

Soil

Date Collected: Date Received:

05/15/14 09:10

Parameters	Method	Units	Results	Dil Factor	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
RCRA7 Metals by EPA 6010					Metho	d Qualifier:			
Arsenic	EPA 6010	mg/kg dry	3.2	1	0.28	1.2	7440-38-2	05/20/14 19:12	05/19/14 10:50
Barium	EPA 6010	mg/kg dry	15	1	0.053	0.21	7440-39-3	05/20/14 19:12	05/19/14 10:50
Cadmium	EPA 6010	mg/kg dry	0.097 I	1	0.061	0.25	7440-43-9	05/20/14 19:12	05/19/14 10:50
Chromium	EPA 6010	mg/kg dry	11	1	0.18	0.72	7440-47-3	05/20/14 19:12	05/19/14 10:50
Lead	EPA 6010	mg/kg dry	0.92 I	1	0.51	2.0	7439-92-1	05/20/14 19:12	05/19/14 10:50
Selenium	EPA 6010	mg/kg dry	0.18 U	1	0.18	0.75	7782-49-2	05/20/14 19:12	05/19/14 10:50
Silver	EPA 6010	mg/kg dry	0.19 U	1	0.19	0.77	7440-22-4	05/20/14 19:12	05/19/14 10:50
Volatile Organic Compounds by EPA 8260					Metho	d Qualifier:			
Surrogate: 4-Bromofluorobenzene (25-172)	EPA 8260	%	87.2	1			460-00-4	05/20/14 12:53	05/20/14 08:00
Surrogate: Dibromofluoromethane (77-126)	EPA 8260	%	109	1			1868-53-7	05/20/14 12:53	05/20/14 08:00
Surrogate: Toluene-d8 (78-118)	EPA 8260	%	95.1	1			2037-26-5	05/20/14 12:53	05/20/14 08:00
1,1,1-Trichloroethane	EPA 8260	mg/kg dry	0.0011 U	1	0.0011	0.0048	71-55-6	05/20/14 12:53	05/20/14 08:00
1,1,2,2-Tetrachloroethane	EPA 8260	mg/kg dry	0.00046 U	1	0.00046	0.0019	79-34-5	05/20/14 12:53	05/20/14 08:00
1,1,2-Trichloroethane	EPA 8260	mg/kg dry	0.00041 U	1	0.00041	0.0018	79-00-5	05/20/14 12:53	05/20/14 08:00
1,1-Dichloroethane	EPA 8260	mg/kg dry	0.0011 U	1	0.0011	0.0043	75-34-3	05/20/14 12:53	05/20/14 08:00
I,1-Dichloroethene	EPA 8260	mg/kg dry	0.0012 U	1	0.0012	0.0051	75-35-4	05/20/14 12:53	05/20/14 08:00
,,2,4-Trimethylbenzene	EPA 8260	mg/kg dry	0.00097 I	1	0.00040	0.0018	95-63-6	05/20/14 12:53	05/20/14 08:00
,2-Dichlorobenzene	EPA 8260	mg/kg dry	0.00043 U	1	0.00043	0.0018	95-50-1	05/20/14 12:53	05/20/14 08:00
,2-Dichloroethane	EPA 8260	mg/kg dry	0.00047 U	1	0.00047	0.0019	107-06-2	05/20/14 12:53	05/20/14 08:00
,2-Dichloropropane	EPA 8260	mg/kg dry	0.00064 U	1	0.00064	0.0026	78-87-5	05/20/14 12:53	05/20/14 08:00
,3,5-Trimethylbenzene	EPA 8260	mg/kg dry	0.00059 U	1	0.00059	0.0024	108-67-8	05/20/14 12:53	05/20/14 08:00
,3-Dichlorobenzene	EPA 8260	mg/kg dry	0.00030 U	1	0.00030	0.0018	541-73-1	05/20/14 12:53	05/20/14 08:00
,3-Dichloropropene (Total)	EPA 8260	mg/kg dry	0.00050 U	1	0.00050	0.0019	542-75-6	05/20/14 12:53	05/20/14 08:00
,4-Dichlorobenzene	EPA 8260	mg/kg dry	0.00088 U	1	0.00088	0.0036	106-46-7	05/20/14 12:53	05/20/14 08:00
!-Butanone (MEK)	EPA 8260	mg/kg dry	0.0021 U	1	0.0021	0.0087	78-93-3	05/20/14 12:53	05/20/14 08:00
2-Hexanone	EPA 8260	mg/kg dry	0.0047 U	1	0.0047	0.019	591-78-6	05/20/14 12:53	05/20/14 08:00
I-Methyl-2-pentanone (MIBK)	EPA 8260	mg/kg dry	0.0027 U	1	0.0027	0.011	108-10-1	05/20/14 12:53	05/20/14 08:00
Acetone	EPA 8260	mg/kg dry	0.036 I	1	0.0097	0.039	67-64-1	05/20/14 12:53	05/20/14 08:00
Benzene	EPA 8260	mg/kg dry	0.0021 I	1	0.00083	0.0033	71-43-2	05/20/14 12:53	05/20/14 08:00
Bromochloromethane	EPA 8260	mg/kg dry	0.00042 U	1	0.00042	0.0018	74-97-5	05/20/14 12:53	05/20/14 08:00
Bromodichloromethane	EPA 8260	mg/kg dry	0.00039 U	1	0.00039	0.0018	75-27-4	05/20/14 12:53	05/20/14 08:00
Bromoform	EPA 8260	mg/kg dry	0.00070 U	1	0.00033	0.0028	75-25-2	05/20/14 12:53	05/20/14 08:00
Bromomethane	EPA 8260	mg/kg dry	0.0014 U	1	0.0014	0.0058	74-83-9	05/20/14 12:53	05/20/14 08:00
Carbon disulfide	EPA 8260	mg/kg dry	0.0013 U	1	0.0013	0.0053	75-15-0	05/20/14 12:53	05/20/14 08:00
Carbon tetrachloride	EPA 8260	mg/kg dry	0.0011 U	1	0.0011	0.0041	56-23-5	05/20/14 12:53	05/20/14 08:00
Chlorobenzene	EPA 8260	mg/kg dry	0.00061 U	1	0.00061	0.0024	108-90-7	05/20/14 12:53	05/20/14 08:00
Chloroethane	EPA 8260	mg/kg dry	0.0011 U	1	0.0011	0.0042	75-00-3	05/20/14 12:53	05/20/14 08:00
Chloroform	EPA 8260	mg/kg dry	0.00097 U	1	0.00097	0.0037	67-66-3	05/20/14 12:53	05/20/14 08:00
Chloromethane	EPA 8260	mg/kg dry	0.0012 U	1	0.0012	0.0051	74-87-3	05/20/14 12:53	05/20/14 08:00
is-1,2-Dichloroethene	EPA 8260	mg/kg dry	0.00097 U	1	0.00097	0.0040	156-59-2	05/20/14 12:53	05/20/14 08:00
bibromochloromethane	EPA 8260	mg/kg dry	0.00020 U	1	0.00020	0.0018	124-48-1	05/20/14 12:53	05/20/14 08:00
Dibromomethane	EPA 8260	mg/kg dry	0.00023 U	1	0.00023	0.0018	74-95-3	05/20/14 12:53	05/20/14 08:00
Dichlorodifluoromethane	EPA 8260	mg/kg dry	0.0011 U	1	0.0011	0.0010	75-71-8	05/20/14 12:53	05/20/14 08:00
Ethylbenzene	EPA 8260	mg/kg dry	0.020	1	0.0011	0.0042	100-41-4	05/20/14 12:53	05/20/14 08:00
sopropylbenzene	EPA 8260	mg/kg dry	0.00061 U	1	0.00074	0.0030	98-82-8	05/20/14 12:53	05/20/14 08:00
Methylene Chloride	EPA 8260	mg/kg dry	0.00001 U	1	0.00001	0.0023	75-09-2	05/20/14 12:53	05/20/14 08:00
Methyl tert-Butyl Ether (MTBE)	EPA 8260	mg/kg dry	0.00019 U	1	0.0019	0.0077	1634-04-4	05/20/14 12:53	05/20/14 08:00
Styrene	EPA 8260	mg/kg dry	0.00020 U	1	0.00080	0.0032	100-42-5	05/20/14 12:53	05/20/14 08:00
Tetrachloroethene	EPA 8260	mg/kg dry	0.00020 U	1	0.00020	0.0018	127-18-4	05/20/14 12:53	05/20/14 08:00

SunLabs Project Number 4051601 Cardno TBE, Inc.

Project Description

BF-Washington Park

May 23, 2014

SunLabs Sample Number: Sample Designation: 4051601-01

Matrix:

Soil

SB-1@.50ft-2ft

Date Collected: Date Received: 05/15/14 09:10

Parameters	Method	Units	Results	Dil Factor	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
Volatile Organic Compounds by EPA 8260					Method	d Qualifier	1		
Toluene	EPA 8260	mg/kg dry	0.011	1	0.00079	0.0032	108-88-3	05/20/14 12:53	05/20/14 08:00
Xylenes (Total)	EPA 8260	mg/kg dry	0.0024	1	0.00013	0.0018	1330-20-7	05/20/14 12:53	05/20/14 08:00
trans-1,2-Dichloroethene	EPA 8260	mg/kg dry	0.0011 U	1	0.0011	0.0046	156-60-5	05/20/14 12:53	05/20/14 08:00
Trichloroethene	EPA 8260	mg/kg dry	0.00074 U	1	0.00074	0.0030	79-01-6	05/20/14 12:53	05/20/14 08:00
Trichlorofluoromethane	EPA 8260	mg/kg dry	0.0011 U	1	0.0011	0.0046	75-69-4	05/20/14 12:53	05/20/14 08:00
Vinyl chloride	EPA 8260	mg/kg dry	0.0016 U	1	0.0016	0.0063	75-01-4	05/19/14 14:14	05/19/14 09:25

SunLabs Project Number 4051601 Cardno TBE, Inc.

Project Description

BF-Washington Park

May 23, 2014

SunLabs Sample Number: Sample Designation:

4051601-02

SB-1@2ft-4ft

Matrix:

Soil

Date Collected: Date Received: 05/15/14 09:25

Parameters	Method	Units	Results	Dil Facto	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
Mercury by EPA 7471					Metho	od Qualifier	:		
Mercury	EPA 7471	mg/kg dry	0.12	1	0.0046	0.018	7439-97-6	05/19/14 16:30	05/19/14 11:01
Percent Solids					Metho	d Qualifier	:		
% Solids	EPA 160.3	%	81	1			NA	05/19/14 09:17	05/16/14 14:07
Polynuclear Aromatic Hydrocarbons b	y Method 8270				Metho	d Qualifier	:		
Surrogate: 2-Fluorobiphenyl (1-191)	EPA 8270	%	68.8	1			321-60-8	05/22/14 04:14	05/19/14 17:40
Surrogate: p-Terphenyl-d14 (8-178)	EPA 8270	%	85.2	1			1718-51-0	05/22/14 04:14	05/19/14 17:40
1-Methylnaphthalene	EPA 8270	mg/kg dry	0.0082 U	1	0.0082	0.032	90-12-0	05/22/14 04:14	05/19/14 17:40
2-Methylnaphthalene	EPA 8270	mg/kg dry	0.0069 U	1	0.0069	0.027	91-57-6	05/22/14 04:14	05/19/14 17:40
Acenaphthene	EPA 8270	mg/kg dry	0.0078 I	1	0.0052	0.021	83-32-9	05/22/14 04:14	05/19/14 17:40
Acenaphthylene	EPA 8270	mg/kg dry	0.0054 U	1	0.0054	0.022	208-96-8	05/22/14 04:14	05/19/14 17:40
Anthracene	EPA 8270	mg/kg dry	0.027	1	0.0042	0.017	120-12-7	05/22/14 04:14	05/19/14 17:40
Benz[a]anthracene	EPA 8270	mg/kg dry	0.053	1	0.0037	0.015	56-55-3	05/22/14 04:14	05/19/14 17:40
Benzo[a]pyrene	EPA 8270	mg/kg dry	0.042	1	0.0049	0.020	50-32-8	05/22/14 04:14	05/19/14 17:40
Benzo[b]fluoranthene	EPA 8270	mg/kg dry	0.070	1	0.0067	0.027	205-99-2	05/22/14 04:14	05/19/14 17:40
Benzo[ghi]perylene	EPA 8270	mg/kg dry	0.031 I	1	0.017	0.068	191-24-2	05/22/14 04:14	05/19/14 17:40
Benzo[k]fluoranthene	EPA 8270	mg/kg dry	0.021	1	0.0047	0.019	207-08-9	05/22/14 04:14	05/19/14 17:40
Chrysene	EPA 8270	mg/kg dry	0.053	1	0.0030	0.012	218-01-9	05/22/14 04:14	05/19/14 17:40
Dibenz[a,h]anthracene	EPA 8270	mg/kg dry	0.019 U	1	0.019	0.072	53-70-3	05/22/14 04:14	05/19/14 17:40
Fluoranthene	EPA 8270	mg/kg dry	0.15	1	0.0057	0.022	206-44-0	05/22/14 04:14	05/19/14 17:40
Fluorene	EPA 8270	mg/kg dry	0.015 I	1	0.0044	0.017	86-73-7	05/22/14 04:14	05/19/14 17:40
Indeno[1,2,3-cd]pyrene	EPA 8270	mg/kg dry	0.026 I	1	0.017	0.072	193-39-5	05/22/14 04:14	05/19/14 17:40
Naphthalene	EPA 8270	mg/kg dry	0.014 U	1	0.014	0.054	91-20-3	05/22/14 04:14	05/19/14 17:40
Phenanthrene	EPA 8270	mg/kg dry	0.13	1	0.0069	0.027	85-01-8	05/22/14 04:14	05/19/14 17:40
Pyrene	EPA 8270	mg/kg dry	0.12	1	0.017	0.068	129-00-0	05/22/14 04:14	05/19/14 17:40

SunLabs Project Number 4051601 Cardno TBE, Inc.

Project Description

BF-Washington Park

May 23, 2014

SunLabs Sample Number: Sample Designation: 4051601-02

SB-1@2ft-4ft

Matrix:

Soil

Date Collected: Date Received: 05/15/14 09:25

Parameters	Method	Units	Results	Dil Factor	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
RCRA7 Metals by EPA 6010					Metho	d Qualifier:			
Arsenic	EPA 6010	mg/kg dry	1.5	1	0.30	1.3	7440-38-2	05/20/14 19:17	05/19/14 10:50
Barium	EPA 6010	mg/kg dry	18	1	0.058	0.23	7440-39-3	05/20/14 19:17	05/19/14 10:50
Cadmium	EPA 6010	mg/kg dry	0.098 I	1	0.066	0.27	7440-43-9	05/20/14 19:17	05/19/14 10:50
Chromium	EPA 6010	mg/kg dry	6.6	1	0.20	0.78	7440-47-3	05/20/14 19:17	05/19/14 10:50
Lead	EPA 6010	mg/kg dry	48	2	1.1	4.4	7439-92-1	05/21/14 12:28	05/19/14 10:50
Selenium	EPA 6010	mg/kg dry	0.20 U	1	0.20	0.81	7782-49-2	05/20/14 19:17	05/19/14 10:50
Silver	EPA 6010	mg/kg dry	0.21 U	1	0.21	0.84	7440-22-4	05/20/14 19:17	05/19/14 10:50
Volatile Organic Compounds by EPA 8260					Metho	d Qualifier:			
Surrogate: 4-Bromofluorobenzene (25-172)	EPA 8260	%	91.3	1			460-00-4	05/19/14 19:13	05/19/14 09:25
Surrogate: Dibromofluoromethane (77-126)	EPA 8260	%	108	1			1868-53-7	05/19/14 19:13	05/19/14 09:25
Surrogate: Toluene-d8 (78-118)	EPA 8260	%	98.3	1			2037-26-5	05/19/14 19:13	05/19/14 09:25
1,1,1-Trichloroethane	EPA 8260	mg/kg dry	0.0014 U	1	0.0014	0.0058	71-55-6	05/19/14 19:13	05/19/14 09:25
1,1,2,2-Tetrachloroethane	EPA 8260	mg/kg dry	0.00056 U	1	0.00056	0.0023	79-34-5	05/19/14 19:13	05/19/14 09:25
1,1,2-Trichloroethane	EPA 8260	mg/kg dry	0.00050 U	1	0.00050	0.0022	79-00-5	05/19/14 19:13	05/19/14 09:25
1,1-Dichloroethane	EPA 8260	mg/kg dry	0.0013 U	1	0.0013	0.0053	75-34-3	05/19/14 19:13	05/19/14 09:25
1,1-Dichloroethene	EPA 8260	mg/kg dry	0.0015 U	1	0.0015	0.0063	75-35-4	05/19/14 19:13	05/19/14 09:25
1,2,4-Trimethylbenzene	EPA 8260	mg/kg dry	0.00095 I	1	0.00049	0.0022	95-63-6	05/19/14 19:13	05/19/14 09:25
1,2-Dichlorobenzene	EPA 8260	mg/kg dry	0.00053 U	1	0.00053	0.0022	95-50-1	05/19/14 19:13	05/19/14 09:25
1,2-Dichloroethane	EPA 8260	mg/kg dry	0.00057 U	1	0.00057	0.0023	107-06-2	05/19/14 19:13	05/19/14 09:25
1,2-Dichloropropane	EPA 8260	mg/kg dry	0.00078 U	1	0.00037	0.0023	78-87-5	05/19/14 19:13	05/19/14 09:25
1,3,5-Trimethylbenzene	EPA 8260	mg/kg dry	0.00072 U	1	0.00072	0.0029	108-67-8	05/19/14 19:13	05/19/14 09:25
1,3-Dichlorobenzene	EPA 8260	mg/kg dry	0.00072 U	1	0.00072	0.0022	541-73-1	05/19/14 19:13	05/19/14 09:25
1,3-Dichloropropene (Total)	EPA 8260	mg/kg dry	0.00061 U	1	0.00061	0.0024	542-75-6	05/19/14 19:13	05/19/14 09:25
1,4-Dichlorobenzene	EPA 8260	mg/kg dry	0.0011 U	1	0.0011	0.0044	106-46-7	05/19/14 19:13	05/19/14 09:25
2-Butanone (MEK)	EPA 8260	mg/kg dry	0.016	1	0.0026	0.011	78-93-3	05/19/14 19:13	05/19/14 09:25
2-Hexanone	EPA 8260	mg/kg dry	0.0057 U	1	0.0057	0.023	591-78-6	05/19/14 19:13	05/19/14 09:25
4-Methyl-2-pentanone (MIBK)	EPA 8260	mg/kg dry	0.0032 U	1	0.0032	0.013	108-10-1	05/19/14 19:13	05/19/14 09:25
Acetone	EPA 8260	mg/kg dry	0.12	1	0.012	0.048	67-64-1	05/19/14 19:13	05/19/14 09:25
Benzene	EPA 8260	mg/kg dry	0.0041	1	0.0010	0.0040	71-43-2	05/19/14 19:13	05/19/14 09:25
Bromochloromethane	EPA 8260	mg/kg dry	0.00052 U	1	0.00052	0.0022	74-97-5	05/19/14 19:13	05/19/14 09:25
Bromodichloromethane	EPA 8260	mg/kg dry	0.00048 U	1	0.00048	0.0022	75-27-4	05/19/14 19:13	05/19/14 09:25
Bromoform	EPA 8260	mg/kg dry	0.00085 U	1	0.00085	0.0022	75-25-2	05/19/14 19:13	05/19/14 09:25
Bromomethane	EPA 8260	mg/kg dry	0.0017 U	1	0.0017	0.0033	74-83-9	05/19/14 19:13	05/19/14 09:25
Carbon disulfide	EPA 8260	mg/kg dry	0.0025 I	1	0.0017	0.0065	75-15-0	05/19/14 19:13	05/19/14 09:25
Carbon tetrachloride	EPA 8260	mg/kg dry	0.0013 U	1	0.0013	0.0050	56-23-5	05/19/14 19:13	05/19/14 09:25
Chlorobenzene	EPA 8260	mg/kg dry	0.00075 U	1	0.0015	0.0030	108-90-7	05/19/14 19:13	05/19/14 09:25
Chloroethane	EPA 8260	mg/kg dry	0.00073 U	1	0.00073	0.0023	75-00-3	05/19/14 19:13	05/19/14 09:25
Chloroform	EPA 8260	mg/kg dry	0.0013 U	1	0.0013	0.0031	67-66-3	05/19/14 19:13	05/19/14 09:25
Chloromethane	EPA 8260	mg/kg dry	0.0012 U	1	0.0012	0.0043	74-87-3	05/19/14 19:13	05/19/14 09:25
cis-1,2-Dichloroethene	EPA 8260	mg/kg dry	0.0013 U	1	0.0013	0.0063	156-59-2	05/19/14 19:13	05/19/14 09:25
Dibromochloromethane	EPA 8260	mg/kg dry	0.0012 U	=	0.0012	0.0049	124-48-1	05/19/14 19:13	05/19/14 09:25
Dibromomethane	EPA 8260	mg/kg dry	0.00023 U	1	0.00028	0.0022	74-95-3	05/19/14 19:13	
Dichlorodifluoromethane	EPA 8260	mg/kg dry	0.00028 U						05/19/14 09:25
Ethylbenzene	EPA 8260	mg/kg dry	0.016	1	0.0013	0.0052	75-71-8	05/19/14 19:13	05/19/14 09:25
isopropylbenzene	EPA 8260		0.00075 U	1	0.00091	0.0037	100-41-4	05/19/14 19:13	05/19/14 09:25
Methylene Chloride	EPA 8260	mg/kg dry	0.00073 U 0.0027 I		0.00075	0.0030	98-82-8	05/19/14 19:13	05/19/14 09:25
Methyl tert-Butyl Ether (MTBE)		mg/kg dry		1	0.0024	0.0094	75-09-2	05/19/14 19:13	05/19/14 09:25
, , , ,	EPA 8260	mg/kg dry	0.00097 U	1	0.00097	0.0039	1634-04-4	05/19/14 19:13	05/19/14 09:25
Styrene	EPA 8260	mg/kg dry	0.00025 U	1	0.00025	0.0022	100-42-5	05/19/14 19:13	05/19/14 09:25
Tetrachloroethene	EPA 8260	mg/kg dry	0.00095 U	1	0.00095	0.0038	127-18-4	05/19/14 19:13	05/19/14 09:25

SunLabs Project Number 4051601 Cardno TBE, Inc.

Project Description

BF-Washington Park

May 23, 2014

SunLabs Sample Number: Sample Designation: 4051601-02

SB-1@2ft-4ft

Matrix:

Soil

Date Collected: Date Received: 05/15/14 09:25

Parameters	Method	Units	Results	Dil Factor	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
Volatile Organic Compounds by EPA 8260					Method	d Qualifier:			
Toluene	EPA 8260	mg/kg dry	0.0097	1	0.00096	0.0039	108-88-3	05/19/14 19:13	05/19/14 09:25
Xylenes (Total)	EPA 8260	mg/kg dry	0.00057 I	1	0.00016	0.0022	1330-20-7	05/19/14 19:13	05/19/14 09:25
trans-1,2-Dichloroethene	EPA 8260	mg/kg dry	0.0014 U	1	0.0014	0.0056	156-60-5	05/19/14 19:13	05/19/14 09:25
Trichloroethene	EPA 8260	mg/kg dry	0.00091 U	1	0.00091	0.0037	79-01-6	05/19/14 19:13	05/19/14 09:25
Trichlorofluoromethane	EPA 8260	mg/kg dry	0.0014 U	1	0.0014	0.0056	75-69-4	05/19/14 19:13	05/19/14 09:25
Vinyl chloride	EPA 8260	mg/kg dry	0.0013 U	1	0.0013	0.0053	75-01-4	05/19/14 19:13	05/19/14 09:25

Project Number 4051601

Cardno TBE, Inc.

Project Description

BF-Washington Park

May 23, 2014

SunLabs Sample Number: Sample Designation:

4051601-03

SB-2@.50ft-2ft

Matrix:

Soil

Date Collected: Date Received:

05/15/14 10:00

						03/10/14 00:33				
Parameters	Method	Units	Results	Dil Factor	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep	
Mercury by EPA 7471					Metho	d Qualifier	:			
Mercury	EPA 7471	mg/kg dry	0.022	1	0.0042	0.017	7439-97-6	05/19/14 16:31	05/19/14 11:01	
Percent Solids					Metho	d Qualifier	:			
% Solids	EPA 160.3	%	89	1			NA	05/19/14 09:19	05/16/14 14:07	
Polynuclear Aromatic Hydrocarbons b	y Method 8270				Metho	d Qualifier	:			
Surrogate: 2-Fluorobiphenyl (1-191)	EPA 8270	%	7.05	1			321-60-8	05/22/14 04:32	05/19/14 17:40	
Surrogate: p-Terphenyl-d14 (8-178)	EPA 8270	%	9.19	1			1718-51-0	05/22/14 04:32	05/19/14 17:40	
1-Methylnaphthalene	EPA 8270	mg/kg dry	0.0074 U	1	0.0074	0.029	90-12-0	05/22/14 04:32	05/19/14 17:40	
2-Methylnaphthalene	EPA 8270	mg/kg dry	0.0063 U	1	0.0063	0.025	91-57-6	05/22/14 04:32	05/19/14 17:40	
Acenaphthene	EPA 8270	mg/kg dry	0.0047 U	1	0.0047	0.019	83-32-9	05/22/14 04:32	05/19/14 17:40	
Acenaphthylene	EPA 8270	mg/kg dry	0.0050 U	1	0.0050	0.020	208-96-8	05/22/14 04:32	05/19/14 17:40	
Anthracene	EPA 8270	mg/kg dry	0.0038 U	1	0.0038	0.016	120-12-7	05/22/14 04:32	05/19/14 17:40	
Benz[a]anthracene	EPA 8270	mg/kg dry	0.0034 U	1	0.0034	0.014	56-55-3	05/22/14 04:32	05/19/14 17:40	
Benzo[a]pyrene	EPA 8270	mg/kg dry	0.0045 U	1	0.0045	0.018	50-32-8	05/22/14 04:32	05/19/14 17:40	
Benzo[b]fluoranthene	EPA 8270	mg/kg dry	0.0061 U	1	0.0061	0.025	205-99-2	05/22/14 04:32	05/19/14 17:40	
Benzo[ghi]perylene	EPA 8270	mg/kg dry	0.016 U	1	0.016	0.062	191-24-2	05/22/14 04:32	05/19/14 17:40	
Benzo[k]fluoranthene	EPA 8270	mg/kg dry	0.0043 U	1	0.0043	0.017	207-08-9	05/22/14 04:32	05/19/14 17:40	
Chrysene	EPA 8270	mg/kg dry	0.0027 U	1	0.0027	0.011	218-01-9	05/22/14 04:32	05/19/14 17:40	
Dibenz[a,h]anthracene	EPA 8270	mg/kg dry	0.017 U	1	0.017	0.065	53-70-3	05/22/14 04:32	05/19/14 17:40	
Fluoranthene	EPA 8270	mg/kg dry	0.0052 U	1	0.0052	0.020	206-44-0	05/22/14 04:32	05/19/14 17:40	
Fluorene	EPA 8270	mg/kg dry	0.0041 U	1	0.0041	0.016	86-73-7	05/22/14 04:32	05/19/14 17:40	
Indeno[1,2,3-cd]pyrene	EPA 8270	mg/kg dry	0.016 U	1	0.016	0.065	193-39-5	05/22/14 04:32	05/19/14 17:40	
Naphthalene	EPA 8270	mg/kg dry	0.012 U	1	0.012	0.050	91-20-3	05/22/14 04:32	05/19/14 17:40	
Phenanthrene	EPA 8270	mg/kg dry	0.0063 U	1	0.0063	0.025	85-01-8	05/22/14 04:32	05/19/14 17:40	
Pyrene	EPA 8270	mg/kg dry	0.016 U	1	0.016	0.062	129-00-0	05/22/14 04:32	05/19/14 17:40	

SunLabs Project Number 4051601 Cardno TBE, Inc.

Project Description

BF-Washington Park

May 23, 2014

SunLabs Sample Number: Sample Designation: 4051601-03

SB-2@.50ft-2ft

Matrix:

Soil

Date Collected: Date Received: 05/15/14 10:00

Parameters	Method	Units	Results	Dil Factor	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
RCRA7 Metals by EPA 6010					Metho	d Qualifier:			
Arsenic	EPA 6010	mg/kg dry	4.9	1	0.27	1.1	7440-38-2	05/20/14 19:22	05/19/14 10:50
Barium	EPA 6010	mg/kg dry	28	1	0.051	0.21	7440-39-3	05/20/14 19:22	05/19/14 10:50
Cadmium	EPA 6010	mg/kg dry	0.24	1	0.058	0.24	7440-43-9	05/20/14 19:22	05/19/14 10:50
Chromium	EPA 6010	mg/kg dry	26	1	0.17	0.69	7440-47-3	05/20/14 19:22	05/19/14 10:50
Lead	EPA 6010	mg/kg dry	7.6	1	0.49	1.9	7439-92-1	05/20/14 19:22	05/19/14 10:50
Selenium	EPA 6010	mg/kg dry	0.17 U	1	0.17	0.72	7782-49-2	05/20/14 19:22	05/19/14 10:50
Silver	EPA 6010	mg/kg dry	0.18 U	1	0.18	0.74	7440-22-4	05/20/14 19:22	05/19/14 10:50
Volatile Organic Compounds by EPA 8260					Metho	d Qualifier:			
Surrogate: 4-Bromofluorobenzene (25-172)	EPA 8260	%	96.6	1			460-00-4	05/19/14 15:12	05/19/14 09:25
Surrogate: Dibromofluoromethane (77-126)	EPA 8260	%	111	1			1868-53-7	05/19/14 15:12	05/19/14 09:25
Surrogate: Toluene-d8 (78-118)	EPA 8260	%	98.2	1			2037-26-5	05/19/14 15:12	05/19/14 09:25
1,1,1-Trichloroethane	EPA 8260	mg/kg dry	0.0011 U	1	0.0011	0.0045	71-55-6	05/19/14 15:12	05/19/14 09:25
1,1,2,2-Tetrachloroethane	EPA 8260	mg/kg dry	0.00043 U	1	0.00043	0.0018	79-34-5	05/19/14 15:12	05/19/14 09:25
1,1,2-Trichloroethane	EPA 8260	mg/kg dry	0.00038 U	1	0.00038	0.0017	79-00-5	05/19/14 15:12	05/19/14 09:25
1,1-Dichloroethane	EPA 8260	mg/kg dry	0.0010 U	1	0.0010	0.0041	75-34-3	05/19/14 15:12	05/19/14 09:25
1,1-Dichloroethene	EPA 8260	mg/kg dry	0.0012 U	1	0.0012	0.0048	75-35-4	05/19/14 15:12	05/19/14 09:25
1,2,4-Trimethylbenzene	EPA 8260	mg/kg dry	0.0014 I	1	0.00038	0.0017	95-63-6	05/19/14 15:12	05/19/14 09:25
1,2-Dichlorobenzene	EPA 8260	mg/kg dry	0.00041 U	1	0.00030	0.0017	95-50-1	05/19/14 15:12	05/19/14 09:25
1,2-Dichloroethane	EPA 8260	mg/kg dry	0.00044 U	1	0.00044	0.0017	107-06-2	05/19/14 15:12	05/19/14 09:25
L,2-Dichloropropane	EPA 8260	mg/kg dry	0.00060 U	1	0.00060	0.0016	78-87-5	05/19/14 15:12	05/19/14 09:25
L,3,5-Trimethylbenzene	EPA 8260	mg/kg dry	0.00061 I	1	0.00056	0.0024	108-67-8	05/19/14 15:12	05/19/14 09:25
1,3-Dichlorobenzene	EPA 8260	mg/kg dry	0.00028 U	1	0.00030	0.0023	541-73-1		
1,3-Dichloropropene (Total)	EPA 8260	mg/kg dry	0.00020 U	1	0.00028	0.0017	542-75-6	05/19/14 15:12	05/19/14 09:25
1,4-Dichlorobenzene	EPA 8260	mg/kg dry	0.00047 U	1	0.00047	0.0018	106-46-7	05/19/14 15:12 05/19/14 15:12	05/19/14 09:25 05/19/14 09:25
2-Butanone (MEK)	EPA 8260	-: - ·	0.0007 I						
2-Hexanone	EPA 8260	mg/kg dry	0.0077 T	1	0.0020	0.0082	78-93-3	05/19/14 15:12	05/19/14 09:25
	EPA 8260	mg/kg dry		1	0.0044	0.018	591-78-6	05/19/14 15:12	05/19/14 09:25
4-Methyl-2-pentanone (MIBK)	EPA 8260	mg/kg dry	0.0025 U	1	0.0025	0.010	108-10-1	05/19/14 15:12	05/19/14 09:25
Acetone	EPA 8260	mg/kg dry	0.032 I	1	0.0092	0.037	67-64-1	05/19/14 15:12	05/19/14 09:25
Benzene		mg/kg dry	0.0029 I	1	0.00079	0.0031	71-43-2	05/19/14 15:12	05/19/14 09:25
Bromochloromethane	EPA 8260	mg/kg dry	0.00040 U	1	0.00040	0.0017	74-97-5	05/19/14 15:12	05/19/14 09:25
Bromodichloromethane	EPA 8260	mg/kg dry	0.00037 U	1	0.00037	0.0017	75-27-4	05/19/14 15:12	05/19/14 09:25
Bromoform	EPA 8260	mg/kg dry	0.00066 U	1	0.00066	0.0027	75-25-2	05/19/14 15:12	05/19/14 09:25
Bromomethane	EPA 8260	mg/kg dry	0.0013 U	1	0.0013	0.0055	74-83-9	05/19/14 15:12	05/19/14 09:25
Carbon disulfide	EPA 8260	mg/kg dry	0.0013 U	1	0.0013	0.0050	75-15-0	05/19/14 15:12	05/19/14 09:25
Carbon tetrachloride	EPA 8260	mg/kg dry	0.0010 U	1	0.0010	0.0038	56-23-5	05/19/14 15:12	05/19/14 09:25
Chlorobenzene	EPA 8260 EPA 8260	mg/kg dry	0.00058 U	1	0.00058	0.0023	108-90-7	05/19/14 15:12	05/19/14 09:25
Chloroethane		mg/kg dry	0.0010 U	1	0.0010	0.0039	75-00-3	05/19/14 15:12	05/19/14 09:25
Chloroform	EPA 8260	mg/kg dry	0.00092 U	1	0.00092	0.0035	67-66-3	05/19/14 15:12	05/19/14 09:25
Chloromethane	EPA 8260	mg/kg dry	0.0012 U	1	0.0012	0.0048	74-87-3	05/19/14 15:12	05/19/14 09:25
cis-1,2-Dichloroethene	EPA 8260	mg/kg dry	0.00092 U	1	0.00092	0.0038	156-59-2	05/19/14 15:12	05/19/14 09:25
Dibromochloromethane	EPA 8260	mg/kg dry	0.00019 U	1	0.00019	0.0017	124-48-1	05/19/14 15:12	05/19/14 09:25
Dibromomethane	EPA 8260	mg/kg dry	0.00022 U	1	0.00022	0.0017	74-95-3	05/19/14 15:12	05/19/14 09:25
Dichlorodifluoromethane	EPA 8260	mg/kg dry	0.0010 U	1	0.0010	0.0040	75-71-8	05/19/14 15:12	05/19/14 09:25
Ethylbenzene 	EPA 8260	mg/kg dry	0.0020 I	1	0.00070	0.0028	100-41-4	05/19/14 15:12	05/19/14 09:25
sopropylbenzene	EPA 8260	mg/kg dry	0.00058 U	1	0.00058	0.0023	98-82-8	05/19/14 15:12	05/19/14 09:25
Methylene Chloride	EPA 8260	mg/kg dry	0.0018 U	1	0.0018	0.0073	75-09-2	05/19/14 15:12	05/19/14 09:25
Methyl tert-Butyl Ether (MTBE)	EPA 8260	mg/kg dry	0.00075 U	1	0.00075	0.0030	1634-04-4	05/19/14 15:12	05/19/14 09:25
Styrene	EPA 8260	mg/kg dry	0.00019 U	1	0.00019	0.0017	100-42-5	05/19/14 15:12	05/19/14 09:25
Tetrachloroethene	EPA 8260	mg/kg dry	0.00073 U	1	0.00073	0.0029	127-18-4	05/19/14 15:12	05/19/14 09:25

SunLabs Project Number 4051601 Cardno TBE, Inc.

Project Description

BF-Washington Park

May 23, 2014

SunLabs Sample Number: Sample Designation: 4051601-03 SB-2@.50ft-2ft

Matrix:

Soil

Date Collected: Date Received: 05/15/14 10:00

Parameters	Method	Units	Results	Dil Factor	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
Volatile Organic Compounds by EPA 8260					Metho	d Qualifier	:		
Toluene	EPA 8260	mg/kg dry	0.0024 I	1	0.00074	0.0030	108-88-3	05/19/14 15:12	05/19/14 09:25
Xylenes (Total)	EPA 8260	mg/kg dry	0.0030	1	0.00013	0.0017	1330-20-7	05/19/14 15:12	05/19/14 09:25
trans-1,2-Dichloroethene	EPA 8260	mg/kg dry	0.0011 U	1	0.0011	0.0043	156-60-5	05/19/14 15:12	05/19/14 09:25
Trichloroethene	EPA 8260	mg/kg dry	0.00070 U	1	0.00070	0.0028	79-01-6	05/19/14 15:12	05/19/14 09:25
Trichlorofluoromethane	EPA 8260	mg/kg dry	0.0011 U	1	0.0011	0.0043	75-69-4	05/19/14 15:12	05/19/14 09:25
Vinyl chloride	EPA 8260	mg/kg dry	0.0010 U	1	0.0010	0.0041	75-01-4	05/19/14 15:12	05/19/14 09:25

SunLabs Project Number 4051601 Cardno TBE, Inc.

Project Description

BF-Washington Park

May 23, 2014

SunLabs Sample Number: Sample Designation: 4051601-04 SB-2@2ft-4ft Matrix:

Soil

Date Collected: Date Received: 05/15/14 10:15

10/14	00:33			

Parameters	Method	Units	Results	Dil Facto	MDL r	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
Mercury by EPA 7471					Metho	d Qualifier:	:		
Mercury	EPA 7471	mg/kg dry	0.052	1	0.0042	0.017	7439-97-6	05/19/14 16:33	05/19/14 11:01
Percent Solids					Metho	d Qualifier:	:		
% Solids	EPA 160.3	%	86	1			NA	05/19/14 09:21	05/16/14 14:07
Polynuclear Aromatic Hydrocarbons by Me	thod 8270				Metho	d Qualifier:			
Surrogate: 2-Fluorobiphenyl (1-191)	EPA 8270	%	74.0	1			321-60-8	05/22/14 04:51	05/19/14 17:40
Surrogate: p-Terphenyl-d14 (8-178)	EPA 8270	%	82.3	1			1718-51-0	05/22/14 04:51	05/19/14 17:40
1-Methylnaphthalene	EPA 8270	mg/kg dry	0.011 I	1	0.0077	0.030	90-12-0	05/22/14 04:51	05/19/14 17:40
2-Methylnaphthalene	EPA 8270	mg/kg dry	0.015 I	1	0.0065	0.026	91-57-6	05/22/14 04:51	05/19/14 17:40
Acenaphthene	EPA 8270	mg/kg dry	0.0049 U	1	0.0049	0.020	83-32-9	05/22/14 04:51	05/19/14 17:40
Acenaphthylene	EPA 8270	mg/kg dry	0.0051 U	1	0.0051	0.021	208-96-8	05/22/14 04:51	05/19/14 17:40
Anthracene	EPA 8270	mg/kg dry	0.0040 U	1	0.0040	0.016	120-12-7	05/22/14 04:51	05/19/14 17:40
Benz[a]anthracene	EPA 8270	mg/kg dry	0.018	1	0.0035	0.014	56-55-3	05/22/14 04:51	05/19/14 17:40
Benzo[a]pyrene	EPA 8270	mg/kg dry	0.024	1	0.0047	0.019	50-32-8	05/22/14 04:51	05/19/14 17:40
Benzo[b]fluoranthene	EPA 8270	mg/kg dry	0.051	1	0.0063	0.026	205-99-2	05/22/14 04:51	05/19/14 17:40
Benzo[ghi]perylene	EPA 8270	mg/kg dry	0.021 I	1	0.016	0.064	191-24-2	05/22/14 04:51	05/19/14 17:40
Benzo[k]fluoranthene	EPA 8270	mg/kg dry	0.014 I	1	0.0044	0.017	207-08-9	05/22/14 04:51	05/19/14 17:40
Chrysene	EPA 8270	mg/kg dry	0.032	1	0.0028	0.011	218-01-9	05/22/14 04:51	05/19/14 17:40
Dibenz[a,h]anthracene	EPA 8270	mg/kg dry	0.017 U	1	0.017	0.067	53-70-3	05/22/14 04:51	05/19/14 17:40
Fluoranthene	EPA 8270	mg/kg dry	0.024	1	0.0054	0.021	206-44-0	05/22/14 04:51	05/19/14 17:40
Fluorene	EPA 8270	mg/kg dry	0.0042 U	1	0.0042	0.016	86-73-7	05/22/14 04:51	05/19/14 17:40
Indeno[1,2,3-cd]pyrene	EPA 8270	mg/kg dry	0.016 U	1	0.016	0.067	193-39-5	05/22/14 04:51	05/19/14 17:40
Naphthalene	EPA 8270	mg/kg dry	0.013 U	1	0.013	0.051	91-20-3	05/22/14 04:51	05/19/14 17:40
Phenanthrene	EPA 8270	mg/kg dry	0.012 I	1	0.0065	0.026	85-01-8	05/22/14 04:51	05/19/14 17:40
Pyrene	EPA 8270	mg/kg dry	0.043 I	1	0.016	0.064	129-00-0	05/22/14 04:51	05/19/14 17:40

SunLabs Project Number 4051601 Cardno TBE, Inc.

Project Description

BF-Washington Park

May 23, 2014

SunLabs Sample Number: Sample Designation: 4051601-04 SB-2@2ft-4ft

Matrix:

Soil

Date Collected: Date Received: 05/15/14 10:15

Parameters	Method	Units	Results	Dil Factor	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
RCRA7 Metals by EPA 6010					Metho	d Qualifier:			
Arsenic	EPA 6010	mg/kg dry	3.1	1	0.28	1.2	7440-38-2	05/20/14 19:27	05/19/14 10:50
Barium	EPA 6010	mg/kg dry	38	1	0.054	0.21	7440-39-3	05/20/14 19:27	05/19/14 10:50
Cadmium	EPA 6010	mg/kg dry	0.21 I	1	0.061	0.25	7440-43-9	05/20/14 19:27	05/19/14 10:50
Chromium	EPA 6010	mg/kg dry	18	1	0.18	0.72	7440-47-3	05/20/14 19:27	05/19/14 10:50
Lead	EPA 6010	mg/kg dry	41	2	1.0	4.1	7439-92-1	05/21/14 12:31	05/19/14 10:50
Selenium	EPA 6010	mg/kg dry	0.18 U	1	0.18	0.75	7782-49-2	05/20/14 19:27	05/19/14 10:50
Silver	EPA 6010	mg/kg dry	0.19 U	1	0.19	0.77	7440-22-4	05/20/14 19:27	05/19/14 10:50
Volatile Organic Compounds by EPA 8260					Metho	d Qualifier:			
Surrogate: 4-Bromofluorobenzene (25-172)	EPA 8260	%	96.6	1			460-00-4	05/19/14 15:36	05/19/14 09:25
Surrogate: Dibromofluoromethane (77-126)	EPA 8260	%	110	1			1868-53-7	05/19/14 15:36	05/19/14 09:25
Surrogate: Toluene-d8 (78-118)	EPA 8260	%	97.7	1			2037-26-5	05/19/14 15:36	05/19/14 09:25
1,1,1-Trichloroethane	EPA 8260	mg/kg dry	0.0010 U	1	0.0010	0.0043	71-55-6	05/19/14 15:36	05/19/14 09:25
1,1,2,2-Tetrachloroethane	EPA 8260	mg/kg dry	0.00041 U	1	0.00041	0.0017	79-34-5	05/19/14 15:36	05/19/14 09:25
1,1,2-Trichloroethane	EPA 8260	mg/kg dry	0.00036 U	1	0.00036	0.0016	79-00-5	05/19/14 15:36	05/19/14 09:25
1,1-Dichloroethane	EPA 8260	mg/kg dry	0.00095 U	1	0.00095	0.0039	75-34-3	05/19/14 15:36	05/19/14 09:25
1,1-Dichloroethene	EPA 8260	mg/kg dry	0.0011 U	1	0.0011	0.0046	75-35-4	05/19/14 15:36	05/19/14 09:25
L,2,4-Trimethylbenzene	EPA 8260	mg/kg dry	0.0015 I	1	0.00036	0.0016	95-63-6	05/19/14 15:36	05/19/14 09:25
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	EPA 8260	mg/kg dry	0.00039 U	1	0.00039	0.0016	95-50-1	05/19/14 15:36	05/19/14 09:25
, L,2-Dichloroethane	EPA 8260	mg/kg dry	0.00042 U	1	0.00042	0.0017	107-06-2	05/19/14 15:36	05/19/14 09:25
,2-Dichloropropane	EPA 8260	mg/kg dry	0.00057 U	1	0.00057	0.0023	78-87-5	05/19/14 15:36	05/19/14 09:25
,3,5-Trimethylbenzene	EPA 8260	mg/kg dry	0.00053 U	1	0.00053	0.0021	108-67-8	05/19/14 15:36	05/19/14 09:25
1,3-Dichlorobenzene	EPA 8260	mg/kg dry	0.00027 U	1	0.00027	0.0016	541-73-1	05/19/14 15:36	05/19/14 09:25
1,3-Dichloropropene (Total)	EPA 8260	mg/kg dry	0.00044 U	1	0.00044	0.0017	542-75-6	05/19/14 15:36	05/19/14 09:25
,4-Dichlorobenzene	EPA 8260	mg/kg dry	0.00079 U	1	0.00079	0.0032	106-46-7	05/19/14 15:36	05/19/14 09:25
2-Butanone (MEK)	EPA 8260	mg/kg dry	0.0076 I	1	0.0019	0.0078	78-93-3	05/19/14 15:36	05/19/14 09:25
2-Hexanone	EPA 8260	mg/kg dry	0.0042 U	1	0.0042	0.017	591-78-6	05/19/14 15:36	05/19/14 09:25
I-Methyl-2-pentanone (MIBK)	EPA 8260	mg/kg dry	0.0024 U	1	0.0024	0.0095	108-10-1	05/19/14 15:36	05/19/14 09:25
Acetone	EPA 8260	mg/kg dry	0.0087 U	1	0.0087	0.035	67-64-1	05/19/14 15:36	05/19/14 09:25
Benzene	EPA 8260	mg/kg dry	0.0041	1	0.00074	0.0029	71-43-2	05/19/14 15:36	05/19/14 09:25
Bromochloromethane	EPA 8260	mg/kg dry	0.00038 U	1	0.00038	0.0016	74-97-5	05/19/14 15:36	05/19/14 09:25
Bromodichloromethane	EPA 8260	mg/kg dry	0.00035 U	1	0.00035	0.0016	75-27-4	05/19/14 15:36	05/19/14 09:25
Bromoform	EPA 8260	mg/kg dry	0.00063 U	1	0.00063	0.0025	75-25-2	05/19/14 15:36	05/19/14 09:25
Bromomethane	EPA 8260	mg/kg dry	0.0013 U	1	0.0013	0.0052	74-83-9	05/19/14 15:36	05/19/14 09:25
Carbon disulfide	EPA 8260	mg/kg dry	0.0012 U	1	0.0012	0.0047	75-15-0	05/19/14 15:36	05/19/14 09:25
Carbon tetrachloride	EPA 8260	mg/kg dry	0.00095 U	1	0.00095	0.0036	56-23-5	05/19/14 15:36	05/19/14 09:25
Chlorobenzene	EPA 8260	mg/kg dry	0.00055 U	1	0.00055	0.0021	108-90-7	05/19/14 15:36	05/19/14 09:25
Chloroethane	EPA 8260	mg/kg dry	0.00095 U	1	0.00095	0.0037	75-00-3	05/19/14 15:36	05/19/14 09:25
Chloroform	EPA 8260	mg/kg dry	0.00087 U	1	0.00087	0.0033	67-66-3	05/19/14 15:36	05/19/14 09:25
Chloromethane	EPA 8260	mg/kg dry	0.0011 U	1	0.0011	0.0046	74-87-3	05/19/14 15:36	05/19/14 09:25
is-1,2-Dichloroethene	EPA 8260	mg/kg dry	0.00087 U	1	0.00087	0.0036	156-59-2	05/19/14 15:36	05/19/14 09:25
Dibromochloromethane	EPA 8260	mg/kg dry	0.00018 U	1	0.00018	0.0016	124-48-1	05/19/14 15:36	05/19/14 09:25
Dibromomethane	EPA 8260	mg/kg dry	0.00021 U	1	0.00021	0.0016	74-95-3	05/19/14 15:36	05/19/14 09:25
Dichlorodifluoromethane	EPA 8260	mg/kg dry	0.00095 U	1	0.00095	0.0038	75-71-8	05/19/14 15:36	05/19/14 09:25
Ethylbenzene	EPA 8260	mg/kg dry	0.0020 I	1	0.00095	0.0030	100-41-4	05/19/14 15:36	05/19/14 09:25
sopropylbenzene	EPA 8260	mg/kg dry	0.00055 U	1	0.00055	0.0027	98-82-8	05/19/14 15:36	05/19/14 09:25
Methylene Chloride	EPA 8260	mg/kg dry	0.0017 U	1	0.0017	0.0069	75-09-2	05/19/14 15:36	05/19/14 09:25
Methyl tert-Butyl Ether (MTBE)	EPA 8260	mg/kg dry	0.00071 U	1	0.00071	0.0009	1634-04-4	05/19/14 15:36	05/19/14 09:25
Styrene	EPA 8260	mg/kg dry	0.00071 U	1	0.00071	0.0016	100-42-5	05/19/14 15:36	05/19/14 09:25
Tetrachloroethene	EPA 8260	mg/kg dry	0.00070 U	1	0.00070	0.0018	127-18-4	05/19/14 15:36	05/19/14 09:25

SunLabs Project Number 4051601 Cardno TBE, Inc.

Project Description

BF-Washington Park

May 23, 2014

SunLabs Sample Number: Sample Designation: 4051601-04

SB-2@2ft-4ft

Matrix:

Soil

Date Collected: Date Received: 05/15/14 10:15

Parameters	Method	Units	Results	Dil Factor	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
Volatile Organic Compounds by EPA 8260					Method	d Qualifier:	:		
Toluene	EPA 8260	mg/kg dry	0.0039	1	0.00070	0.0028	108-88-3	05/19/14 15:36	05/19/14 09:25
Xylenes (Total)	EPA 8260	mg/kg dry	0.0040	1	0.00012	0.0016	1330-20-7	05/19/14 15:36	05/19/14 09:25
trans-1,2-Dichloroethene	EPA 8260	mg/kg dry	0.0010 U	1	0.0010	0.0041	156-60-5	05/19/14 15:36	05/19/14 09:25
Trichloroethene	EPA 8260	mg/kg dry	0.00066 U	1	0.00066	0.0027	79-01-6	05/19/14 15:36	05/19/14 09:25
Trichlorofluoromethane	EPA 8260	mg/kg dry	0.0010 U	1	0.0010	0.0041	75-69-4	05/19/14 15:36	05/19/14 09:25
Vinyl chloride	EPA 8260	mg/kg dry	0.00095 U	1	0.00095	0.0039	75-01-4	05/19/14 15:36	05/19/14 09:25

SunLabs Project Number 4051601 Cardno TBE, Inc.

Project Description

BF-Washington Park

May 23, 2014

SunLabs Sample Number: Sample Designation: 4051601-05 SB-4@.50ft-2ft Matrix:

Soil

Date Collected: Date Received: 05/15/14 11:30

						03/10/14 00:33				
Parameters	Method	Units	Results	Dil Factor	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep	
Mercury by EPA 7471					Metho	od Qualifier	:			
Mercury	EPA 7471	mg/kg dry	0.0041 U	1	0.0041	0.016	7439-97-6	05/19/14 16:39	05/19/14 11:01	
Percent Solids					Metho	d Qualifier	:			
% Solids	EPA 160.3	%	89	1			NA	05/19/14 09:23	05/16/14 14:07	
Polynuclear Aromatic Hydrocarbons by	y Method 8270				Metho	d Qualifier	:			
Surrogate: 2-Fluorobiphenyl (1-191)	EPA 8270	%	70.0	1			321-60-8	05/22/14 05:10	05/19/14 17:40	
Surrogate: p-Terphenyl-d14 (8-178)	EPA 8270	%	83.7	1			1718-51-0	05/22/14 05:10	05/19/14 17:40	
1-Methylnaphthalene	EPA 8270	mg/kg dry	0.0075 U	1	0.0075	0.029	90-12-0	05/22/14 05:10	05/19/14 17:40	
2-Methylnaphthalene	EPA 8270	mg/kg dry	0.0063 U	1	0.0063	0.025	91-57-6	05/22/14 05:10	05/19/14 17:40	
Acenaphthene	EPA 8270	mg/kg dry	0.0047 U	1	0.0047	0.019	83-32-9	05/22/14 05:10	05/19/14 17:40	
Acenaphthylene	EPA 8270	mg/kg dry	0.083	1	0.0050	0.020	208-96-8	05/22/14 05:10	05/19/14 17:40	
Anthracene	EPA 8270	mg/kg dry	0.073	1	0.0038	0.016	120-12-7	05/22/14 05:10	05/19/14 17:40	
Benz[a]anthracene	EPA 8270	mg/kg dry	0.20	1	0.0034	0.014	56-55-3	05/22/14 05:10	05/19/14 17:40	
Benzo[a]pyrene	EPA 8270	mg/kg dry	0.40	1	0.0045	0.018	50-32-8	05/22/14 05:10	05/19/14 17:40	
Benzo[b]fluoranthene	EPA 8270	mg/kg dry	0.79	1	0.0061	0.025	205-99-2	05/22/14 05:10	05/19/14 17:40	
Benzo[ghi]perylene	EPA 8270	mg/kg dry	0.37	1	0.016	0.062	191-24-2	05/22/14 05:10	05/19/14 17:40	
Benzo[k]fluoranthene	EPA 8270	mg/kg dry	0.23	1	0.0043	0.017	207-08-9	05/22/14 05:10	05/19/14 17:40	
Chrysene	EPA 8270	mg/kg dry	0.29	1	0.0027	0.011	218-01-9	05/22/14 05:10	05/19/14 17:40	
Dibenz[a,h]anthracene	EPA 8270	mg/kg dry	0.091	1	0.017	0.065	53-70-3	05/22/14 05:10	05/19/14 17:40	
Fluoranthene	EPA 8270	mg/kg dry	0.24	1	0.0052	0.020	206-44-0	05/22/14 05:10	05/19/14 17:40	
Fluorene	EPA 8270	mg/kg dry	0.0041 U	1	0.0041	0.016	86-73-7	05/22/14 05:10	05/19/14 17:40	
Indeno[1,2,3-cd]pyrene	EPA 8270	mg/kg dry	0.32	1	0.016	0.065	193-39-5	05/22/14 05:10	05/19/14 17:40	
Naphthalene	EPA 8270	mg/kg dry	0.012 U	1	0.012	0.050	91-20-3	05/22/14 05:10	05/19/14 17:40	
Phenanthrene	EPA 8270	mg/kg dry	0.041	1	0.0063	0.025	85-01-8	05/22/14 05:10	05/19/14 17:40	
Pyrene	EPA 8270	mg/kg dry	0.30	1	0.016	0.062	129-00-0	05/22/14 05:10	05/19/14 17:40	

SunLabs Project Number 4051601 Cardno TBE, Inc.

Project Description

BF-Washington Park

May 23, 2014

SunLabs Sample Number: Sample Designation: 4051601-05

SB-4@.50ft-2ft

Matrix:

Soil

Date Collected: Date Received: 05/15/14 11:30

Parameters	Method	Units	Results	Dil Factor	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
RCRA7 Metals by EPA 6010					Metho	d Qualifier:			
Arsenic	EPA 6010	mg/kg dry	2.8	1	0.28	1.2	7440-38-2	05/20/14 19:32	05/19/14 10:50
Barium	EPA 6010	mg/kg dry	28	1	0.053	0.21	7440-39-3	05/20/14 19:32	05/19/14 10:50
Cadmium	EPA 6010	mg/kg dry	0.26	1	0.061	0.25	7440-43-9	05/20/14 19:32	05/19/14 10:50
Chromium	EPA 6010	mg/kg dry	16	1	0.18	0.72	7440-47-3	05/20/14 19:32	05/19/14 10:50
Lead	EPA 6010	mg/kg dry	14	1	0.51	2.0	7439-92-1	05/20/14 19:32	05/19/14 10:50
Selenium	EPA 6010	mg/kg dry	0.18 U	1	0.18	0.75	7782-49-2	05/20/14 19:32	05/19/14 10:50
Silver	EPA 6010	mg/kg dry	0.19 U	1	0.19	0.77	7440-22-4	05/20/14 19:32	05/19/14 10:50
Volatile Organic Compounds by EPA 8260					Metho	d Qualifier:			
Surrogate: 4-Bromofluorobenzene (25-172)	EPA 8260	%	89.5	1			460-00-4	05/19/14 16:00	05/19/14 09:25
Surrogate: Dibromofluoromethane (77-126)	EPA 8260	%	119	1			1868-53-7	05/19/14 16:00	05/19/14 09:25
Surrogate: Toluene-d8 (78-118)	EPA 8260	%	91.1	1			2037-26-5	05/19/14 16:00	05/19/14 09:25
,1,1-Trichloroethane	EPA 8260	mg/kg dry	0.0011 U	1	0.0011	0.0044	71-55-6	05/19/14 16:00	05/19/14 09:25
1,1,2,2-Tetrachloroethane	EPA 8260	mg/kg dry	0.00042 U	1	0.00042	0.0017	79-34-5	05/19/14 16:00	05/19/14 09:25
I,1,2-Trichloroethane	EPA 8260	mg/kg dry	0.00038 U	1	0.00038	0.0016	79-00-5	05/19/14 16:00	05/19/14 09:25
1,1-Dichloroethane	EPA 8260	mg/kg dry	0.00098 U	1	0.00098	0.0040	75-34-3	05/19/14 16:00	05/19/14 09:25
L,1-Dichloroethene	EPA 8260	mg/kg dry	0.0011 U	1	0.0011	0.0047	75-35-4	05/19/14 16:00	05/19/14 09:25
,,2,4-Trimethylbenzene	EPA 8260	mg/kg dry	0.0014 I	1	0.00037	0.0016	95-63-6	05/19/14 16:00	05/19/14 09:25
.,2-Dichlorobenzene	EPA 8260	mg/kg dry	0.00040 U	1	0.00040	0.0016	95-50-1	05/19/14 16:00	05/19/14 09:25
.,2-Dichloroethane	EPA 8260	mg/kg dry	0.00043 U	1	0.00043	0.0017	107-06-2	05/19/14 16:00	05/19/14 09:25
,2-Dichloropropane	EPA 8260	mg/kg dry	0.00059 U	1	0.00059	0.0024	78-87-5	05/19/14 16:00	05/19/14 09:25
,3,5-Trimethylbenzene	EPA 8260	mg/kg dry	0.00055 U	1	0.00055	0.0022	108-67-8	05/19/14 16:00	05/19/14 09:25
,3-Dichlorobenzene	EPA 8260	mg/kg dry	0.00028 U	1	0.00028	0.0016	541-73-1	05/19/14 16:00	05/19/14 09:25
,3-Dichloropropene (Total)	EPA 8260	mg/kg dry	0.00046 U	1	0.00046	0.0018	542-75-6	05/19/14 16:00	05/19/14 09:25
,4-Dichlorobenzene	EPA 8260	mg/kg dry	0.00082 U	1	0.00082	0.0033	106-46-7	05/19/14 16:00	05/19/14 09:25
!-Butanone (MEK)	EPA 8260	mg/kg dry	0.0082	1	0.0020	0.0080	78-93-3	05/19/14 16:00	05/19/14 09:25
!-Hexanone	EPA 8260	mg/kg dry	0.0043 U	1	0.0043	0.017	591-78-6	05/19/14 16:00	05/19/14 09:25
-Methyl-2-pentanone (MIBK)	EPA 8260	mg/kg dry	0.0025 U	1	0.0025	0.0098	108-10-1	05/19/14 16:00	05/19/14 09:25
Acetone	EPA 8260	mg/kg dry	0.081	1	0.0090	0.036	67-64-1	05/19/14 16:00	05/19/14 09:25
Benzene	EPA 8260	mg/kg dry	0.0056	1	0.00077	0.0030	71-43-2	05/19/14 16:00	05/19/14 09:25
Bromochloromethane	EPA 8260	mg/kg dry	0.00039 U	1	0.00039	0.0016	74-97-5	05/19/14 16:00	05/19/14 09:25
Bromodichloromethane	EPA 8260	mg/kg dry	0.00036 U	1	0.00036	0.0016	75-27-4	05/19/14 16:00	05/19/14 09:25
Bromoform	EPA 8260	mg/kg dry	0.00065 U	1	0.00065	0.0026	75-25-2	05/19/14 16:00	05/19/14 09:25
Promomethane	EPA 8260	mg/kg dry	0.0013 U	1	0.0013	0.0054	74-83-9	05/19/14 16:00	05/19/14 09:25
Carbon disulfide	EPA 8260	mg/kg dry	0.0012 U	1	0.0012	0.0049	75-15-0	05/19/14 16:00	05/19/14 09:25
Carbon tetrachloride	EPA 8260	mg/kg dry	0.00098 U	1	0.00098	0.0038	56-23-5	05/19/14 16:00	05/19/14 09:25
Chlorobenzene	EPA 8260	mg/kg dry	0.00056 U	1	0.00056	0.0022	108-90-7	05/19/14 16:00	05/19/14 09:25
Chloroethane	EPA 8260	mg/kg dry	0.00098 U	1	0.00098	0.0038	75-00-3	05/19/14 16:00	05/19/14 09:25
Chloroform	EPA 8260	mg/kg dry	0.00090 U	1	0.00090	0.0034	67-66-3	05/19/14 16:00	05/19/14 09:25
Chloromethane	EPA 8260	mg/kg dry	0.0011 U	1	0.0011	0.0047	74-87-3	05/19/14 16:00	05/19/14 09:25
is-1,2-Dichloroethene	EPA 8260	mg/kg dry	0.00090 U	1	0.00090	0.0037	156-59-2	05/19/14 16:00	05/19/14 09:25
Dibromochloromethane	EPA 8260	mg/kg dry	0.00019 U	1	0.00019	0.0016	124-48-1	05/19/14 16:00	05/19/14 09:25
Dibromomethane	EPA 8260	mg/kg dry	0.00021 U	1	0.00021	0.0016	74-95-3	05/19/14 16:00	05/19/14 09:25
Dichlorodifluoromethane	EPA 8260	mg/kg dry	0.00098 U	1	0.00098	0.0039	75-71-8	05/19/14 16:00	05/19/14 09:25
Ethylbenzene	EPA 8260	mg/kg dry	0.0017 I	1	0.00069	0.0028	100-41-4	05/19/14 16:00	05/19/14 09:25
sopropylbenzene	EPA 8260	mg/kg dry	0.00056 U	1	0.00056	0.0023	98-82-8	05/19/14 16:00	05/19/14 09:25
Methylene Chloride	EPA 8260	mg/kg dry	0.0018 U	1	0.0018	0.0071	75-09-2	05/19/14 16:00	05/19/14 09:25
/ Nethyl tert-Butyl Ether (MTBE)	EPA 8260	mg/kg dry	0.00074 U	1	0.00074	0.0029	1634-04-4	05/19/14 16:00	05/19/14 09:25
Styrene	EPA 8260	mg/kg dry	0.00019 U	1	0.00019	0.0016	100-42-5	05/19/14 16:00	05/19/14 09:25
Fetrachloroethene	EPA 8260	mg/kg dry	0.00072 U	1	0.00072	0.0029	127-18-4	05/19/14 16:00	05/19/14 09:25

SunLabs Project Number 4051601 Cardno TBE, Inc.

Project Description

BF-Washington Park

May 23, 2014

SunLabs Sample Number: Sample Designation: 4051601-05 SB-4@.50ft-2ft

Matrix:

Soil

Date Collected: Date Received: 05/15/14 11:30

Parameters	Method	Units	Results	Dil Factor	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
Volatile Organic Compounds by EPA 8260					Metho	d Qualifier	:		
Toluene	EPA 8260	mg/kg dry	0.0036	1	0.00073	0.0029	108-88-3	05/19/14 16:00	05/19/14 09:25
Xylenes (Total)	EPA 8260	mg/kg dry	0.0038	1	0.00012	0.0016	1330-20-7	05/19/14 16:00	05/19/14 09:25
trans-1,2-Dichloroethene	EPA 8260	mg/kg dry	0.0011 U	1	0.0011	0.0042	156-60-5	05/19/14 16:00	05/19/14 09:25
Trichloroethene	EPA 8260	mg/kg dry	0.00069 U	1	0.00069	0.0028	79-01-6	05/19/14 16:00	05/19/14 09:25
Trichlorofluoromethane	EPA 8260	mg/kg dry	0.0011 U	1	0.0011	0.0042	75-69-4	05/19/14 16:00	05/19/14 09:25
Vinyl chloride	EPA 8260	mg/kg dry	0.00098 U	1	0.00098	0.0040	75-01-4	05/19/14 16:00	05/19/14 09:25

SunLabs Project Number 4051601 Cardno TBE, Inc.

Project Description

BF-Washington Park

May 23, 2014

SunLabs Sample Number: Sample Designation:

4051601-06 SB-4@2ft-4ft Matrix:

Soil

Date Collected: Date Received: 05/15/14 11:40

Parameters	Method	Units	Results	Dil Facto	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
Mercury by EPA 7471					Metho	d Qualifier	:		
Mercury	EPA 7471	mg/kg dry	0.040	1	0.0044	0.017	7439-97-6	05/19/14 16:44	05/19/14 11:01
Percent Solids					Metho	d Qualifier	:		
% Solids	EPA 160.3	%	86	1			NA	05/19/14 09:25	05/16/14 14:07
Polynuclear Aromatic Hydrocarbons by	Method 8270				Metho	d Qualifier	:		
Surrogate: 2-Fluorobiphenyl (1-191)	EPA 8270	%	70.0	1			321-60-8	05/22/14 05:28	05/19/14 17:40
Surrogate: p-Terphenyl-d14 (8-178)	EPA 8270	%	80.8	1			1718-51-0	05/22/14 05:28	05/19/14 17:40
1-Methylnaphthalene	EPA 8270	mg/kg dry	0.0077 U	1	0.0077	0.030	90-12-0	05/22/14 05:28	05/19/14 17:40
2-Methylnaphthalene	EPA 8270	mg/kg dry	0.0065 U	1	0.0065	0.026	91-57-6	05/22/14 05:28	05/19/14 17:40
Acenaphthene	EPA 8270	mg/kg dry	0.0049 U	1	0.0049	0.020	83-32-9	05/22/14 05:28	05/19/14 17:40
Acenaphthylene	EPA 8270	mg/kg dry	0.0051 U	1	0.0051	0.021	208-96-8	05/22/14 05:28	05/19/14 17:40
Anthracene	EPA 8270	mg/kg dry	0.0040 U	1	0.0040	0.016	120-12-7	05/22/14 05:28	05/19/14 17:40
Benz[a]anthracene	EPA 8270	mg/kg dry	0.0035 U	1	0.0035	0.014	56-55-3	05/22/14 05:28	05/19/14 17:40
Benzo[a]pyrene	EPA 8270	mg/kg dry	0.0047 U	1	0.0047	0.019	50-32-8	05/22/14 05:28	05/19/14 17:40
Benzo[b]fluoranthene	EPA 8270	mg/kg dry	0.0063 U	1	0.0063	0.026	205-99-2	05/22/14 05:28	05/19/14 17:40
Benzo[ghi]perylene	EPA 8270	mg/kg dry	0.016 U	1	0.016	0.064	191-24-2	05/22/14 05:28	05/19/14 17:40
Benzo[k]fluoranthene	EPA 8270	mg/kg dry	0.0044 U	1	0.0044	0.017	207-08-9	05/22/14 05:28	05/19/14 17:40
Chrysene	EPA 8270	mg/kg dry	0.0028 U	1	0.0028	0.011	218-01-9	05/22/14 05:28	05/19/14 17:40
Dibenz[a,h]anthracene	EPA 8270	mg/kg dry	0.017 U	1	0.017	0.068	53-70-3	05/22/14 05:28	05/19/14 17:40
Fluoranthene	EPA 8270	mg/kg dry	0.0054 U	1	0.0054	0.021	206-44-0	05/22/14 05:28	05/19/14 17:40
Fluorene	EPA 8270	mg/kg dry	0.0042 U	1	0.0042	0.016	86-73-7	05/22/14 05:28	05/19/14 17:40
Indeno[1,2,3-cd]pyrene	EPA 8270	mg/kg dry	0.016 U	1	0.016	0.068	193-39-5	05/22/14 05:28	05/19/14 17:40
Naphthalene	EPA 8270	mg/kg dry	0.013 U	1	0.013	0.051	91-20-3	05/22/14 05:28	05/19/14 17:40
Phenanthrene	EPA 8270	mg/kg dry	0.0065 U	1	0.0065	0.026	85-01-8	05/22/14 05:28	05/19/14 17:40
Pyrene	EPA 8270	mg/kg dry	0.016 U	1	0.016	0.064	129-00-0	05/22/14 05:28	05/19/14 17:40

SunLabs Project Number

4051601

Cardno TBE, Inc.

Project Description

BF-Washington Park

May 23, 2014

SunLabs Sample Number: Sample Designation:

4051601-06 SB-4@2ft-4ft Matrix:

Soil

Date Collected: Date Received: 05/15/14 11:40

Parameters	Method	Units	Results	Dil Facto	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep	
RCRA7 Metals by EPA 6010					Metho	d Qualifier:				
Arsenic	EPA 6010	mg/kg dry	1.1 I	1	0.27	1.2	7440-38-2	05/20/14 19:49	05/19/14 10:50	
Barium	EPA 6010	mg/kg dry	70	1	0.052	0.21	7440-39-3	05/20/14 19:49	05/19/14 10:50	
Cadmium	EPA 6010	mg/kg dry	0.060 U	1	0.060	0.24	7440-43-9	05/20/14 19:49	05/19/14 10:50	
Chromium	EPA 6010	mg/kg dry	22	1	0.18	0.70	7440-47-3	05/20/14 19:49	05/19/14 10:50	
_ead	EPA 6010	mg/kg dry	4.8	1	0.50	2.0	7439-92-1	05/20/14 19:49	05/19/14 10:50	
Selenium	EPA 6010	mg/kg dry	0.18 U	1	0.18	0.73	7782-49-2	05/20/14 19:49	05/19/14 10:50	
Silver	EPA 6010	mg/kg dry	0.19 U	1	0.19	0.75	7440-22-4	05/20/14 19:49	05/19/14 10:50	
/olatile Organic Compounds by EPA 8260					Metho	d Qualifier:				
urrogate: 4-Bromofluorobenzene (25-172)	EPA 8260	%	94.4	1			460-00-4	05/19/14 16:25	05/19/14 09:25	
urrogate: Dibromofluoromethane (77-126)	EPA 8260	%	112	1			1868-53-7	05/19/14 16:25	05/19/14 09:25	
urrogate: Toluene-d8 (78-118)	EPA 8260	%	97.0	1			2037-26-5	05/19/14 16:25	05/19/14 09:25	
,1,1-Trichloroethane	EPA 8260	mg/kg dry	0.00097 U	1	0.00097	0.0040	71-55-6	05/19/14 16:25	05/19/14 09:25	
1,1,2,2-Tetrachloroethane	EPA 8260	mg/kg dry	0.00037 U	1	0.00039	0.0016	79-34-5	05/19/14 16:25	05/19/14 09:25	
1,1,2-Trichloroethane	EPA 8260	mg/kg dry	0.00034 U	1	0.00034	0.0015	79-00-5	05/19/14 16:25	05/19/14 09:25	
.,1-Dichloroethane	EPA 8260	mg/kg dry	0.00090 U	1	0.00090	0.0013	75-34-3	05/19/14 16:25	05/19/14 09:25	
,1-Dichloroethene	EPA 8260	mg/kg dry	0.0010 U	1	0.0010	0.0043	75-35-4	05/19/14 16:25	05/19/14 09:25	
,2,4-Trimethylbenzene	EPA 8260	mg/kg dry	0.00034 U	1	0.00034	0.0015	95-63-6	05/19/14 16:25	05/19/14 09:25	
,2-Dichlorobenzene	EPA 8260	mg/kg dry	0.00037 U	1	0.00037	0.0015	95-50-1	05/19/14 16:25	05/19/14 09:25	
,2-Dichloroethane	EPA 8260	mg/kg dry	0.00040 U	1	0.00040	0.0016	107-06-2	05/19/14 16:25	05/19/14 09:25	
,2-Dichloropropane	EPA 8260	mg/kg dry	0.00054 U	1	0.00054	0.0022	78-87-5	05/19/14 16:25	05/19/14 09:25	
,3,5-Trimethylbenzene	EPA 8260	mg/kg dry	0.00050 U	1	0.00050	0.0020	108-67-8	05/19/14 16:25	05/19/14 09:25	
,3-Dichlorobenzene	EPA 8260	mg/kg dry	0.00025 U	1	0.00025	0.0015	541-73-1	05/19/14 16:25	05/19/14 09:25	
,3-Dichloropropene (Total)	EPA 8260	mg/kg dry	0.00042 U	1	0.00042	0.0016	542-75-6	05/19/14 16:25	05/19/14 09:25	
,4-Dichlorobenzene	EPA 8260	mg/kg dry	0.00075 U	1	0.00075	0.0031	106-46-7	05/19/14 16:25	05/19/14 09:25	
!-Butanone (MEK)	EPA 8260	mg/kg dry	0.0018 U	1	0.0018	0.0073	78-93-3	05/19/14 16:25	05/19/14 09:25	
-Hexanone	EPA 8260	mg/kg dry	0.0040 U	1	0.0040	0.016	591-78-6	05/19/14 16:25	05/19/14 09:25	
-Methyl-2-pentanone (MIBK)	EPA 8260	mg/kg dry	0.0022 U	1	0.0022	0.0090	108-10-1	05/19/14 16:25	05/19/14 09:25	
Acetone	EPA 8260	mg/kg dry	0.0082 U	1	0.0082	0.033	67-64-1	05/19/14 16:25	05/19/14 09:25	
Benzene	EPA 8260	mg/kg dry	0.00080 I	1	0.00070	0.0028	71-43-2	05/19/14 16:25	05/19/14 09:25	
Bromochloromethane	EPA 8260	mg/kg dry	0.00036 U	1	0.00036	0.0015	74-97-5	05/19/14 16:25	05/19/14 09:25	
Bromodichloromethane	EPA 8260	mg/kg dry	0.00033 U	1	0.00033	0.0015	75-27-4	05/19/14 16:25	05/19/14 09:25	
Bromoform	EPA 8260	mg/kg dry	0.00059 U	1	0.00059	0.0024	75-25-2	05/19/14 16:25	05/19/14 09:25	
Promomethane	EPA 8260	mg/kg dry	0.0012 U	1	0.0012	0.0049	74-83-9	05/19/14 16:25	05/19/14 09:25	
Carbon disulfide	EPA 8260	mg/kg dry	0.0011 U	1	0.0011	0.0045	75-15-0	05/19/14 16:25	05/19/14 09:25	
Carbon tetrachloride	EPA 8260	mg/kg dry	0.00090 U	1	0.00090	0.0034	56-23-5	05/19/14 16:25	05/19/14 09:25	
hlorobenzene	EPA 8260	mg/kg dry	0.00052 U	1	0.00052	0.0020	108-90-7	05/19/14 16:25	05/19/14 09:25	
Chloroethane	EPA 8260	mg/kg dry	0.00090 U	1	0.00090	0.0035	75-00-3	05/19/14 16:25	05/19/14 09:25	
Chloroform	EPA 8260	mg/kg dry	0.00082 U	1	0.00082	0.0031	67-66-3	05/19/14 16:25	05/19/14 09:25	
Chloromethane	EPA 8260	mg/kg dry	0.0010 U	1	0.0010	0.0043	74-87-3	05/19/14 16:25	05/19/14 09:25	
is-1,2-Dichloroethene	EPA 8260	mg/kg dry	0.00082 U	1	0.00082	0.0034	156-59-2	05/19/14 16:25	05/19/14 09:25	
ibromochloromethane	EPA 8260	mg/kg dry	0.00017 U	1	0.00017	0.0015	124-48-1	05/19/14 16:25	05/19/14 09:25	
Dibromomethane	EPA 8260	mg/kg dry	0.00019 U	1	0.00019	0.0015	74-95-3	05/19/14 16:25	05/19/14 09:25	
Dichlorodifluoromethane	EPA 8260	mg/kg dry	0.00090 U	1	0.00090	0.0036	75-71-8	05/19/14 16:25	05/19/14 09:25	
thylbenzene	EPA 8260	mg/kg dry	0.00063 U	1	0.00063	0.0025	100-41-4	05/19/14 16:25	05/19/14 09:25	
sopropylbenzene	EPA 8260	mg/kg dry	0.00052 U	1	0.00052	0.0021	98-82-8	05/19/14 16:25	05/19/14 09:25	
1ethylene Chloride	EPA 8260	mg/kg dry	0.0016 U	1	0.0016	0.0065	75-09-2	05/19/14 16:25	05/19/14 09:25	
Nethyl tert-Butyl Ether (MTBE)	EPA 8260	mg/kg dry	0.00067 U	1	0.0016	0.0027	1634-04-4	05/19/14 16:25	05/19/14 09:25	
ityrene	EPA 8260	mg/kg dry	0.00017 U	1	0.00017	0.0015	100-42-5	05/19/14 16:25	05/19/14 09:25	
Fetrachloroethene	EPA 8260	mg/kg dry	0.00066 U	1	0.00066	0.0026	127-18-4	05/19/14 16:25	05/19/14 09:25	

SunLabs Project Number 4051601 Cardno TBE, Inc.

Project Description

BF-Washington Park

May 23, 2014

SunLabs Sample Number: Sample Designation: 4051601-06

SB-4@2ft-4ft

Matrix:

Soil

Date Collected: Date Received: 05/15/14 11:40

Parameters	Method	Units	Results	Dil Facto	MDL r	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
Volatile Organic Compounds by EPA 8260					Metho	d Qualifier	:		
Toluene	EPA 8260	mg/kg dry	0.00066 U	1	0.00066	0.0027	108-88-3	05/19/14 16:25	05/19/14 09:25
Xylenes (Total)	EPA 8260	mg/kg dry	0.00011 U	1	0.00011	0.0015	1330-20-7	05/19/14 16:25	05/19/14 09:25
trans-1,2-Dichloroethene	EPA 8260	mg/kg dry	0.00097 U	1	0.00097	0.0039	156-60-5	05/19/14 16:25	05/19/14 09:25
Trichloroethene	EPA 8260	mg/kg dry	0.00063 U	1	0.00063	0.0025	79-01-6	05/19/14 16:25	05/19/14 09:25
Trichlorofluoromethane	EPA 8260	mg/kg dry	0.00097 U	1	0.00097	0.0039	75-69-4	05/19/14 16:25	05/19/14 09:25
Vinyl chloride	EPA 8260	ma/ka drv	0.00090 U	1	0.00090	0.0037	75-01-4	05/19/14 16:25	05/19/14 09:25

SunLabs Project Number 4051601 Cardno TBE, Inc.

Project Description

BF-Washington Park

May 23, 2014

SunLabs Sample Number: Sample Designation: 4051601-07 SB-6@.50ft-2ft Matrix:

Soil

Date Collected: Date Received: 05/15/14 13:40

05	/16	/14	08:3

						03/10/14 00:33			
Parameters	Method	Units	Results	Dil Factor	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
Mercury by EPA 7471					Metho	d Qualifier	:		
Mercury	EPA 7471	mg/kg dry	0.016 I	1	0.0044	0.017	7439-97-6	05/19/14 16:46	05/19/14 11:01
Percent Solids					Metho	d Qualifier	:		
% Solids	EPA 160.3	%	86	1			NA	05/19/14 09:27	05/16/14 14:07
Polynuclear Aromatic Hydrocarbons b	y Method 8270				Metho	d Qualifier	:		
Surrogate: 2-Fluorobiphenyl (1-191)	EPA 8270	%	65.3	1			321-60-8	05/22/14 05:47	05/19/14 17:40
Surrogate: p-Terphenyl-d14 (8-178)	EPA 8270	%	81.4	1			1718-51-0	05/22/14 05:47	05/19/14 17:40
1-Methylnaphthalene	EPA 8270	mg/kg dry	0.0077 U	1	0.0077	0.030	90-12-0	05/22/14 05:47	05/19/14 17:40
2-Methylnaphthalene	EPA 8270	mg/kg dry	0.0065 U	1	0.0065	0.026	91-57-6	05/22/14 05:47	05/19/14 17:40
Acenaphthene	EPA 8270	mg/kg dry	0.0049 U	1	0.0049	0.020	83-32-9	05/22/14 05:47	05/19/14 17:40
Acenaphthylene	EPA 8270	mg/kg dry	0.0051 U	1	0.0051	0.021	208-96-8	05/22/14 05:47	05/19/14 17:40
Anthracene	EPA 8270	mg/kg dry	0.0040 U	1	0.0040	0.016	120-12-7	05/22/14 05:47	05/19/14 17:40
Benz[a]anthracene	EPA 8270	mg/kg dry	0.0035 U	1	0.0035	0.014	56-55-3	05/22/14 05:47	05/19/14 17:40
Benzo[a]pyrene	EPA 8270	mg/kg dry	0.0047 U	1	0.0047	0.019	50-32-8	05/22/14 05:47	05/19/14 17:40
Benzo[b]fluoranthene	EPA 8270	mg/kg dry	0.0063 U	1	0.0063	0.026	205-99-2	05/22/14 05:47	05/19/14 17:40
Benzo[ghi]perylene	EPA 8270	mg/kg dry	0.016 U	1	0.016	0.064	191-24-2	05/22/14 05:47	05/19/14 17:40
Benzo[k]fluoranthene	EPA 8270	mg/kg dry	0.0044 U	1	0.0044	0.017	207-08-9	05/22/14 05:47	05/19/14 17:40
Chrysene	EPA 8270	mg/kg dry	0.0028 U	1	0.0028	0.011	218-01-9	05/22/14 05:47	05/19/14 17:40
Dibenz[a,h]anthracene	EPA 8270	mg/kg dry	0.017 U	1	0.017	0.068	53-70-3	05/22/14 05:47	05/19/14 17:40
Fluoranthene	EPA 8270	mg/kg dry	0.0054 U	1	0.0054	0.021	206-44-0	05/22/14 05:47	05/19/14 17:40
Fluorene	EPA 8270	mg/kg dry	0.0042 U	1	0.0042	0.016	86-73-7	05/22/14 05:47	05/19/14 17:40
Indeno[1,2,3-cd]pyrene	EPA 8270	mg/kg dry	0.016 U	1	0.016	0.068	193-39-5	05/22/14 05:47	05/19/14 17:40
Naphthalene	EPA 8270	mg/kg dry	0.013 U	1	0.013	0.051	91-20-3	05/22/14 05:47	05/19/14 17:40
Phenanthrene	EPA 8270	mg/kg dry	0.0065 U	1	0.0065	0.026	85-01-8	05/22/14 05:47	05/19/14 17:40
Pyrene	EPA 8270	mg/kg dry	0.016 U	1	0.016	0.064	129-00-0	05/22/14 05:47	05/19/14 17:40

SunLabs Project Number

Project Number 4051601 Cardno TBE, Inc.

Project Description

BF-Washington Park

May 23, 2014

SunLabs Sample Number: Sample Designation: 4051601-07 SB-6@.50ft-2ft Matrix:

Soil

Date Collected: Date Received: 05/15/14 13:40

Parameters	Method	Units	Results	Dil Factor	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
RCRA7 Metals by EPA 6010					Metho	d Qualifier:			
Arsenic	EPA 6010	mg/kg dry	3.0	1	0.30	1.3	7440-38-2	05/20/14 19:54	05/19/14 10:50
Barium	EPA 6010	mg/kg dry	17	1	0.057	0.23	7440-39-3	05/20/14 19:54	05/19/14 10:50
Cadmium	EPA 6010	mg/kg dry	0.52	1	0.065	0.26	7440-43-9	05/20/14 19:54	05/19/14 10:50
Chromium	EPA 6010	mg/kg dry	20	1	0.19	0.76	7440-47-3	05/20/14 19:54	05/19/14 10:50
_ead	EPA 6010	mg/kg dry	2.4	1	0.55	2.2	7439-92-1	05/20/14 19:54	05/19/14 10:50
Selenium	EPA 6010	mg/kg dry	0.19 U	1	0.19	0.80	7782-49-2	05/20/14 19:54	05/19/14 10:50
Silver	EPA 6010	mg/kg dry	0.21 U	1	0.21	0.82	7440-22-4	05/20/14 19:54	05/19/14 10:50
Volatile Organic Compounds by EPA 8260					Metho	d Qualifier:			
Surrogate: 4-Bromofluorobenzene (25-172)	EPA 8260	%	95.3	1			460-00-4	05/19/14 16:49	05/19/14 09:25
Surrogate: Dibromofluoromethane (77-126)	EPA 8260	%	112	1			1868-53-7	05/19/14 16:49	05/19/14 09:25
Surrogate: Toluene-d8 (78-118)	EPA 8260	%	101	1			2037-26-5	05/19/14 16:49	05/19/14 09:25
1,1,1-Trichloroethane	EPA 8260	mg/kg dry	0.0011 U	1	0.0011	0.0044	71-55-6	05/19/14 16:49	05/19/14 09:25
1,1,2,2-Tetrachloroethane	EPA 8260	mg/kg dry	0.00042 U	1	0.00042	0.0017	79-34-5	05/19/14 16:49	05/19/14 09:25
1,1,2-Trichloroethane	EPA 8260	mg/kg dry	0.00037 U	1	0.00037	0.0017	79-00-5	05/19/14 16:49	05/19/14 09:25
L,1-Dichloroethane	EPA 8260	mg/kg dry	0.00098 U	1	0.00098	0.0040	75-34-3	05/19/14 16:49	05/19/14 09:25
I,1-Dichloroethene	EPA 8260	mg/kg dry	0.0011 U	1	0.0011	0.0047	75-35-4	05/19/14 16:49	05/19/14 09:25
L,2,4-Trimethylbenzene	EPA 8260	mg/kg dry	0.0013 I	1	0.00037	0.0016	95-63-6	05/19/14 16:49	05/19/14 09:25
L,2-Dichlorobenzene	EPA 8260	mg/kg dry	0.00040 U	1	0.00040	0.0016	95-50-1	05/19/14 16:49	05/19/14 09:25
, ,2-Dichloroethane	EPA 8260	mg/kg dry	0.00043 U	1	0.00043	0.0017	107-06-2	05/19/14 16:49	05/19/14 09:25
,2-Dichloropropane	EPA 8260	mg/kg dry	0.00059 U	1	0.00059	0.0024	78-87-5	05/19/14 16:49	05/19/14 09:25
,3,5-Trimethylbenzene	EPA 8260	mg/kg dry	0.00054 U	1	0.00054	0.0022	108-67-8	05/19/14 16:49	05/19/14 09:25
1,3-Dichlorobenzene	EPA 8260	mg/kg dry	0.00028 U	1	0.00028	0.0016	541-73-1	05/19/14 16:49	05/19/14 09:25
1,3-Dichloropropene (Total)	EPA 8260	mg/kg dry	0.00046 U	1	0.00046	0.0018	542-75-6	05/19/14 16:49	05/19/14 09:25
,,4-Dichlorobenzene	EPA 8260	mg/kg dry	0.00081 U	1	0.00081	0.0033	106-46-7	05/19/14 16:49	05/19/14 09:25
2-Butanone (MEK)	EPA 8260	mg/kg dry	0.0020 U	1	0.0020	0.0080	78-93-3	05/19/14 16:49	05/19/14 09:25
!-Hexanone	EPA 8260	mg/kg dry	0.0043 U	1	0.0043	0.017	591-78-6	05/19/14 16:49	05/19/14 09:2
I-Methyl-2-pentanone (MIBK)	EPA 8260	mg/kg dry	0.0024 U	1	0.0024	0.0098	108-10-1	05/19/14 16:49	05/19/14 09:2
Acetone	EPA 8260	mg/kg dry	0.049	1	0.0089	0.036	67-64-1	05/19/14 16:49	05/19/14 09:2
Benzene	EPA 8260	mg/kg dry	0.0078	1	0.00076	0.0030	71-43-2	05/19/14 16:49	05/19/14 09:25
Bromochloromethane	EPA 8260	mg/kg dry	0.00039 U	1	0.00039	0.0016	74-97-5	05/19/14 16:49	05/19/14 09:25
Bromodichloromethane	EPA 8260	mg/kg dry	0.00036 U	1	0.00036	0.0016	75-27-4	05/19/14 16:49	05/19/14 09:25
Bromoform	EPA 8260	mg/kg dry	0.00064 U	1	0.00064	0.0026	75-25-2	05/19/14 16:49	05/19/14 09:25
Bromomethane	EPA 8260	mg/kg dry	0.0013 U	1	0.0013	0.0054	74-83-9	05/19/14 16:49	05/19/14 09:25
Carbon disulfide	EPA 8260	mg/kg dry	0.0012 U	1	0.0012	0.0049	75-15-0	05/19/14 16:49	05/19/14 09:2
Carbon tetrachloride	EPA 8260	mg/kg dry	0.00098 U	1	0.00098	0.0037	56-23-5	05/19/14 16:49	05/19/14 09:2
Chlorobenzene	EPA 8260	mg/kg dry	0.00056 U	1	0.00056	0.0022	108-90-7	05/19/14 16:49	05/19/14 09:25
Chloroethane	EPA 8260	mg/kg dry	0.00098 U	1	0.00098	0.0038	75-00-3	05/19/14 16:49	05/19/14 09:2
Chloroform	EPA 8260	mg/kg dry	0.00089 U	1	0.00089	0.0034	67-66-3	05/19/14 16:49	05/19/14 09:2
Chloromethane	EPA 8260	mg/kg dry	0.0011 U	1	0.0011	0.0047	74-87-3	05/19/14 16:49	05/19/14 09:2
cis-1,2-Dichloroethene	EPA 8260	mg/kg dry	0.00089 U	1	0.00089	0.0037	156-59-2	05/19/14 16:49	05/19/14 09:2
Dibromochloromethane	EPA 8260	mg/kg dry	0.00019 U	1	0.00019	0.0016	124-48-1	05/19/14 16:49	05/19/14 09:2
Dibromomethane	EPA 8260	mg/kg dry	0.00021 U	1	0.00021	0.0016	74-95-3	05/19/14 16:49	05/19/14 09:2
Dichlorodifluoromethane	EPA 8260	mg/kg dry	0.00098 U	1	0.00098	0.0039	75-71-8	05/19/14 16:49	05/19/14 09:25
Ethylbenzene	EPA 8260	mg/kg dry	0.0032	1	0.00068	0.0028	100-41-4	05/19/14 16:49	05/19/14 09:2
sopropylbenzene	EPA 8260	mg/kg dry	0.00056 U	1	0.00056	0.0023	98-82-8	05/19/14 16:49	05/19/14 09:2
Methylene Chloride	EPA 8260	mg/kg dry	0.0018 U	1	0.0018	0.0071	75-09-2	05/19/14 16:49	05/19/14 09:2
Methyl tert-Butyl Ether (MTBE)	EPA 8260	mg/kg dry	0.00073 U	1	0.00073	0.0029	1634-04-4	05/19/14 16:49	05/19/14 09:25
Styrene	EPA 8260	mg/kg dry	0.00019 U	1	0.00019	0.0016	100-42-5	05/19/14 16:49	05/19/14 09:2
Tetrachloroethene	EPA 8260	mg/kg dry	0.00072 U	1	0.00072	0.0028	127-18-4	05/19/14 16:49	05/19/14 09:2

SunLabs
Project Number
4051601

Cardno TBE, Inc.

Project Description

BF-Washington Park

May 23, 2014

SunLabs Sample Number: Sample Designation: 4051601-07

Matrix:

Soil

SB-6@.50ft-2ft

Date Collected: Date Received: 05/15/14 13:40

Parameters	Method	Units	Results	Dil Facto	MDL r	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
Volatile Organic Compounds by EPA 8260					Metho	d Qualifier	:		
Toluene	EPA 8260	mg/kg dry	0.0055	1	0.00072	0.0029	108-88-3	05/19/14 16:49	05/19/14 09:25
Xylenes (Total)	EPA 8260	mg/kg dry	0.0043	1	0.00012	0.0016	1330-20-7	05/19/14 16:49	05/19/14 09:25
trans-1,2-Dichloroethene	EPA 8260	mg/kg dry	0.0011 U	1	0.0011	0.0042	156-60-5	05/19/14 16:49	05/19/14 09:25
Trichloroethene	EPA 8260	mg/kg dry	0.00068 U	1	0.00068	0.0028	79-01-6	05/19/14 16:49	05/19/14 09:25
Trichlorofluoromethane	EPA 8260	mg/kg dry	0.0011 U	1	0.0011	0.0042	75-69-4	05/19/14 16:49	05/19/14 09:25
Vinvl chloride	EPA 8260	ma/ka drv	0.00098 U	1	0.00098	0.0040	75-01-4	05/19/14 16:49	05/19/14 09:25

SunLabs Project Number 4051601 Cardno TBE, Inc.

Project Description

BF-Washington Park

May 23, 2014

SunLabs Sample Number: Sample Designation: 4051601-08 SB-6@2ft-4ft Matrix:

Soil

Date Collected: Date Received: 05/15/14 13:50

						,	,		
Parameters	Method	Units	Results	Dil Factor	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
Mercury by EPA 7471					Metho	d Qualifier	:		
Mercury	EPA 7471	mg/kg dry	0.052	1	0.0046	0.018	7439-97-6	05/19/14 16:48	05/19/14 11:01
Percent Solids					Metho	d Qualifier	:		
% Solids	EPA 160.3	%	81	1			NA	05/19/14 09:29	05/16/14 14:07
Polynuclear Aromatic Hydrocarbons by	/ Method 8270				Metho	d Qualifier	:		
Surrogate: 2-Fluorobiphenyl (1-191)	EPA 8270	%	73.0	1			321-60-8	05/22/14 06:06	05/19/14 17:40
Surrogate: p-Terphenyl-d14 (8-178)	EPA 8270	%	83.7	1			1718-51-0	05/22/14 06:06	05/19/14 17:40
1-Methylnaphthalene	EPA 8270	mg/kg dry	0.0081 U	1	0.0081	0.032	90-12-0	05/22/14 06:06	05/19/14 17:40
2-Methylnaphthalene	EPA 8270	mg/kg dry	0.0069 U	1	0.0069	0.027	91-57-6	05/22/14 06:06	05/19/14 17:40
Acenaphthene	EPA 8270	mg/kg dry	0.0052 U	1	0.0052	0.021	83-32-9	05/22/14 06:06	05/19/14 17:40
Acenaphthylene	EPA 8270	mg/kg dry	0.0054 U	1	0.0054	0.022	208-96-8	05/22/14 06:06	05/19/14 17:40
Anthracene	EPA 8270	mg/kg dry	0.0042 U	1	0.0042	0.017	120-12-7	05/22/14 06:06	05/19/14 17:40
Benz[a]anthracene	EPA 8270	mg/kg dry	0.0037 U	1	0.0037	0.015	56-55-3	05/22/14 06:06	05/19/14 17:40
Benzo[a]pyrene	EPA 8270	mg/kg dry	0.0049 U	1	0.0049	0.020	50-32-8	05/22/14 06:06	05/19/14 17:40
Benzo[b]fluoranthene	EPA 8270	mg/kg dry	0.0066 U	1	0.0066	0.027	205-99-2	05/22/14 06:06	05/19/14 17:40
Benzo[ghi]perylene	EPA 8270	mg/kg dry	0.017 U	1	0.017	0.068	191-24-2	05/22/14 06:06	05/19/14 17:40
Benzo[k]fluoranthene	EPA 8270	mg/kg dry	0.0047 U	1	0.0047	0.018	207-08-9	05/22/14 06:06	05/19/14 17:40
Chrysene	EPA 8270	mg/kg dry	0.0030 U	1	0.0030	0.012	218-01-9	05/22/14 06:06	05/19/14 17:40
Dibenz[a,h]anthracene	EPA 8270	mg/kg dry	0.018 U	1	0.018	0.071	53-70-3	05/22/14 06:06	05/19/14 17:40
Fluoranthene	EPA 8270	mg/kg dry	0.0057 U	1	0.0057	0.022	206-44-0	05/22/14 06:06	05/19/14 17:40
Fluorene	EPA 8270	mg/kg dry	0.0044 U	1	0.0044	0.017	86-73-7	05/22/14 06:06	05/19/14 17:40
Indeno[1,2,3-cd]pyrene	EPA 8270	mg/kg dry	0.017 U	1	0.017	0.071	193-39-5	05/22/14 06:06	05/19/14 17:40
Naphthalene	EPA 8270	mg/kg dry	0.014 U	1	0.014	0.054	91-20-3	05/22/14 06:06	05/19/14 17:40
Phenanthrene	EPA 8270	mg/kg dry	0.0069 U	1	0.0069	0.027	85-01-8	05/22/14 06:06	05/19/14 17:40
Pyrene	EPA 8270	ma/ka drv	0.017 U	1	0.017	0.068	129-00-0	05/22/14 06:06	05/19/14 17:40

SunLabs Project Number

4051601

Cardno TBE, Inc.

Project Description

BF-Washington Park

May 23, 2014

SunLabs Sample Number: Sample Designation: 4051601-08

Matrix:

Soil

SB-6@2ft-4ft

Date Collected: Date Received: 05/15/14 13:50

Parameters	Method	Units	Results	Dil Factor	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Tim Prep
RCRA7 Metals by EPA 6010					Metho	d Qualifier:			
Arsenic	EPA 6010	mg/kg dry	1.4	1	0.31	1.3	7440-38-2	05/20/14 19:59	05/19/14 10:50
Barium	EPA 6010	mg/kg dry	15	1	0.060	0.24	7440-39-3	05/20/14 19:59	05/19/14 10:50
Cadmium	EPA 6010	mg/kg dry	0.24 I	1	0.068	0.28	7440-43-9	05/20/14 19:59	05/19/14 10:50
Chromium	EPA 6010	mg/kg dry	24	1	0.20	0.80	7440-47-3	05/20/14 19:59	05/19/14 10:50
Lead	EPA 6010	mg/kg dry	2.3	1	0.58	2.3	7439-92-1	05/20/14 19:59	05/19/14 10:50
Selenium	EPA 6010	mg/kg dry	0.20 U	1	0.20	0.84	7782-49-2	05/20/14 19:59	05/19/14 10:50
Silver	EPA 6010	mg/kg dry	0.22 U	1	0.22	0.86	7440-22-4	05/20/14 19:59	05/19/14 10:50
Volatile Organic Compounds by EPA 8260					Metho	d Qualifier:			
Surrogate: 4-Bromofluorobenzene (25-172)	EPA 8260	%	95.4	1			460-00-4	05/19/14 17:13	05/19/14 09:25
Surrogate: Dibromofluoromethane (77-126)	EPA 8260	%	110	1			1868-53-7	05/19/14 17:13	05/19/14 09:25
Surrogate: Toluene-d8 (78-118)	EPA 8260	%	98.3	1			2037-26-5	05/19/14 17:13	05/19/14 09:25
1,1,1-Trichloroethane	EPA 8260	mg/kg dry	0.00098 U	1	0.00098	0.0041	71-55-6	05/19/14 17:13	05/19/14 09:25
1,1,2,2-Tetrachloroethane	EPA 8260	mg/kg dry	0.00039 U	1	0.00039	0.0016	79-34-5	05/19/14 17:13	05/19/14 09:25
1,1,2-Trichloroethane	EPA 8260	mg/kg dry	0.00035 U	1	0.00035	0.0015	79-00-5	05/19/14 17:13	05/19/14 09:25
L,1-Dichloroethane	EPA 8260	mg/kg dry	0.00090 U	1	0.00090	0.0037	75-34-3	05/19/14 17:13	05/19/14 09:25
L,1-Dichloroethene	EPA 8260	mg/kg dry	0.0011 U	1	0.0011	0.0044	75-35-4	05/19/14 17:13	05/19/14 09:25
L,2,4-Trimethylbenzene	EPA 8260	mg/kg dry	0.0013 I	1	0.00034	0.0015	95-63-6	05/19/14 17:13	05/19/14 09:25
,,2-Dichlorobenzene	EPA 8260	mg/kg dry	0.00037 U	1	0.00037	0.0015	95-50-1	05/19/14 17:13	05/19/14 09:25
,,2-Dichloroethane	EPA 8260	mg/kg dry	0.00040 U	1	0.00040	0.0016	107-06-2	05/19/14 17:13	05/19/14 09:25
,2-Dichloropropane	EPA 8260	mg/kg dry	0.00054 U	1	0.00054	0.0022	78-87-5	05/19/14 17:13	05/19/14 09:25
,3,5-Trimethylbenzene	EPA 8260	mg/kg dry	0.00066 I	1	0.00051	0.0020	108-67-8	05/19/14 17:13	05/19/14 09:25
.3-Dichlorobenzene	EPA 8260	mg/kg dry	0.00026 U	1	0.00026	0.0015	541-73-1	05/19/14 17:13	05/19/14 09:25
L,3-Dichloropropene (Total)	EPA 8260	mg/kg dry	0.00042 U	1	0.00042	0.0017	542-75-6	05/19/14 17:13	05/19/14 09:25
L,4-Dichlorobenzene	EPA 8260	mg/kg dry	0.00075 U	1	0.00075	0.0031	106-46-7	05/19/14 17:13	05/19/14 09:25
P-Butanone (MEK)	EPA 8260	mg/kg dry	0.018	1	0.0018	0.0074	78-93-3	05/19/14 17:13	05/19/14 09:25
2-Hexanone	EPA 8260	mg/kg dry	0.0040 U	1	0.0040	0.016	591-78-6	05/19/14 17:13	05/19/14 09:25
1-Methyl-2-pentanone (MIBK)	EPA 8260	mg/kg dry	0.0023 U	1	0.0023	0.0090	108-10-1	05/19/14 17:13	05/19/14 09:25
Acetone	EPA 8260	mg/kg dry	0.059	1	0.0083	0.033	67-64-1	05/19/14 17:13	05/19/14 09:25
Benzene	EPA 8260	mg/kg dry	0.011	1	0.00071	0.0028	71-43-2	05/19/14 17:13	05/19/14 09:25
Bromochloromethane	EPA 8260	mg/kg dry	0.00036 U	1	0.00036	0.0015	74-97-5	05/19/14 17:13	05/19/14 09:25
Bromodichloromethane	EPA 8260	mg/kg dry	0.00033 U	1	0.00033	0.0015	75-27-4	05/19/14 17:13	05/19/14 09:25
Bromoform	EPA 8260	mg/kg dry	0.00060 U	1	0.00060	0.0013	75-25-2	05/19/14 17:13	05/19/14 09:25
Bromomethane	EPA 8260	mg/kg dry	0.0012 U	1	0.0012	0.0050	74-83-9	05/19/14 17:13	05/19/14 09:25
Carbon disulfide	EPA 8260	mg/kg dry	0.0011 U	1	0.0011	0.0045	75-15-0	05/19/14 17:13	05/19/14 09:25
Carbon tetrachloride	EPA 8260	mg/kg dry	0.00090 U	1	0.00090	0.0035	56-23-5	05/19/14 17:13	05/19/14 09:25
Chlorobenzene	EPA 8260	mg/kg dry	0.00052 U	1	0.00052	0.0020	108-90-7	05/19/14 17:13	05/19/14 09:25
Chloroethane	EPA 8260	mg/kg dry	0.00090 U	1	0.00090	0.0035	75-00-3	05/19/14 17:13	05/19/14 09:25
Chloroform	EPA 8260	mg/kg dry	0.00083 U	1	0.00083	0.0032	67-66-3	05/19/14 17:13	05/19/14 09:25
Chloromethane	EPA 8260	mg/kg dry	0.0011 U	1	0.0011	0.0044	74-87-3	05/19/14 17:13	05/19/14 09:25
cis-1,2-Dichloroethene	EPA 8260	mg/kg dry	0.00083 U	1	0.00011	0.0034	156-59-2	05/19/14 17:13	05/19/14 09:25
Dibromochloromethane	EPA 8260	mg/kg dry	0.00017 U	1	0.00017	0.0034	124-48-1	05/19/14 17:13	05/19/14 09:25
Dibromomethane	EPA 8260	mg/kg dry	0.00020 U	1	0.00017	0.0015	74-95-3	05/19/14 17:13	05/19/14 09:25
Dichlorodifluoromethane	EPA 8260	mg/kg dry	0.00020 U	1	0.00020	0.0015	75-71-8	05/19/14 17:13	05/19/14 09:25
Ethylbenzene	EPA 8260	mg/kg dry	0.0061	1	0.00090	0.0036	100-41-4	05/19/14 17:13	05/19/14 09:25
sopropylbenzene	EPA 8260	mg/kg dry	0.0001 0.00072 I	1	0.00052	0.0020	98-82-8	05/19/14 17:13	05/19/14 09:25
Methylene Chloride	EPA 8260	mg/kg dry	0.00072 T	1	0.00032	0.0021	75-09-2	05/19/14 17:13	05/19/14 09:25
Methyl tert-Butyl Ether (MTBE)	EPA 8260	mg/kg dry	0.00017 U	1	0.0017	0.0086	1634-04-4	05/19/14 17:13	05/19/14 09:25
Styrene	EPA 8260	mg/kg dry	0.00017 U	1	0.00068	0.0027	100-42-5	05/19/14 17:13	05/19/14 09:25
Tetrachloroethene	EPA 8260	mg/kg dry	0.00017 U	1	0.00017	0.0015	127-18-4	05/19/14 17:13	05/19/14 09:25

SunLabs Project Number 4051601 Cardno TBE, Inc.

Project Description

BF-Washington Park

May 23, 2014

SunLabs Sample Number: Sample Designation: 4051601-08

SB-6@2ft-4ft

Matrix:

Soil

Date Collected: Date Received: 05/15/14 13:50

Parameters	Method	Units	Results	Dil Factor	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
Volatile Organic Compounds by EPA 8260					Method	d Qualifier:	:		
Toluene	EPA 8260	mg/kg dry	0.0083	1	0.00067	0.0027	108-88-3	05/19/14 17:13	05/19/14 09:25
Xylenes (Total)	EPA 8260	mg/kg dry	0.0018	1	0.00011	0.0015	1330-20-7	05/19/14 17:13	05/19/14 09:25
trans-1,2-Dichloroethene	EPA 8260	mg/kg dry	0.00098 U	1	0.00098	0.0039	156-60-5	05/19/14 17:13	05/19/14 09:25
Trichloroethene	EPA 8260	mg/kg dry	0.00063 U	1	0.00063	0.0026	79-01-6	05/19/14 17:13	05/19/14 09:25
Trichlorofluoromethane	EPA 8260	mg/kg dry	0.00098 U	1	0.00098	0.0039	75-69-4	05/19/14 17:13	05/19/14 09:25
Vinyl chloride	EPA 8260	mg/kg dry	0.00090 U	1	0.00090	0.0037	75-01-4	05/19/14 17:13	05/19/14 09:25

SunLabs Project Number 4051601 Cardno TBE, Inc.

Project Description

BF-Washington Park

May 23, 2014

SunLabs Sample Number: Sample Designation: 4051601-09 SB-8@.50ft-2ft Matrix:

Soil

Date Collected: Date Received: 05/15/14 16:00

Parameters	Method	Units	Results	Dil Factor	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
Mercury by EPA 7471					Metho	d Qualifier	:		
Mercury	EPA 7471	mg/kg dry	0.027	1	0.0043	0.017	7439-97-6	05/19/14 16:50	05/19/14 11:01
Percent Solids					Metho	d Qualifier	:		
% Solids	EPA 160.3	%	89	1			NA	05/19/14 09:31	05/16/14 14:07
Polynuclear Aromatic Hydrocarbons by	y Method 8270				Metho	d Qualifier	:		
Surrogate: 2-Fluorobiphenyl (1-191)	EPA 8270	%	69.7	2			321-60-8	05/22/14 06:43	05/19/14 17:40
Surrogate: p-Terphenyl-d14 (8-178)	EPA 8270	%	80.8	2			1718-51-0	05/22/14 06:43	05/19/14 17:40
1-Methylnaphthalene	EPA 8270	mg/kg dry	0.015 U	2	0.015	0.058	90-12-0	05/22/14 06:43	05/19/14 17:40
2-Methylnaphthalene	EPA 8270	mg/kg dry	0.013 U	2	0.013	0.049	91-57-6	05/22/14 06:43	05/19/14 17:40
Acenaphthene	EPA 8270	mg/kg dry	0.0094 U	2	0.0094	0.038	83-32-9	05/22/14 06:43	05/19/14 17:40
Acenaphthylene	EPA 8270	mg/kg dry	0.0099 U	2	0.0099	0.040	208-96-8	05/22/14 06:43	05/19/14 17:40
Anthracene	EPA 8270	mg/kg dry	0.0076 U	2	0.0076	0.031	120-12-7	05/22/14 06:43	05/19/14 17:40
Benz[a]anthracene	EPA 8270	mg/kg dry	0.0067 U	2	0.0067	0.027	56-55-3	05/22/14 06:43	05/19/14 17:40
Benzo[a]pyrene	EPA 8270	mg/kg dry	0.0090 U	2	0.0090	0.036	50-32-8	05/22/14 06:43	05/19/14 17:40
Benzo[b]fluoranthene	EPA 8270	mg/kg dry	0.012 U	2	0.012	0.049	205-99-2	05/22/14 06:43	05/19/14 17:40
Benzo[ghi]perylene	EPA 8270	mg/kg dry	0.031 U	2	0.031	0.12	191-24-2	05/22/14 06:43	05/19/14 17:40
Benzo[k]fluoranthene	EPA 8270	mg/kg dry	0.0085 U	2	0.0085	0.034	207-08-9	05/22/14 06:43	05/19/14 17:40
Chrysene	EPA 8270	mg/kg dry	0.0055 I	2	0.0054	0.022	218-01-9	05/22/14 06:43	05/19/14 17:40
Dibenz[a,h]anthracene	EPA 8270	mg/kg dry	0.034 U	2	0.034	0.13	53-70-3	05/22/14 06:43	05/19/14 17:40
Fluoranthene	EPA 8270	mg/kg dry	0.010 U	2	0.010	0.040	206-44-0	05/22/14 06:43	05/19/14 17:40
Fluorene	EPA 8270	mg/kg dry	0.0081 U	2	0.0081	0.031	86-73-7	05/22/14 06:43	05/19/14 17:40
Indeno[1,2,3-cd]pyrene	EPA 8270	mg/kg dry	0.031 U	2	0.031	0.13	193-39-5	05/22/14 06:43	05/19/14 17:40
Naphthalene	EPA 8270	mg/kg dry	0.025 U	2	0.025	0.099	91-20-3	05/22/14 06:43	05/19/14 17:40
Phenanthrene	EPA 8270	mg/kg dry	0.013 U	2	0.013	0.049	85-01-8	05/22/14 06:43	05/19/14 17:40
Pyrene	EPA 8270	mg/kg dry	0.031 U	2	0.031	0.12	129-00-0	05/22/14 06:43	05/19/14 17:40

SunLabs Project Number

4051601

Cardno TBE, Inc.

Project Description

BF-Washington Park

May 23, 2014

SunLabs Sample Number: Sample Designation: 4051601-09 SB-8@.50ft-2ft

Matrix:

Soil

Date Collected: Date Received: 05/15/14 16:00

Parameters	Method	Units	Results	Dil Factor	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
RCRA7 Metals by EPA 6010					Metho	d Qualifier:			
Arsenic	EPA 6010	mg/kg dry	2.2	1	0.28	1.2	7440-38-2	05/20/14 20:04	05/19/14 10:50
Barium	EPA 6010	mg/kg dry	28	1	0.055	0.22	7440-39-3	05/20/14 20:04	05/19/14 10:50
Cadmium	EPA 6010	mg/kg dry	0.16 I	1	0.062	0.25	7440-43-9	05/20/14 20:04	05/19/14 10:50
Chromium	EPA 6010	mg/kg dry	24	1	0.19	0.73	7440-47-3	05/20/14 20:04	05/19/14 10:50
Lead	EPA 6010	mg/kg dry	8.1	2	1.1	4.2	7439-92-1	05/21/14 12:35	05/19/14 10:50
Selenium	EPA 6010	mg/kg dry	0.19 U	1	0.19	0.77	7782-49-2	05/20/14 20:04	05/19/14 10:50
Silver	EPA 6010	mg/kg dry	0.20 U	1	0.20	0.79	7440-22-4	05/20/14 20:04	05/19/14 10:50
Volatile Organic Compounds by EPA 8260					Metho	d Qualifier:			
Surrogate: 4-Bromofluorobenzene (25-172)	EPA 8260	%	90.1	1			460-00-4	05/19/14 17:37	05/19/14 09:25
Surrogate: Dibromofluoromethane (77-126)	EPA 8260	%	113	1			1868-53-7	05/19/14 17:37	05/19/14 09:25
Surrogate: Toluene-d8 (78-118)	EPA 8260	%	92.8	1			2037-26-5	05/19/14 17:37	05/19/14 09:25
,1,1-Trichloroethane	EPA 8260	mg/kg dry	0.0011 U	1	0.0011	0.0044	71-55-6	05/19/14 17:37	05/19/14 09:25
1,1,2,2-Tetrachloroethane	EPA 8260	mg/kg dry	0.00043 U	1	0.00043	0.0017	79-34-5	05/19/14 17:37	05/19/14 09:25
I,1,2-Trichloroethane	EPA 8260	mg/kg dry	0.00038 U	1	0.00038	0.0016	79-00-5	05/19/14 17:37	05/19/14 09:25
I,1-Dichloroethane	EPA 8260	mg/kg dry	0.00098 U	1	0.00098	0.0040	75-34-3	05/19/14 17:37	05/19/14 09:25
1,1-Dichloroethene	EPA 8260	mg/kg dry	0.0011 U	1	0.0011	0.0047	75-35-4	05/19/14 17:37	05/19/14 09:25
L,2,4-Trimethylbenzene	EPA 8260	mg/kg dry	0.0010 I	1	0.00037	0.0016	95-63-6	05/19/14 17:37	05/19/14 09:25
,2-Dichlorobenzene	EPA 8260	mg/kg dry	0.00040 U	1	0.00040	0.0016	95-50-1	05/19/14 17:37	05/19/14 09:25
,2-Dichloroethane	EPA 8260	mg/kg dry	0.00043 U	1	0.00043	0.0017	107-06-2	05/19/14 17:37	05/19/14 09:25
,2-Dichloropropane	EPA 8260	mg/kg dry	0.00059 U	1	0.00059	0.0024	78-87-5	05/19/14 17:37	05/19/14 09:25
,3,5-Trimethylbenzene	EPA 8260	mg/kg dry	0.00055 U	1	0.00055	0.0022	108-67-8	05/19/14 17:37	05/19/14 09:25
,3-Dichlorobenzene	EPA 8260	mg/kg dry	0.00028 U	1	0.00028	0.0016	541-73-1	05/19/14 17:37	05/19/14 09:25
.,3-Dichloropropene (Total)	EPA 8260	mg/kg dry	0.00046 U	1	0.00046	0.0018	542-75-6	05/19/14 17:37	05/19/14 09:25
,4-Dichlorobenzene	EPA 8260	mg/kg dry	0.00082 U	1	0.00082	0.0034	106-46-7	05/19/14 17:37	05/19/14 09:25
-Butanone (MEK)	EPA 8260	mg/kg dry	0.011	1	0.0020	0.0080	78-93-3	05/19/14 17:37	05/19/14 09:25
-Hexanone	EPA 8260	mg/kg dry	0.0043 U	1	0.0043	0.017	591-78-6	05/19/14 17:37	05/19/14 09:25
-Methyl-2-pentanone (MIBK)	EPA 8260	mg/kg dry	0.0025 U	1	0.0025	0.0098	108-10-1	05/19/14 17:37	05/19/14 09:25
Acetone	EPA 8260	mg/kg dry	0.040	1	0.0090	0.036	67-64-1	05/19/14 17:37	05/19/14 09:25
Benzene	EPA 8260	mg/kg dry	0.0093	1	0.00077	0.0030	71-43-2	05/19/14 17:37	05/19/14 09:25
Bromochloromethane	EPA 8260	mg/kg dry	0.00039 U	1	0.00039	0.0016	74-97-5	05/19/14 17:37	05/19/14 09:25
Bromodichloromethane	EPA 8260	mg/kg dry	0.00036 U	1	0.00036	0.0016	75-27-4	05/19/14 17:37	05/19/14 09:25
Bromoform	EPA 8260	mg/kg dry	0.00065 U	1	0.00065	0.0026	75-25-2	05/19/14 17:37	05/19/14 09:25
Bromomethane	EPA 8260	mg/kg dry	0.0013 U	1	0.0013	0.0054	74-83-9	05/19/14 17:37	05/19/14 09:25
Carbon disulfide	EPA 8260	mg/kg dry	0.0012 U	1	0.0012	0.0049	75-15-0	05/19/14 17:37	05/19/14 09:25
Carbon tetrachloride	EPA 8260	mg/kg dry	0.00098 U	1	0.00098	0.0038	56-23-5	05/19/14 17:37	05/19/14 09:25
Chlorobenzene	EPA 8260	mg/kg dry	0.00056 U	1	0.00056	0.0022	108-90-7	05/19/14 17:37	05/19/14 09:25
Chloroethane	EPA 8260	mg/kg dry	0.00098 U	1	0.00098	0.0038	75-00-3	05/19/14 17:37	05/19/14 09:25
Chloroform	EPA 8260	mg/kg dry	0.00090 U	1	0.00090	0.0034	67-66-3	05/19/14 17:37	05/19/14 09:25
Chloromethane	EPA 8260	mg/kg dry	0.0011 U	1	0.0011	0.0047	74-87-3	05/19/14 17:37	05/19/14 09:25
is-1,2-Dichloroethene	EPA 8260	mg/kg dry	0.00090 U	1	0.00090	0.0037	156-59-2	05/19/14 17:37	05/19/14 09:25
bibromochloromethane	EPA 8260	mg/kg dry	0.00019 U	1	0.00019	0.0016	124-48-1	05/19/14 17:37	05/19/14 09:25
Dibromomethane	EPA 8260	mg/kg dry	0.00021 U	1	0.00021	0.0016	74-95-3	05/19/14 17:37	05/19/14 09:25
oichlorodifluoromethane	EPA 8260	mg/kg dry	0.00098 U	1	0.00098	0.0039	75-71-8	05/19/14 17:37	05/19/14 09:25
Ethylbenzene	EPA 8260	mg/kg dry	0.0028	1	0.00069	0.0028	100-41-4	05/19/14 17:37	05/19/14 09:25
sopropylbenzene	EPA 8260	mg/kg dry	0.00056 U	1	0.00056	0.0023	98-82-8	05/19/14 17:37	05/19/14 09:25
Methylene Chloride	EPA 8260	mg/kg dry	0.0019 I	1	0.0018	0.0071	75-09-2	05/19/14 17:37	05/19/14 09:25
Nethyl tert-Butyl Ether (MTBE)	EPA 8260	mg/kg dry	0.00074 U	1	0.00074	0.0029	1634-04-4	05/19/14 17:37	05/19/14 09:25
Styrene	EPA 8260	mg/kg dry	0.00019 U	1	0.00019	0.0016	100-42-5	05/19/14 17:37	05/19/14 09:25
, Fetrachloroethene	EPA 8260	mg/kg dry	0.00072 U	1	0.00072	0.0029	127-18-4	05/19/14 17:37	05/19/14 09:25

SunLabs Project Number 4051601 Cardno TBE, Inc.

Project Description

BF-Washington Park

May 23, 2014

SunLabs Sample Number: Sample Designation: 4051601-09

SB-8@.50ft-2ft

Matrix:

Soil

Date Collected: Date Received: 05/15/14 16:00

Parameters	Method	Units	Results	Dil Factor	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
Volatile Organic Compounds by EPA 8260					Method	d Qualifier:			
Toluene	EPA 8260	mg/kg dry	0.0049	1	0.00073	0.0029	108-88-3	05/19/14 17:37	05/19/14 09:25
Xylenes (Total)	EPA 8260	mg/kg dry	0.0012 I	1	0.00012	0.0016	1330-20-7	05/19/14 17:37	05/19/14 09:25
trans-1,2-Dichloroethene	EPA 8260	mg/kg dry	0.0011 U	1	0.0011	0.0043	156-60-5	05/19/14 17:37	05/19/14 09:25
Trichloroethene	EPA 8260	mg/kg dry	0.00069 U	1	0.00069	0.0028	79-01-6	05/19/14 17:37	05/19/14 09:25
Trichlorofluoromethane	EPA 8260	mg/kg dry	0.0011 U	1	0.0011	0.0043	75-69-4	05/19/14 17:37	05/19/14 09:25
Vinyl chloride	EPA 8260	mg/kg dry	0.00098 U	1	0.00098	0.0040	75-01-4	05/19/14 17:37	05/19/14 09:25

SunLabs Project Number 4051601 Cardno TBE, Inc.

Project Description

BF-Washington Park

May 23, 2014

SunLabs Sample Number: Sample Designation: 4051601-10

Matrix:

Soil

SB-8@2ft-4ft

Date Collected: Date Received: 05/15/14 16:15

Parameters	Method	Units	Results	Dil Facto	MDL r	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep			
Mercury by EPA 7471					Metho	d Qualifier	:					
Mercury	EPA 7471	mg/kg dry	0.013 I	1	0.0041	0.016	7439-97-6	05/19/14 16:52	05/19/14 11:01			
Percent Solids					Metho	d Qualifier	:					
% Solids	EPA 160.3	%	90	1			NA	05/19/14 09:33	05/16/14 14:07			
Polynuclear Aromatic Hydrocarbons b	y Method 8270				Metho	d Qualifier	:					
Surrogate: 2-Fluorobiphenyl (1-191)	EPA 8270	%	70.6	2			321-60-8	05/22/14 07:01	05/19/14 17:40			
Surrogate: p-Terphenyl-d14 (8-178)	EPA 8270	%	81.0	2			1718-51-0	05/22/14 07:01	05/19/14 17:40			
1-Methylnaphthalene	EPA 8270	mg/kg dry	0.015 U	2	0.015	0.058	90-12-0	05/22/14 07:01	05/19/14 17:40			
2-Methylnaphthalene	EPA 8270	mg/kg dry	0.012 U	2	0.012	0.049	91-57-6	05/22/14 07:01	05/19/14 17:40			
Acenaphthene	EPA 8270	mg/kg dry	0.0093 U	2	0.0093	0.038	83-32-9	05/22/14 07:01	05/19/14 17:40			
Acenaphthylene	EPA 8270	mg/kg dry	0.0098 U	2	0.0098	0.040	208-96-8	05/22/14 07:01	05/19/14 17:40			
Anthracene	EPA 8270	mg/kg dry	0.0076 U	2	0.0076	0.031	120-12-7	05/22/14 07:01	05/19/14 17:40			
Benz[a]anthracene	EPA 8270	mg/kg dry	0.019 I	2	0.0067	0.027	56-55-3	05/22/14 07:01	05/19/14 17:40			
Benzo[a]pyrene	EPA 8270	mg/kg dry	0.019 I	2	0.0089	0.036	50-32-8	05/22/14 07:01	05/19/14 17:40			
Benzo[b]fluoranthene	EPA 8270	mg/kg dry	0.040 I	2	0.012	0.049	205-99-2	05/22/14 07:01	05/19/14 17:40			
Benzo[ghi]perylene	EPA 8270	mg/kg dry	0.042 I	2	0.031	0.12	191-24-2	05/22/14 07:01	05/19/14 17:40			
Benzo[k]fluoranthene	EPA 8270	mg/kg dry	0.020 I	2	0.0085	0.033	207-08-9	05/22/14 07:01	05/19/14 17:40			
Chrysene	EPA 8270	mg/kg dry	0.017 I	2	0.0053	0.021	218-01-9	05/22/14 07:01	05/19/14 17:40			
Dibenz[a,h]anthracene	EPA 8270	mg/kg dry	0.033 U	2	0.033	0.13	53-70-3	05/22/14 07:01	05/19/14 17:40			
Fluoranthene	EPA 8270	mg/kg dry	0.010 U	2	0.010	0.040	206-44-0	05/22/14 07:01	05/19/14 17:40			
Fluorene	EPA 8270	mg/kg dry	0.0080 U	2	0.0080	0.031	86-73-7	05/22/14 07:01	05/19/14 17:40			
Indeno[1,2,3-cd]pyrene	EPA 8270	mg/kg dry	0.031 U	2	0.031	0.13	193-39-5	05/22/14 07:01	05/19/14 17:40			
Naphthalene	EPA 8270	mg/kg dry	0.024 U	2	0.024	0.098	91-20-3	05/22/14 07:01	05/19/14 17:40			
Phenanthrene	EPA 8270	mg/kg dry	0.012 U	2	0.012	0.049	85-01-8	05/22/14 07:01	05/19/14 17:40			
Pyrene	EPA 8270	mg/kg dry	0.031 U	2	0.031	0.12	129-00-0	05/22/14 07:01	05/19/14 17:40			

SunLabs Project Number 4051601 Cardno TBE, Inc.

Project Description

BF-Washington Park

May 23, 2014

SunLabs Sample Number: Sample Designation: 4051601-10 SB-8@2ft-4ft Matrix:

Soil

Date Collected:

05/15/14 16:15

Date Received: 05/16/14 08:35

Parameters	Method	Units	Results	Dil Facto	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
RCRA7 Metals by EPA 6010					Metho	d Qualifier:	:		
Arsenic	EPA 6010	mg/kg dry	1.2	1	0.28	1.2	7440-38-2	05/20/14 20:09	05/19/14 10:50
Barium	EPA 6010	mg/kg dry	13	1	0.054	0.22	7440-39-3	05/20/14 20:09	05/19/14 10:50
Cadmium	EPA 6010	mg/kg dry	0.062 U	1	0.062	0.25	7440-43-9	05/20/14 20:09	05/19/14 10:50
Chromium	EPA 6010	mg/kg dry	6.0	1	0.18	0.73	7440-47-3	05/20/14 20:09	05/19/14 10:50
Lead	EPA 6010	mg/kg dry	3.7	1	0.52	2.1	7439-92-1	05/20/14 20:09	05/19/14 10:50
Selenium	EPA 6010	mg/kg dry	0.18 U	1	0.18	0.76	7782-49-2	05/20/14 20:09	05/19/14 10:50
Silver	EPA 6010	mg/kg dry	0.20 U	1	0.20	0.78	7440-22-4	05/20/14 20:09	05/19/14 10:50
Volatile Organic Compounds by EPA 8260					Metho	d Qualifier:	:		
Surrogate: 4-Bromofluorobenzene (25-172)	EPA 8260	%	88.7	1			460-00-4	05/19/14 18:01	05/19/14 09:25
Surrogate: Dibromofluoromethane (77-126)	EPA 8260	%	108	1			1868-53-7	05/19/14 18:01	05/19/14 09:25
Surrogate: Toluene-d8 (78-118)	EPA 8260	%	97.3	1			2037-26-5	05/19/14 18:01	05/19/14 09:25
1,1,1-Trichloroethane	EPA 8260	mg/kg dry	0.00092 U	1	0.00092	0.0038	71-55-6	05/19/14 18:01	05/19/14 09:25
1,1,2,2-Tetrachloroethane	EPA 8260	mg/kg dry	0.00037 U	1	0.00037	0.0015	79-34-5	05/19/14 18:01	05/19/14 09:25
1,1,2-Trichloroethane	EPA 8260	mg/kg dry	0.00037 U	1	0.00037	0.0013	79-00-5	05/19/14 18:01	05/19/14 09:25
1,1-Dichloroethane	EPA 8260	mg/kg dry	0.00085 U	1	0.00085	0.0035	75-34-3	05/19/14 18:01	05/19/14 09:25
1,1-Dichloroethene	EPA 8260	mg/kg dry	0.00099 U	1	0.00099	0.0033	75-35-4	05/19/14 18:01	05/19/14 09:25
1,2,4-Trimethylbenzene	EPA 8260	mg/kg dry	0.00070 I	1	0.00033	0.0041	95-63-6	05/19/14 18:01	05/19/14 09:25
1,2-Dichlorobenzene	EPA 8260	mg/kg dry	0.00070 T	1	0.00032	0.0014	95-50-1	05/19/14 18:01	05/19/14 09:25
1,2-Dichloroethane	EPA 8260	mg/kg dry	0.00033 U	1	0.00033	0.0014	107-06-2	05/19/14 18:01	05/19/14 09:25
1,2-Dichloropropane	EPA 8260	mg/kg dry	0.00057 U	1	0.00057	0.0013	78-87-5	05/19/14 18:01	05/19/14 09:25
1,3,5-Trimethylbenzene	EPA 8260	mg/kg dry	0.00031 U	1	0.00031	0.0020	108-67-8	05/19/14 18:01	05/19/14 09:25
1,3-Dichlorobenzene	EPA 8260	mg/kg dry	0.00047 U	1	0.00047	0.0019	541-73-1	05/19/14 18:01	05/19/14 09:25
1,3-Dichloropropene (Total)	EPA 8260	mg/kg dry	0.00024 U	1	0.00024	0.0014	542-75-6	05/19/14 18:01	05/19/14 09:25
1,4-Dichlorobenzene	EPA 8260	mg/kg dry	0.00070 U	1	0.00040	0.0010	106-46-7	05/19/14 18:01	05/19/14 09:25
2-Butanone (MEK)	EPA 8260	mg/kg dry	0.0063 I	1		0.0029			
2-Hexanone	EPA 8260	mg/kg dry	0.0037 U	1	0.0017 0.0037	0.0069	78-93-3 591-78-6	05/19/14 18:01	05/19/14 09:25
4-Methyl-2-pentanone (MIBK)	EPA 8260	mg/kg dry	0.0037 U	1				05/19/14 18:01	05/19/14 09:25
Acetone	EPA 8260	-:	0.0021 U		0.0021	0.0085	108-10-1	05/19/14 18:01	05/19/14 09:25
Benzene	EPA 8260	mg/kg dry mg/kg dry	0.0078 0	1	0.0078	0.031	67-64-1	05/19/14 18:01	05/19/14 09:25
				1	0.00066	0.0026	71-43-2	05/19/14 18:01	05/19/14 09:25
Bromochloromethane Bromodichloromethane	EPA 8260 EPA 8260	mg/kg dry	0.00034 U 0.00031 U	1	0.00034	0.0014	74-97-5	05/19/14 18:01	05/19/14 09:25
Bromoform	EPA 8260	mg/kg dry	0.00051 U	1	0.00031	0.0014	75-27-4	05/19/14 18:01	05/19/14 09:25
		mg/kg dry		1 1	0.00056	0.0023	75-25-2	05/19/14 18:01	05/19/14 09:25
Bromomethane Corbon disultida	EPA 8260 EPA 8260	mg/kg dry	0.0011 U		0.0011	0.0047	74-83-9	05/19/14 18:01	05/19/14 09:25
Carbon disulfide Carbon tetrachloride	EPA 8260	mg/kg dry	0.0011 U 0.00085 U	1	0.0011	0.0042	75-15-0	05/19/14 18:01	05/19/14 09:25
Chlorobenzene		mg/kg dry		1	0.00085	0.0033	56-23-5	05/19/14 18:01	05/19/14 09:25
	EPA 8260 EPA 8260	mg/kg dry	0.00049 U	1	0.00049	0.0019	108-90-7	05/19/14 18:01	05/19/14 09:25
Chloroforms		mg/kg dry	0.00085 U	1	0.00085	0.0033	75-00-3	05/19/14 18:01	05/19/14 09:25
Chloroform	EPA 8260	mg/kg dry	0.00078 U	1	0.00078	0.0030	67-66-3	05/19/14 18:01	05/19/14 09:25
Chloromethane	EPA 8260	mg/kg dry	0.00099 U	1	0.00099	0.0041	74-87-3	05/19/14 18:01	05/19/14 09:25
cis-1,2-Dichloroethene	EPA 8260	mg/kg dry	0.00078 U	1	0.00078	0.0032	156-59-2	05/19/14 18:01	05/19/14 09:25
Dibromochloromethane Dibromochloromethane	EPA 8260	mg/kg dry	0.00016 U	1	0.00016	0.0014	124-48-1	05/19/14 18:01	05/19/14 09:25
Dibromomethane Disklared diffusion mathematical and a second sec	EPA 8260	mg/kg dry	0.00018 U	1	0.00018	0.0014	74-95-3	05/19/14 18:01	05/19/14 09:25
Dichlorodifluoromethane Ethylhorogo	EPA 8260	mg/kg dry	0.00085 U	1	0.00085	0.0034	75-71-8	05/19/14 18:01	05/19/14 09:25
Ethylbenzene	EPA 8260	mg/kg dry	0.0011 I	1	0.00059	0.0024	100-41-4	05/19/14 18:01	05/19/14 09:25
isopropylbenzene	EPA 8260	mg/kg dry	0.00049 U	1	0.00049	0.0020	98-82-8	05/19/14 18:01	05/19/14 09:25
Methylene Chloride	EPA 8260	mg/kg dry	0.0016 U	1	0.0016	0.0061	75-09-2	05/19/14 18:01	05/19/14 09:25
Methyl tert-Butyl Ether (MTBE)	EPA 8260	mg/kg dry	0.00064 U	1	0.00064	0.0025	1634-04-4	05/19/14 18:01	05/19/14 09:25
Styrene	EPA 8260	mg/kg dry	0.00016 U	1	0.00016	0.0014	100-42-5	05/19/14 18:01	05/19/14 09:25
Tetrachloroethene	EPA 8260	mg/kg dry	0.00062 U	1	0.00062	0.0025	127-18-4	05/19/14 18:01	05/19/14 09:25

SunLabs Project Number 4051601 Cardno TBE, Inc.

Project Description

BF-Washington Park

May 23, 2014

SunLabs Sample Number: Sample Designation: 4051601-10

SB-8@2ft-4ft

Matrix:

Soil

Date Collected: Date Received: 05/15/14 16:15

Parameters	Method	Units	Results	Dil Factor	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
Volatile Organic Compounds by EPA 8260					Metho	d Qualifier	:		
Toluene	EPA 8260	mg/kg dry	0.0022 I	1	0.00063	0.0025	108-88-3	05/19/14 18:01	05/19/14 09:25
Xylenes (Total)	EPA 8260	mg/kg dry	0.0016	1	0.00011	0.0014	1330-20-7	05/19/14 18:01	05/19/14 09:25
trans-1,2-Dichloroethene	EPA 8260	mg/kg dry	0.00092 U	1	0.00092	0.0037	156-60-5	05/19/14 18:01	05/19/14 09:25
Trichloroethene	EPA 8260	mg/kg dry	0.00059 U	1	0.00059	0.0024	79-01-6	05/19/14 18:01	05/19/14 09:25
Trichlorofluoromethane	EPA 8260	mg/kg dry	0.00092 U	1	0.00092	0.0037	75-69-4	05/19/14 18:01	05/19/14 09:25
Vinyl chloride	EPA 8260	mg/kg dry	0.00085 U	1	0.00085	0.0035	75-01-4	05/19/14 18:01	05/19/14 09:25

SunLabs Project Number 4051601 Cardno TBE, Inc.

Project Description

BF-Washington Park

May 23, 2014

SunLabs Sample Number: Sample Designation: 4051601-11 Trip Blank Matrix:

Water

Date Collected: Date Received: 05/15/14 00:00

ved: **05/16/14 08:35**

Parameters	Method	Units	Results	Dil Factor	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
Volatile Organic Compounds by EPA 8260					Metho	od Qualifier	:		
Surrogate: 4-Bromofluorobenzene (82-118)	EPA 8260	%	99.4	1			460-00-4	05/20/14 10:24	05/20/14 08:00
Surrogate: Dibromofluoromethane (85-120)	EPA 8260	%	101	1			1868-53-7	05/20/14 10:24	05/20/14 08:00
Surrogate: Toluene-d8 (83-115)	EPA 8260	%	98.7	1			2037-26-5	05/20/14 10:24	05/20/14 08:00
1,1,1-Trichloroethane	EPA 8260	ug/L	0.19 U	1	0.19	0.78	71-55-6	05/20/14 10:24	05/20/14 08:00
1,1,2,2-Tetrachloroethane	EPA 8260	ug/L	0.19 U	1	0.19	0.76	79-34-5	05/20/14 10:24	05/20/14 08:00
1,1,2-Trichloroethane	EPA 8260	ug/L	0.92 U	1	0.92	3.7	79-00-5	05/20/14 10:24	05/20/14 08:00
1,1-Dichloroethane	EPA 8260	ug/L	0.23 U	1	0.23	0.92	75-34-3	05/20/14 10:24	05/20/14 08:00
1,1-Dichloroethene	EPA 8260	ug/L	0.34 U	1	0.34	1.3	75-35-4	05/20/14 10:24	05/20/14 08:00
1,2-Dichlorobenzene	EPA 8260	ug/L	0.40 U	1	0.40	1.6	95-50-1	05/20/14 10:24	05/20/14 08:00
1,2-Dichloroethane	EPA 8260	ug/L	0.24 U	1	0.24	0.97	107-06-2	05/20/14 10:24	05/20/14 08:00
1,2-Dichloropropane	EPA 8260	ug/L	0.28 U	1	0.28	1.1	78-87-5	05/20/14 10:24	05/20/14 08:00
1,2,4-Trimethylbenzene	EPA 8260	ug/L	0.37 U	1	0.37	1.5	95-63-6	05/20/14 10:24	05/20/14 08:00
1,3,5-Trimethylbenzene	EPA 8260	ug/L	0.24 U	1	0.24	0.94	108-67-8	05/20/14 10:24	05/20/14 08:00
1,3-Dichlorobenzene	EPA 8260	ug/L	0.34 U	1	0.34	1.4	541-73-1	05/20/14 10:24	05/20/14 08:00
1,3-Dichloropropene (Total)	EPA 8260	ug/L	0.11 U	1	0.11	0.50	542-75-6	05/20/14 10:24	05/20/14 08:00
1,4-Dichlorobenzene	EPA 8260	ug/L	0.21 U	1	0.21	0.84	106-46-7	05/20/14 10:24	05/20/14 08:00
2-Butanone (MEK)	EPA 8260	ug/L	2.1 U	1	2.1	8.4	78-93-3	05/20/14 10:24	05/20/14 08:00
2-Hexanone	EPA 8260	ug/L	1.5 U	1	1.5	10	591-78-6	05/20/14 10:24	05/20/14 08:00
4-Methyl-2-pentanone (MIBK)	EPA 8260	ug/L	1.3 U	1	1.3	5.2	108-10-1	05/20/14 10:24	05/20/14 08:00
Acetone	EPA 8260	ug/L	6.9 U	1	6.9	28	67-64-1	05/20/14 10:24	05/20/14 08:00
Benzene	EPA 8260	ug/L	0.23 U	1	0.23	0.92	71-43-2	05/20/14 10:24	05/20/14 08:00
Bromochloromethane	EPA 8260	ug/L	0.18 U	1	0.18	0.72	74-97-5	05/20/14 10:24	05/20/14 08:00
Bromodichloromethane	EPA 8260	ug/L	0.19 U	1	0.19	0.76	75-27-4	05/20/14 10:24	05/20/14 08:00
Bromoform	EPA 8260	ug/L	0.35 U	1	0.35	1.4	75-25-2	05/20/14 10:24	05/20/14 08:00
Bromomethane	EPA 8260	ug/L	0.43 U	1	0.43	1.7	74-83-9	05/20/14 10:24	05/20/14 08:00
Carbon disulfide	EPA 8260	ug/L	0.35 U	1	0.35	1.4	75-15-0	05/20/14 10:24	05/20/14 08:00
Carbon tetrachloride	EPA 8260	ug/L	0.18 U	1	0.18	0.72	56-23-5	05/20/14 10:24	05/20/14 08:00
Chlorobenzene	EPA 8260	ug/L	0.19 U	1	0.19	0.76	108-90-7	05/20/14 10:24	05/20/14 08:00
Chloroethane	EPA 8260	ug/L	0.36 U	1	0.36	1.4	75-00-3	05/20/14 10:24	05/20/14 08:00
Chloroform	EPA 8260	ug/L	0.19 U	1	0.19	0.74	67-66-3	05/20/14 10:24	05/20/14 08:00
Chloromethane	EPA 8260	ug/L	0.32 U	1	0.32	1.3	74-87-3	05/20/14 10:24	05/20/14 08:00
cis-1,2-Dichloroethene	EPA 8260	ug/L	0.22 U	1	0.22	0.88	156-59-2	05/20/14 10:24	05/20/14 08:00
Dibromochloromethane	EPA 8260	ug/L	0.33 U	1	0.33	1.3	124-48-1	05/20/14 10:24	05/20/14 08:00
Dibromomethane	EPA 8260	ug/L	0.25 U	1	0.25	1.0	74-95-3	05/20/14 10:24	05/20/14 08:00
Dichlorodifluoromethane	EPA 8260	ug/L	0.42 U	1	0.42	1.7	75-71-8	05/20/14 10:24	05/20/14 08:00
Ethylbenzene	EPA 8260	ug/L	0.20 U	1	0.20	0.80	100-41-4	05/20/14 10:24	05/20/14 08:00
isopropylbenzene	EPA 8260	ug/L	0.26 U	1	0.26	1.0	98-82-8	05/20/14 10:24	05/20/14 08:00
Methylene Chloride	EPA 8260	ug/L	0.65 U	1	0.65	2.6	75-09-2	05/20/14 10:24	05/20/14 08:00
Methyl tert-Butyl Ether (MTBE)	EPA 8260	ug/L	0.28 U	1	0.28	1.1	1634-04-4	05/20/14 10:24	05/20/14 08:00
Styrene	EPA 8260	ug/L	0.23 U	1	0.23	0.93	100-42-5	05/20/14 10:24	05/20/14 08:00
Tetrachloroethene	EPA 8260	ug/L	0.36 U	1	0.36	1.4	127-18-4	05/20/14 10:24	05/20/14 08:00
Toluene	EPA 8260	ug/L	0.20 U	1	0.20	0.80	108-88-3	05/20/14 10:24	05/20/14 08:00
Xylenes (Total)	EPA 8260	ug/L	0.22 U	1	0.22	0.88	1330-20-7	05/20/14 10:24	05/20/14 08:00
trans-1,2-Dichloroethene	EPA 8260	ug/L	0.22 U	1	0.22	0.88	156-60-5	05/20/14 10:24	05/20/14 08:00
Trichloroethene	EPA 8260	ug/L	0.48 U	1	0.48	1.9	79-01-6	05/20/14 10:24	05/20/14 08:00
Trichlorofluoromethane	EPA 8260	ug/L	0.51 U	1	0.51	2.0	75-69-4	05/20/14 10:24	05/20/14 08:00
Vinyl chloride	EPA 8260	ug/L	0.25 U	1	0.25	1.0	75-01-4	05/20/14 10:24	05/20/14 08:00

Footnotes

U The compound was analyzed for but not detected.

The reported value failed to meet the established quality control criteria for either precision or accuracy (see cover letter for explanation)

The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

* SunLabs is not currently NELAC certified for this analyte. Unless directed otherwise by client, a NELAC certified sub-contract laboratory has

performed this analysis (see cover letter for details).

LCS / LCSD Laboratory Control Sample / Laboratory Control Sample Duplicate

MB Method Blank

MS / MSD Matrix Spike / Matrix Spike Duplicate RPD Relative Percent Difference

Quality Control Data

SunLabs Project Number

4051601

Cardno TBE, Inc.

Project Description

BF-Washington Park

Batch No: **B005040**

Test: % Solids

Analyte	Result	Units	Spike Level	Parent Result	%REC	%REC Limits	RPD	RPD Limit	Flags
Duplicate (B005040-DUP1)	Parent Sampl	e: 4051601-01	Prep	ared: 05/16/1	4 Analyzed: 05	5/19/14			
% Solids	97	%		90			6.61	200	

Batch No: **B005066**

Test: **8260 VOC**

Analyte	Result	Units	Spike Level	Parent Result	%REC	%REC Limits	RPD	RPD Limit	Elaga
Allalyte	Result	Ullits	Level	Result	70KEC	LIIIIICS	KPD	Liiiit	Flags
Blank (B005066-BLK1)			Prep	ared & Analyz	ed: 05/19/14				
Surrogate: 4-Bromofluorobenzene	46	ng/mL	50		91.3	25-172			
Surrogate: Dibromofluoromethane	53	ng/mL	50		106	77-126			
Surrogate: Toluene-d8	46	ng/mL	50		91.1	78-118			
1,1,1-Trichloroethane	0.0013 U	mg/kg wet							
1,1,2,2-Tetrachloroethane	0.00052 U	mg/kg wet							
1,1,2-Trichloroethane	0.00046 U	mg/kg wet							
1,1-Dichloroethane	0.0012 U	mg/kg wet							
1,1-Dichloroethene	0.0014 U	mg/kg wet							
1,2,4-Trimethylbenzene	0.00045 U	mg/kg wet							
1,2-Dichlorobenzene	0.00049 U	mg/kg wet							
1,2-Dichloroethane	0.00053 U	mg/kg wet							
1,2-Dichloropropane	0.00072 U	mg/kg wet							
1,3,5-Trimethylbenzene	0.00067 U	mg/kg wet							
1,3-Dichlorobenzene	0.00034 U	mg/kg wet							
1,3-Dichloropropene (Total)	0.00056 U	mg/kg wet							
1,4-Dichlorobenzene	0.0010 U	mg/kg wet							
2-Butanone (MEK)	0.0024 U	mg/kg wet							
2-Hexanone	0.0053 U	mg/kg wet							
4-Methyl-2-pentanone (MIBK)	0.0030 U	mg/kg wet							
Acetone	0.011 U	mg/kg wet							
Benzene	0.00094 U	mg/kg wet							
Bromochloromethane	0.00048 U	mg/kg wet							
Bromodichloromethane	0.00044 U	mg/kg wet							
Bromoform	0.00079 U	mg/kg wet							
Bromomethane	0.0016 U	mg/kg wet							
Carbon disulfide	0.0015 U	mg/kg wet							
Carbon tetrachloride	0.0012 U	mg/kg wet							
Chlorobenzene	0.00069 U	mg/kg wet							
Chloroethane	0.0012 U	mg/kg wet							
Chloroform	0.0011 U	mg/kg wet							
Chloromethane	0.0014 U	mg/kg wet							
cis-1,2-Dichloroethene	0.0011 U	mg/kg wet							
Dibromochloromethane	0.00023 U	mg/kg wet							
Dibromomethane	0.00026 U	mg/kg wet							
Dichlorodifluoromethane	0.0012 U	mg/kg wet							
Ethylbenzene	0.00084 U	mg/kg wet							
isopropylbenzene	0.00069 U	mg/kg wet							
Methylene Chloride	0.0022 U	mg/kg wet							
Methyl tert-Butyl Ether (MTBE)	0.00090 U	mg/kg wet							
Styrene	0.00023 U	mg/kg wet							
Tetrachloroethene	0.00088 U	mg/kg wet							

SunLabs Project Number

4051601

Cardno TBE, Inc.

Project Description

BF-Washington Park

			Spike	Parent		%REC		RPD	
Analyte	Result	Units	Level	Result	%REC	Limits	RPD	Limit	Flags
Blank (B005066-BLK1)			Prep	oared & Analyz	ed: 05/19/14				
Toluene	0.00089 U	mg/kg wet							
Xylenes (Total)	0.00015 U	mg/kg wet							
trans-1,2-Dichloroethene	0.0013 U	mg/kg wet							
Trichloroethene	0.00084 U	mg/kg wet							
Trichlorofluoromethane	0.0013 U	mg/kg wet							
Vinyl chloride	0.0012 U	mg/kg wet							
LCS (B005066-BS1)			Prep	pared & Analyz	ed: 05/19/14				
Surrogate: 4-Bromofluorobenzene	47	ng/mL	50		93.7	25-172			
Surrogate: Dibromofluoromethane	52	ng/mL	50		104	77-126			
Surrogate: Toluene-d8	52	ng/mL	50		104	78-118			
1,1,1-Trichloroethane	0.11	mg/kg wet	0.10		112	78-120			
1,1,2,2-Tetrachloroethane	0.10	mg/kg wet	0.10		104	69-124			
1,1,2-Trichloroethane	0.11	mg/kg wet	0.10		110	80-125			
1,1-Dichloroethane	0.11	mg/kg wet	0.10		106	80-120			
1,1-Dichloroethene	0.10	mg/kg wet	0.10		103	80-120			
1,2,4-Trimethylbenzene	0.11	mg/kg wet	0.10		108	77-120			
1,2-Dichlorobenzene	0.10	mg/kg wet	0.10		104	80-120			
1,2-Dichloroethane	0.11	mg/kg wet	0.10		108	80-120			
1,2-Dichloropropane	0.11	mg/kg wet	0.10		109	80-120			
1,3,5-Trimethylbenzene	0.11	mg/kg wet	0.10		108	67-120			
1,3-Dichlorobenzene	0.11	mg/kg wet	0.10		112	74-145			
1,3-Dichloropropene (Total)	0.21	mg/kg wet	0.20		105	73-121			
1,4-Dichlorobenzene	0.10	mg/kg wet	0.10		103	69-135			
2-Butanone (MEK)	1.1	mg/kg wet	1.0		106	53-130			
2-Hexanone	1.1	mg/kg wet	1.0		108	51-137			
4-Methyl-2-pentanone (MIBK)	1.1	mg/kg wet	1.0		105	57-129			
Acetone	1.1	mg/kg wet	1.0		106	70-149			
Benzene	0.10	mg/kg wet	0.10		103	80-120			
Bromochloromethane	0.11	mg/kg wet	0.10		105	80-120			
Bromodichloromethane	0.11	mg/kg wet	0.10		106	80-120			
Bromoform	0.11	mg/kg wet	0.10		107	76-120			
Bromomethane	0.11	mg/kg wet	0.10		109	76-137			
Carbon disulfide	0.10	mg/kg wet	0.10		102	71-146			
Carbon tetrachloride	0.11	mg/kg wet	0.10		110	75-120			
Chlorobenzene	0.10	mg/kg wet	0.10		103	80-120			
Chloroethane	0.10	mg/kg wet	0.10		102	80-123			
Chloroform	0.10	mg/kg wet	0.10		103	80-120			
Chloromethane	0.11	mg/kg wet	0.10		112	70-126			
cis-1,2-Dichloroethene	0.11	mg/kg wet	0.10		107	80-120			
Dibromochloromethane	0.11	mg/kg wet	0.10		114	80-120			
Dibromomethane	0.11	mg/kg wet	0.10		109	80-120			
Dichlorodifluoromethane	0.11	mg/kg wet	0.10		109	78-128			
Ethylbenzene	0.10	mg/kg wet	0.10		101	80-120			
isopropylbenzene	0.10	mg/kg wet	0.10		101	80-120			
Methylene Chloride	0.11	mg/kg wet	0.10		106	72-145			
Methyl tert-Butyl Ether (MTBE)	0.11	mg/kg wet	0.10		108	80-120			
Styrene	0.10	mg/kg wet	0.10		105	80-120			
Tetrachloroethene	0.12	mg/kg wet	0.10		117	80-120			
Toluene	0.12	mg/kg wet	0.10		107	74-127			
Xylenes (Total)	0.31					74-127			
yieries (Total)	0.31	mg/kg wet	0.30		104	/4-129			

SunLabs Project Number

4051601

Cardno TBE, Inc.

Project Description

BF-Washington Park

Analyte	Result	Units	Spike Level	Parent Result	%REC	%REC Limits	RPD	RPD Limit	Flags
LCS (B005066-BS1)				pared & Analyze					
rans-1,2-Dichloroethene	0.11	mg/kg wet	0.10	74104 (471141)20	106	80-120			
Frichloroethene	0.11	mg/kg wet	0.10		108	80-112			
Frichlorofluoromethane	0.11	mg/kg wet	0.10		105	74-127			
/inyl chloride	0.11	mg/kg wet	0.10		107	78-131			
LCS Dup (B005066-BSD1)			Prer	pared & Analyze	d: 05/19/14				
Surrogate: 4-Bromofluorobenzene	45	ng/mL	50		90.0	25-172			
Surrogate: Dibromofluoromethane	51	ng/mL	50		102	77-126			
Surrogate: Toluene-d8	49	ng/mL	50		98.4	78-118			
,1,1-Trichloroethane	0.11	mg/kg wet	0.10		108	78-120	3.58	20	
,1,2,2-Tetrachloroethane	0.10	mg/kg wet	0.10		102	69-124	2.27	20	
,1,2-Trichloroethane	0.10	mg/kg wet	0.10		102	80-125	7.92	20	
,1-Dichloroethane	0.10	mg/kg wet	0.10		104	80-120	2.53	20	
,1-Dichloroethene	0.10	mg/kg wet	0.10		104	80-120	1.13	20	
,2,4-Trimethylbenzene	0.10	mg/kg wet	0.10		104	77-120	3.34	20	
,2-Dichlorobenzene	0.11	mg/kg wet	0.10		109	80-120	4.38	20	
,2-Dichloroethane	0.11	mg/kg wet	0.10		105	80-120	2.85	20	
,2-Dichloropropane	0.10	mg/kg wet	0.10		101	80-120	7.47	20	
.3,5-Trimethylbenzene	0.11	mg/kg wet	0.10		106	67-120	1.90	22	
,3-Dichlorobenzene	0.11	mg/kg wet	0.10		109	74-145	2.02	20	
3-Dichloropropene (Total)	0.20	mg/kg wet	0.20		101	73-121	3.95	20	
4-Dichlorobenzene	0.11	mg/kg wet	0.10		108	69-135	4.93	20	
Butanone (MEK)	1.0	mg/kg wet	1.0		101	53-130	4.42	20	
-Hexanone	0.97	mg/kg wet	1.0		97.2	51-137	10.5	20	
-Methyl-2-pentanone (MIBK)	0.97	mg/kg wet	1.0		97.1	57-129	8.13	20	
cetone	1.0	mg/kg wet	1.0		103	70-149	2.67	20	
enzene	0.10	mg/kg wet	0.10		102	80-120	1.31	20	
romochloromethane	0.10	mg/kg wet	0.10		103	80-120	2.52	20	
romodichloromethane	0.10	mg/kg wet	0.10		102	80-120	4.08	20	
romoform	0.10	mg/kg wet	0.10		103	76-120	4.38	20	
romomethane	0.10	mg/kg wet	0.10		104	76-137	4.15	20	
arbon disulfide	0.10	mg/kg wet	0.10		102	71-146	0.343	20	
arbon tetrachloride	0.10	mg/kg wet	0.10		105	75-120	5.28	20	
hlorobenzene	0.10	mg/kg wet	0.10		103	80-120	0.986	20	
hloroethane	0.094	mg/kg wet	0.10		93.7	80-123	8.43	20	
hloroform	0.10	mg/kg wet	0.10		101	80-120	2.15	20	
hloromethane	0.10	mg/kg wet	0.10		99.8	70-126	11.3	20	
s-1,2-Dichloroethene	0.11	mg/kg wet	0.10		107	80-120	0.0187	20	
ibromochloromethane	0.10	mg/kg wet	0.10		105	80-120	8.04	20	
ibromoethane	0.10		0.10		103	80-120	4.07	20	
ichlorodifluoromethane	0.10	mg/kg wet	0.10		104	78-128	5.99	20	
	0.10	mg/kg wet			102		0.149	20	
hylbenzene		mg/kg wet	0.10			80-120			
opropylbenzene ethylene Chloride	0.10 0.099	mg/kg wet	0.10 0.10		99.6 98.7	80-120 72-145	1.89 7.52	20 20	
•		mg/kg wet						20 20	
lethyl tert-Butyl Ether (MTBE)	0.11	mg/kg wet	0.10		108	80-120	0.323	20	
tyrene	0.10	mg/kg wet	0.10		102	80-120	2.33	20	
etrachloroethene	0.11	mg/kg wet	0.10		109	80-120	7.19	20	
oluene	0.10	mg/kg wet	0.10		99.5	74-127	7.43	20	
ylenes (Total)	0.30	mg/kg wet	0.30		101	74-129	3.18	20	
rans-1,2-Dichloroethene	0.11	mg/kg wet	0.10		107	80-120	0.489	20	
richloroethene	0.11	mg/kg wet	0.10		105	80-112	2.20	20	

SunLabs Project Number

4051601

Cardno TBE, Inc.

Project Description

BF-Washington Park

Analyte	Result	Units	Spike Level	Parent Result	%REC	%REC Limits	RPD	RPD Limit	Flags
LCS Dup (B005066-BSD1)			Prep	oared & Analyz	ed: 05/19/14				
Frichlorofluoromethane	0.10	mg/kg wet	0.10		100	74-127	4.62	20	
/inyl chloride	0.099	mg/kg wet	0.10		99.5	78-131	7.45	20	
Matrix Spike (B005066-MS1)	Parent Sampl	e: 4051609-10	Prep	pared & Analyz	ed: 05/19/14				
Surrogate: 4-Bromofluorobenzene	55	ng/mL	50		109	25-172			
Surrogate: Dibromofluoromethane	39	ng/mL	50		78.9	77-126			
urrogate: Toluene-d8	40	ng/mL	50		79.7	78-118			
,1,1-Trichloroethane	0.073	mg/kg dry	0.093	ND	78.8	71-120			
,1,2,2-Tetrachloroethane	0.070	mg/kg dry	0.093	ND	75.7	71-124			
,1,2-Trichloroethane	0.097	mg/kg dry	0.093	ND	105	77-127			
,1-Dichloroethane	0.077	mg/kg dry	0.093	ND	82.7	79-120			
1-Dichloroethene	0.075	mg/kg dry	0.093	ND	80.4	63-126			
,2,4-Trimethylbenzene	0.88	mg/kg dry	0.093	0.032	913	52-129			J
,2-Dichlorobenzene	0.087	mg/kg dry	0.093	ND	93.7	80-122			
,2-Dichloroethane	0.080	mg/kg dry	0.093	ND	85.8	81-122			
,2-Dichloropropane	0.087	mg/kg dry	0.093	ND	93.3	80-120			
,3,5-Trimethylbenzene	0.27	mg/kg dry	0.093	0.013	281	46-129			J
,3-Dichlorobenzene	0.092	mg/kg dry	0.093	ND	99.6	60-154			
,3-Dichloropropene (Total)	0.15	mg/kg dry	0.19	ND	79.7	57-120			
4-Dichlorobenzene	0.090	mg/kg dry	0.093	ND	97.3	68-135			
Butanone (MEK)	0.74	mg/kg dry	0.93	ND	79.3	55-143			
-Hexanone	0.69	mg/kg dry	0.93	ND	74.3	51-150			
-Methyl-2-pentanone (MIBK)	0.76	mg/kg dry	0.93	ND	81.7	61-135			
cetone	0.93	mg/kg dry	0.93	ND	99.8	45-169			
enzene	0.23	mg/kg dry	0.093	0.015	232	45-149			J
romochloromethane	0.072	mg/kg dry	0.093	ND	77.9	80-120			J
romodichloromethane	0.070	mg/kg dry	0.093	ND	75.5	80-123			J
romoform	0.097	mg/kg dry	0.093	ND	104	65-120			
romomethane	0.071	mg/kg dry	0.093	ND	77.0	56-160			
arbon disulfide	0.070	mg/kg dry	0.093	ND	75.4	74-143			
arbon tetrachloride	0.081	mg/kg dry	0.093	ND	87.1	70-120			
hlorobenzene	0.089	mg/kg dry	0.093	ND	95.5	73-120			
hloroethane	0.066	mg/kg dry	0.093	ND	71.4	76-129			J
hloroform	0.079	mg/kg dry	0.093	ND	85.4	77-122			
hloromethane	0.076	mg/kg dry	0.093	ND	81.5	58-147			
s-1,2-Dichloroethene	0.081	mg/kg dry	0.093	ND	87.0	75-121			
ibromochloromethane	0.073	mg/kg dry	0.093	ND	79.0	74-120			
ibromomethane	0.075	mg/kg dry	0.093	ND	81.1	80-120			
ichlorodifluoromethane	0.084	mg/kg dry	0.093	ND	90.7	57-145			
thylbenzene	0.61	mg/kg dry	0.093	0.039	620	73-120			J
opropylbenzene	0.15	mg/kg dry	0.093	0.0027	158	68-120			j
ethylene Chloride	0.069	mg/kg dry	0.093	ND	74.1	66-141			-
ethyl tert-Butyl Ether (MTBE)	0.076	mg/kg dry	0.093	ND	81.5	79-128			
tyrene	0.10	mg/kg dry	0.093	ND	109	42-130			
etrachloroethene	0.078	mg/kg dry	0.093	ND	83.9	57-141			
oluene	0.31	mg/kg dry	0.093	0.022	309	62-122			J
ylenes (Total)	2.6	mg/kg dry	0.28	0.18	888	44-136			j
rans-1,2-Dichloroethene	0.074	mg/kg dry	0.28	ND	79.3	72-120			,
richloroethene	0.093	mg/kg dry	0.093	ND	100	66-124			
richlorofluoromethane	0.093	mg/kg dry	0.093	ND	76.7	62-138			
richiorofiuoromethane inyl chloride	0.071	mg/кg ary mg/kg dry	0.093	ND ND	76.7 82.8	62-138 71-142			

SunLabs Project Number

4051601

Cardno TBE, Inc.

Project Description

BF-Washington Park

			Spike	Parent		%REC		RPD	
Analyte	Result	Units	Level	Result	%REC	Limits	RPD	Limit	Flags
Matrix Spike Dup (B005066-MSD1)	Parent Sampl	e: 4051609-10	Prep	pared & Analyz	ed: 05/19/14				
Surrogate: 4-Bromofluorobenzene	51	ng/mL	50		102	25-172			
Surrogate: Dibromofluoromethane	40	ng/mL	50		80.6	77-126			
Surrogate: Toluene-d8	43	ng/mL	50		86.6	78-118			
1,1,1-Trichloroethane	0.073	mg/kg dry	0.092	ND	79.8	71-120	0.320	20	
1,1,2,2-Tetrachloroethane	0.077	mg/kg dry	0.092	ND	83.3	71-124	8.53	20	
1,1,2-Trichloroethane	0.084	mg/kg dry	0.092	ND	91.6	77-127	14.6	20	
1,1-Dichloroethane	0.075	mg/kg dry	0.092	ND	82.0	79-120	1.87	20	
1,1-Dichloroethene	0.075	mg/kg dry	0.092	ND	81.4	63-126	0.182	20	
1,2,4-Trimethylbenzene	0.48	mg/kg dry	0.092	0.032	485	52-129	59.3	20	J
1,2-Dichlorobenzene	0.079	mg/kg dry	0.092	ND	86.0	80-122	9.66	20	
1,2-Dichloroethane	0.076	mg/kg dry	0.092	ND	82.5	81-122	4.96	20	
1,2-Dichloropropane	0.087	mg/kg dry	0.092	ND	94.3	80-120	0.0607	20	
1,3,5-Trimethylbenzene	0.19	mg/kg dry	0.092	0.013	192	46-129	36.4	20	J
1,3-Dichlorobenzene	0.086	mg/kg dry	0.092	ND	94.0	60-154	6.77	20	
1,3-Dichloropropene (Total)	0.17	mg/kg dry	0.18	ND	93.0	57-120	14.4	20	
1,4-Dichlorobenzene	0.083	mg/kg dry	0.092	ND	90.3	68-135	8.52	20	
2-Butanone (MEK)	0.74	mg/kg dry	0.92	ND	80.6	55-143	0.535	20	
2-Hexanone	0.75	mg/kg dry	0.92	ND	81.4	51-150	8.09	20	
4-Methyl-2-pentanone (MIBK)	0.77	mg/kg dry	0.92	ND	83.8	61-135	1.48	20	
Acetone	0.60	mg/kg dry	0.92	ND	65.6	45-169	42.4	20	1
Benzene	0.11	mg/kg dry	0.092	0.015	109	45-149	67.0	20	J
Bromochloromethane	0.072	mg/kg dry	0.092	ND	78.5	80-120	0.236	20	j
Bromodichloromethane	0.072	mg/kg dry	0.092	ND	75.7	80-123	0.230	20]
Bromoform	0.094	mg/kg dry	0.092	ND	102	65-120	3.12	20	J
Bromomethane	0.070		0.092	ND	76.2	56-160	2.14	20	
Carbon disulfide	0.069	mg/kg dry	0.092	ND	75.6	74-143	0.764	20	
Carbon tetrachloride	0.078	mg/kg dry	0.092		85.2	70-120	3.18	20	
Chlorobenzene	0.078	mg/kg dry	0.092	ND ND	88.8	70-120	8.31	20	
		mg/kg dry							
Chloroethane	0.074	mg/kg dry	0.092	ND	80.2	76-129	10.7	20	
Chloroform	0.069	mg/kg dry	0.092	ND	75.7	77-122	13.1	20	J
Chloromethane	0.084	mg/kg dry	0.092	ND	92.0	58-147	11.1	20	
cis-1,2-Dichloroethene	0.080	mg/kg dry	0.092	ND	87.6	75-121	0.354	20	
Dibromochloromethane	0.077	mg/kg dry	0.092	ND	84.1	74-120	5.16	20	
Dibromomethane	0.075	mg/kg dry	0.092	ND	81.7	80-120	0.366	20	
Dichlorodifluoromethane	0.078	mg/kg dry	0.092	ND	85.4	57-145	7.06	20	
Ethylbenzene	0.26	mg/kg dry	0.092	0.039	244	73-120	79.9	20	J
isopropylbenzene	0.095	mg/kg dry	0.092	0.0027	101	68-120	44.3	20	J
Methylene Chloride	0.073	mg/kg dry	0.092	ND	79.6	66-141	6.07	20	
Methyl tert-Butyl Ether (MTBE)	0.076	mg/kg dry	0.092	ND	82.8	79-128	0.553	20	
Styrene	0.11	mg/kg dry	0.092	ND	115	42-130	4.42	20	
Tetrachloroethene	0.078	mg/kg dry	0.092	ND	84.9	57-141	0.155	20	
Toluene	0.15	mg/kg dry	0.092	0.022	134	62-122	72.1	20	J
Xylenes (Total)	1.1	mg/kg dry	0.28	0.18	342	44-136	81.3	20	J
trans-1,2-Dichloroethene	0.073	mg/kg dry	0.092	ND	79.3	72-120	1.03	20	
Trichloroethene	0.081	mg/kg dry	0.092	ND	88.3	66-124	13.5	20	
Trichlorofluoromethane	0.069	mg/kg dry	0.092	ND	75.2	62-138	3.03	20	
Vinyl chloride	0.076	mg/kg dry	0.092	ND	82.6	71-142	1.25	20	

SunLabs Project Number

4051601

Cardno TBE, Inc.

Project Description

BF-Washington Park

Batch No: **B005074**Test: **Mercury-S 7471**

			Spike	Parent		%REC		RPD	
Analyte	Result	Units	Level	Result	%REC	Limits	RPD	Limit	Flags
Blank (B005074-BLK1)			Prep	ared & Analyz	ed: 05/19/14				
Mercury	0.0038 U	mg/kg wet							
LCS (B005074-BS1)			Prep	ared & Analyz	ed: 05/19/14				
Mercury	0.48	mg/kg wet	0.50		95.2	80-120			
LCS Dup (B005074-BSD1)			Prep	ared & Analyz	ed: 05/19/14				
Mercury	0.48	mg/kg wet	0.50		95.5	80-120	0.277	20	
Matrix Spike (B005074-MS1)	Parent Samp	le: 4051601-01	Prep	ared & Analyz	ed: 05/19/14				
Mercury	0.56	mg/kg dry	0.55	ND	101	80-120			
Matrix Spike Dup (B005074-MSD1)	Parent Samp	le: 4051601-01	Prep	ared & Analyz	ed: 05/19/14				
Mercury	0.55	mg/kg dry	0.53	ND	103	80-120	1.85	20	

Batch No: **B005082** Test: **RCRA7 6010**

			Spike	Parent		%REC		RPD			
Analyte	Result	Units	Level	Result	%REC	Limits	RPD	Limit	Flags		
Blank (B005082-BLK1)			Prep	pared: 05/19/1	4 Analyzed: 0	5/20/14					
Arsenic	0.26 U	mg/kg wet									
Barium	0.050 U	mg/kg wet									
Cadmium	0.057 U	mg/kg wet									
Chromium	0.17 U	mg/kg wet									
Lead	0.48 U	mg/kg wet									
Selenium	0.17 U	mg/kg wet									
Silver	0.18 U	mg/kg wet									
LCS (B005082-BS1)			Prep	oared: 05/19/1	4 Analyzed: 0	5/20/14					
Arsenic	49	mg/kg wet	50		99.6	80-120					
Barium	50	mg/kg wet	50		101	80-120					
Cadmium	48	mg/kg wet	50		96.1	80-120					
Chromium	49	mg/kg wet	50		99.1	80-120					
Lead	49	mg/kg wet	50		98.9	80-120					
Selenium	50	mg/kg wet	50		101	80-120					
Silver	43	mg/kg wet	50		87.0	80-120					
LCS Dup (B005082-BSD1)			Prep	pared: 05/19/1	4 Analyzed: 0	5/20/14					
Arsenic	48	mg/kg wet	50		97.1	80-120	2.49	20			
Barium	49	mg/kg wet	50		98.2	80-120	3.20	20			
Cadmium	48	mg/kg wet	50		97.6	80-120	1.52	20			
Chromium	48	mg/kg wet	50		97.2	80-120	1.90	20			
Lead	47	mg/kg wet	50		94.2	80-120	4.87	20			
Selenium	48	mg/kg wet	50		97.5	80-120	3.84	20			
Silver	44	mg/kg wet	50		88.1	80-120	1.33	20			
Matrix Spike (B005082-MS1)	Parent Sampl	rent Sample: 4051601-01 Prepared: 05/19/14 Analyzed: 05/20/14									
Arsenic	49	mg/kg dry	53	3.2	85.6	75-125					
Barium	61	mg/kg dry	53	15	85.9	75-125					
Cadmium	43	mg/kg dry	53	0.097	80.9	75-125					

SunLabs Project Number

4051601

Cardno TBE, Inc.

Project Description

BF-Washington Park

Batch No: **B005082** Test: **RCRA7 6010**

			Spike	Parent		%REC		RPD	
Analyte	Result	Units	Level	Result	%REC	Limits	RPD	Limit	Flags
Matrix Spike (B005082-MS1)	Parent Sampl	e: 4051601-01	Prep	pared: 05/19/1	4 Analyzed: 0	5/20/14			
Chromium	54	mg/kg dry	53	11	79.7	75-125			
Lead	41	mg/kg dry	53	0.92	75.3	75-125			
Selenium	43	mg/kg dry	53	ND	81.2	75-125			
Silver	41	mg/kg dry	53	ND	76.8	75-125			
Matrix Spike Dup (B005082-MSD1)	Parent Sampl	Prep	pared: 05/19/1	4 Analyzed: 0	5/20/14				
Arsenic	49	mg/kg dry	54	3.2	84.7	75-125	0.0681	20	
Barium	58	mg/kg dry	54	15	79.1	75-125	5.34	20	
Cadmium	46	mg/kg dry	54	0.097	85.9	75-125	7.07	20	
Chromium	54	mg/kg dry	54	11	79.4	75-125	0.590	20	
Lead	41	mg/kg dry	54	0.92	74.8	75-125	0.479	20	J
Selenium	45	mg/kg dry	54	ND	82.8	75-125	3.21	20	
Silver	42	mg/kg dry	54	ND	78.4	75-125	3.18	20	

Batch No: **B005089** Test: **8270 PAH**

			Spike	Parent		%REC		RPD	-
Analyte	Result	Units	Level	Result	%REC	Limits	RPD	Limit	Flags
Blank (B005089-BLK1)			Prep	pared: 05/19/1	4 Analyzed: 05	5/21/14			
Surrogate: 2-Fluorobiphenyl	0.69	mg/kg wet	1.0		69.5	1-191			
Surrogate: p-Terphenyl-d14	0.89	mg/kg wet	1.0		89.3	8-178			
1-Methylnaphthalene	0.0066 U	mg/kg wet							
2-Methylnaphthalene	0.0056 U	mg/kg wet							
Acenaphthene	0.0042 U	mg/kg wet							
Acenaphthylene	0.0044 U	mg/kg wet							
Anthracene	0.0034 U	mg/kg wet							
Benz[a]anthracene	0.0030 U	mg/kg wet							
Benzo[a]pyrene	0.0040 U	mg/kg wet							
Benzo[b]fluoranthene	0.0054 U	mg/kg wet							
Benzo[ghi]perylene	0.014 U	mg/kg wet							
Benzo[k]fluoranthene	0.0038 U	mg/kg wet							
Chrysene	0.0024 U	mg/kg wet							
Dibenz[a,h]anthracene	0.015 U	mg/kg wet							
Fluoranthene	0.0046 U	mg/kg wet							
Fluorene	0.0036 U	mg/kg wet							
Indeno[1,2,3-cd]pyrene	0.014 U	mg/kg wet							
Naphthalene	0.011 U	mg/kg wet							
Phenanthrene	0.0056 U	mg/kg wet							
Pyrene	0.014 U	mg/kg wet							
LCS (B005089-BS1)			Prep	oared: 05/19/1	4 Analyzed: 05	5/21/14			
Surrogate: 2-Fluorobiphenyl	0.63	mg/kg wet	1.0		62.8	1-191			
Surrogate: p-Terphenyl-d14	0.88	mg/kg wet	1.0		88.1	8-178			
1-Methylnaphthalene	0.14	mg/kg wet	0.20		70.2	36-109			
2-Methylnaphthalene	0.14	mg/kg wet	0.20		70.1	39-108			
Acenaphthene	0.14	mg/kg wet	0.20		72.0	45-106			
Acenaphthylene	0.15	mg/kg wet	0.20		74.2	35-113			
Anthracene	0.16	mg/kg wet	0.20		78.9	47-110			

SunLabs Project Number

4051601

Cardno TBE, Inc.

Project Description

BF-Washington Park

Batch No: **B005089** Test: **8270 PAH**

Analyte	Result	Units	Spike Level	Parent Result	%REC	%REC Limits	RPD	RPD Limit	Flags
LCS (B005089-BS1)			Prep	pared: 05/19/1	4 Analyzed: 0	5/21/14			
Benz[a]anthracene	0.19	mg/kg wet	0.20		96.6	50-126			
Benzo[a]pyrene	0.18	mg/kg wet	0.20		89.5	17-135			
Benzo[b]fluoranthene	0.19	mg/kg wet	0.20		95.3	20-135			
Benzo[ghi]perylene	0.17	mg/kg wet	0.20		83.6	30-130			
Benzo[k]fluoranthene	0.19	mg/kg wet	0.20		95.3	33-129			
Chrysene	0.19	mg/kg wet	0.20		97.3	55-121			
Dibenz[a,h]anthracene	0.17	mg/kg wet	0.20		87.1	33-134			
Fluoranthene	0.20	mg/kg wet	0.20		101	41-127			
Fluorene	0.16	mg/kg wet	0.20		78.3	47-108			
ndeno[1,2,3-cd]pyrene	0.18	mg/kg wet	0.20		88.0	33-129			
Naphthalene	0.14	mg/kg wet	0.20		69.6	42-106			
Phenanthrene	0.16	mg/kg wet	0.20		81.3	45-114			
Pyrene	0.16	mg/kg wet	0.20		79.0	39-124			
			Prep	pared: 05/19/1	4 Analyzed: 0	5/22/14			
Surrogate: 2-Fluorobiphenyl	0.65	mg/kg wet	1.0	-, -,-	64.6	1-191			
Surrogate: p-Terphenyl-d14	0.91	mg/kg wet	1.0		91.1	8-178			
L-Methylnaphthalene	0.16	mg/kg wet	0.20		79.6	36-109	12.7	20	
2-Methylnaphthalene	0.15	mg/kg wet	0.20		76.0	39-108	8.08	20	
Acenaphthene	0.16	mg/kg wet	0.20		77.8	45-106	7.64	20	
Acenaphthylene	0.16	mg/kg wet	0.20		80.3	35-113	7.97	20	
Anthracene	0.17	mg/kg wet	0.20		83.0	47-110	4.99	20	
Benz[a]anthracene	0.21	mg/kg wet	0.20		104	50-126	7.21	20	
Benzo[a]pyrene	0.19	mg/kg wet	0.20		97.0	17-135	8.03	20	
Benzo[b]fluoranthene	0.21	mg/kg wet	0.20		104	20-135	8.37	20	
Benzo[ghi]perylene	0.19	mg/kg wet	0.20		93.0	30-130	10.6	20	
Benzo[k]fluoranthene	0.21	mg/kg wet	0.20		104	33-129	8.81	20	
Chrysene	0.21	mg/kg wet	0.20		103	55-121	5.43	20	
Dibenz[a,h]anthracene	0.19	mg/kg wet	0.20		95.1	33-134	8.76	20	
Fluoranthene	0.21	mg/kg wet	0.20		105	41-127	3.66	20	
Fluorene	0.17	mg/kg wet	0.20		83.8	47-108	6.86	20	
indeno[1,2,3-cd]pyrene	0.19	mg/kg wet	0.20		97.4	33-129	10.1	20	
Naphthalene	0.15	mg/kg wet	0.20		76.0	42-106	8.70	20	
Phenanthrene	0.17	mg/kg wet	0.20		84.8	45-114	4.27	20	
Pyrene	0.17	mg/kg wet	0.20		86.4	39-124	9.02	20	
Matrix Spike (B005089-MS1)		le: 4051609-10		pared: 05/19/1					
Surrogate: 2-Fluorobiphenyl	0.64	mg/kg dry	1.1	55, 15/1	60.7	1-191			
Surrogate: p-Terphenyl-d14	0.89	mg/kg dry	1.1		83.3	8-178			
-Methylnaphthalene	0.17	mg/kg dry	0.21	0.020	69.6	32-102			
2-Methylnaphthalene	0.17	mg/kg dry	0.21	0.034	63.0	32-103			
cenaphthene	0.15	mg/kg dry	0.21	ND	72.4	31-113			
cenaphthylene	0.15	mg/kg dry	0.21	ND	70.6	6-138			
Inthracene	0.17	mg/kg dry	0.21	ND	81.9	40-112			
enz[a]anthracene	0.21	mg/kg dry	0.21	0.0037	99.1	34-133			
enzo[a]pyrene	0.21	mg/kg dry	0.21	ND	100	1-148			
enzo[b]fluoranthene	0.23	mg/kg dry	0.21	0.011	103	1-151			
enzo[ghi]perylene	0.20	mg/kg dry	0.21	ND	94.3	8-135			
lenzo[k]fluoranthene	0.22	mg/kg dry	0.21	ND	101	27-126			
	0.22		J.21			2, 120			
Chrysene	0.22	mg/kg dry	0.21	0.0026	100	23-142			

SunLabs Project Number

4051601

Cardno TBE, Inc.

Project Description

BF-Washington Park

Batch No: **B005089** Test: **8270 PAH**

			Spike	Parent		%REC		RPD	
Analyte	Result	Units	Level	Result	%REC	Limits	RPD	Limit	Flags
Matrix Spike (B005089-MS1)	Parent Samp	le: 4051609-10	Prep	pared: 05/19/1	4 Analyzed: 0	5/22/14			
Fluoranthene	0.24	mg/kg dry	0.21	0.019	106	1-195			
Fluorene	0.17	mg/kg dry	0.21	ND	81.0	37-114			
Indeno[1,2,3-cd]pyrene	0.20	mg/kg dry	0.21	ND	95.1	18-130			
Naphthalene	0.22	mg/kg dry	0.21	0.12	48.4	27-105			
Phenanthrene	0.19	mg/kg dry	0.21	0.012	82.5	24-131			
Pyrene	0.17	mg/kg dry	0.21	ND	80.8	1-168			
Matrix Spike Dup (B005089-MSD1)	Parent Samp	le: 4051609-10	Prep	pared: 05/19/1	.4 Analyzed: 0	5/22/14			
Surrogate: 2-Fluorobiphenyl	0.67	mg/kg dry	1.1		63.3	1-191			
Surrogate: p-Terphenyl-d14	0.88	mg/kg dry	1.1		82.3	8-178			
l-Methylnaphthalene	0.17	mg/kg dry	0.21	0.020	71.1	32-102	1.93	20	
2-Methylnaphthalene	0.17	mg/kg dry	0.21	0.034	65.2	32-103	2.73	20	
Acenaphthene	0.16	mg/kg dry	0.21	ND	74.3	31-113	2.64	20	
Acenaphthylene	0.16	mg/kg dry	0.21	ND	74.4	6-138	5.29	20	
Anthracene	0.18	mg/kg dry	0.21	ND	82.7	40-112	0.961	20	
Benz[a]anthracene	0.23	mg/kg dry	0.21	0.0037	106	34-133	6.23	20	
Benzo[a]pyrene	0.23	mg/kg dry	0.21	ND	109	1-148	8.04	20	
Benzo[b]fluoranthene	0.25	mg/kg dry	0.21	0.011	114	1-151	9.95	20	
Benzo[ghi]perylene	0.21	mg/kg dry	0.21	ND	97.6	8-135	3.38	20	
Benzo[k]fluoranthene	0.22	mg/kg dry	0.21	ND	104	27-126	2.60	20	
Chrysene	0.23	mg/kg dry	0.21	0.0026	107	23-142	6.78	20	
Dibenz[a,h]anthracene	0.19	mg/kg dry	0.21	ND	88.5	29-128	0.333	20	
Fluoranthene	0.25	mg/kg dry	0.21	0.019	110	1-195	3.98	20	
Fluorene	0.17	mg/kg dry	0.21	ND	81.6	37-114	0.737	20	
indeno[1,2,3-cd]pyrene	0.21	mg/kg dry	0.21	ND	100	18-130	5.19	20	
Naphthalene	0.23	mg/kg dry	0.21	0.12	50.3	27-105	1.78	20	
Phenanthrene	0.19	mg/kg dry	0.21	0.012	83.5	24-131	1.16	20	
Pyrene	0.18	mg/kg dry	0.21	ND	85.0	1-168	5.05	20	

SunLabs Project Number

4051601

Cardno TBE, Inc.

Project Description

BF-Washington Park

Analyte	Result	Units	Spike Level	Parent Result	%REC	%REC Limits	RPD	RPD Limit	Flags
Blank (B005093-BLK1)				ared & Analyze					
Surrogate: 4-Bromofluorobenzene	46	ng/mL	50		91.2	25-172			
Surrogate: Dibromofluoromethane	54	ng/mL	50		108	77-126			
Surrogate: Toluene-d8	50	ng/mL	50		99.3	78-118			
1,1,1-Trichloroethane	0.0013 U	mg/kg wet							
I,1,2,2-Tetrachloroethane	0.00052 U	mg/kg wet							
1,1,2-Trichloroethane	0.00046 U	mg/kg wet							
1,1-Dichloroethane	0.0012 U	mg/kg wet							
1,1-Dichloroethene	0.0014 U	mg/kg wet							
L,2,4-Trimethylbenzene	0.00045 U	mg/kg wet							
1,2-Dichlorobenzene	0.00049 U	mg/kg wet							
L,2-Dichloroethane	0.00053 U	mg/kg wet							
L,2-Dichloropropane	0.00072 U	mg/kg wet							
1,3,5-Trimethylbenzene	0.00067 U	mg/kg wet							
L,3-Dichlorobenzene	0.00034 U	mg/kg wet							
L,3-Dichloropropene (Total)	0.00056 U	mg/kg wet							
1,4-Dichlorobenzene	0.0010 U	mg/kg wet							
2-Butanone (MEK)	0.0024 U	mg/kg wet							
2-Hexanone	0.0053 U	mg/kg wet							
1-Methyl-2-pentanone (MIBK)	0.0030 U	mg/kg wet							
Acetone	0.011 U	mg/kg wet							
Benzene	0.00094 U	mg/kg wet							
Bromochloromethane	0.00048 U	mg/kg wet							
Bromodichloromethane	0.00044 U	mg/kg wet							
Bromoform	0.00079 U	mg/kg wet							
Bromomethane	0.0016 U	mg/kg wet							
Carbon disulfide	0.0015 U	mg/kg wet							
Carbon tetrachloride	0.0012 U	mg/kg wet							
Chlorobenzene	0.00069 U	mg/kg wet							
Chloroethane	0.0012 U	mg/kg wet							
Chloroform	0.0011 U	mg/kg wet							
Chloromethane	0.0014 U	mg/kg wet							
cis-1,2-Dichloroethene	0.0011 U	mg/kg wet							
Dibromochloromethane	0.00023 U	mg/kg wet							
Dibromomethane	0.00026 U	mg/kg wet							
Dichlorodifluoromethane	0.0012 U	mg/kg wet							
Ethylbenzene	0.00084 U	mg/kg wet							
sopropylbenzene	0.00069 U	mg/kg wet							
Methylene Chloride	0.0022 U	mg/kg wet							
1ethyl tert-Butyl Ether (MTBE)	0.00090 U	mg/kg wet							
Styrene	0.00023 U	mg/kg wet							
etrachloroethene	0.00088 U	mg/kg wet							
oluene	0.00089 U	mg/kg wet							
(ylenes (Total)	0.00015 U	mg/kg wet							
rans-1,2-Dichloroethene	0.0013 U	mg/kg wet							
richloroethene	0.00084 U	mg/kg wet							
richlorofluoromethane	0.0013 U	mg/kg wet							
/inyl chloride	0.0012 U	mg/kg wet							
LCS (B005093-BS1)		J. J	Prer	ared & Analyze	ed: 05/20/14				
Surrogate: 4-Bromofluorobenzene	42	ng/mL	50		83.8	25-172			
urrogate: Dibromofluoromethane	52	ng/mL	50		103	77-126			

SunLabs Project Number

4051601

Cardno TBE, Inc.

Project Description

BF-Washington Park

Analyte	Result	Units	Spike Level	Parent Result	%REC	%REC Limits	RPD	RPD Limit	Flags
.CS (B005093-BS1)			Prep	pared & Analyzed:	05/20/14				
Surrogate: Toluene-d8	50	ng/mL	50		99.1	78-118			
,1,1-Trichloroethane	0.11	mg/kg wet	0.10		108	78-120			
,1,2,2-Tetrachloroethane	0.096	mg/kg wet	0.10		95.6	69-124			
,1,2-Trichloroethane	0.099	mg/kg wet	0.10		99.4	80-125			
,1-Dichloroethane	0.10	mg/kg wet	0.10		104	80-120			
,1-Dichloroethene	0.10	mg/kg wet	0.10		101	80-120			
,2,4-Trimethylbenzene	0.10	mg/kg wet	0.10		102	77-120			
,2-Dichlorobenzene	0.11	mg/kg wet	0.10		106	80-120			
,2-Dichloroethane	0.10	mg/kg wet	0.10		104	80-120			
,2-Dichloropropane	0.10	mg/kg wet	0.10		101	80-120			
,3,5-Trimethylbenzene	0.10	mg/kg wet	0.10		104	67-120			
,3-Dichlorobenzene	0.11	mg/kg wet	0.10		107	74-145			
,3-Dichloropropene (Total)	0.20	mg/kg wet	0.20		98.9	73-121			
,4-Dichlorobenzene	0.099	mg/kg wet	0.10		99.0	69-135			
-Butanone (MEK)	0.97	mg/kg wet	1.0		96.5	53-130			
-Hexanone	0.89	mg/kg wet	1.0		89.5	51-137			
-Methyl-2-pentanone (MIBK)	0.90	mg/kg wet	1.0		90.3	57-129			
cetone	0.90		1.0		91.7	70-149			
		mg/kg wet				80-120			
enzene	0.10	mg/kg wet	0.10		101				
romochloromethane	0.10	mg/kg wet	0.10		104	80-120			
romodichloromethane	0.099	mg/kg wet	0.10		99.3	80-120			
romoform	0.097	mg/kg wet	0.10		97.1	76-120			
romomethane	0.10	mg/kg wet	0.10		104	76-137			
arbon disulfide	0.099	mg/kg wet	0.10		98.8	71-146			
arbon tetrachloride	0.11	mg/kg wet	0.10		109	75-120			
hlorobenzene	0.10	mg/kg wet	0.10		99.6	80-120			
hloroethane	0.091	mg/kg wet	0.10		91.1	80-123			
hloroform	0.10	mg/kg wet	0.10		99.9	80-120			
hloromethane	0.097	mg/kg wet	0.10		96.7	70-126			
s-1,2-Dichloroethene	0.10	mg/kg wet	0.10		104	80-120			
ibromochloromethane	0.10	mg/kg wet	0.10		105	80-120			
ibromomethane	0.10	mg/kg wet	0.10		101	80-120			
ichlorodifluoromethane	0.096	mg/kg wet	0.10		95.7	78-128			
thylbenzene	0.096	mg/kg wet	0.10		96.1	80-120			
opropylbenzene	0.094	mg/kg wet	0.10		94.2	80-120			
ethylene Chloride	0.10	mg/kg wet	0.10		102	72-145			
ethyl tert-Butyl Ether (MTBE)	0.11	mg/kg wet	0.10		106	80-120			
tyrene	0.11	mg/kg wet	0.10		107	80-120			
etrachloroethene	0.11	mg/kg wet	0.10		110	80-120			
oluene	0.10	mg/kg wet	0.10		99.6	74-127			
ylenes (Total)	0.29	mg/kg wet	0.30		97.1	74-129			
ans-1,2-Dichloroethene	0.10	mg/kg wet	0.10		105	80-120			
richloroethene	0.10	mg/kg wet	0.10		104	80-112			
richlorofluoromethane	0.099	mg/kg wet	0.10		98.7	74-127			
inyl chloride	0.093	mg/kg wet	0.10		93.3	78-131			
.CS Dup (B005093-BSD1)		3, 3		pared & Analyzed:					
urrogate: 4-Bromofluorobenzene	45	ng/mL	50	30 0.7 110172001	90.3	25-172			
urrogate: Dibromofluoromethane	53	ng/mL	50		106	77-126			
urrogate: Toluene-d8	51	ng/mL	50		102	78-118			
,1,1-Trichloroethane	0.11	mg/kg wet	0.10		112	78-120	3.46	20	

SunLabs Project Number

4051601

Cardno TBE, Inc.

Project Description

BF-Washington Park

Analyte	Result	Units	Spike Level	Parent Result	%REC	%REC Limits	RPD	RPD Limit	Flags
.CS Dup (B005093-BSD1)			Prep	pared & Analyze	ed: 05/20/14				
.,1,2,2-Tetrachloroethane	0.098	mg/kg wet	0.10		97.7	69-124	2.16	20	
,1,2-Trichloroethane	0.11	mg/kg wet	0.10		106	80-125	6.22	20	
,1-Dichloroethane	0.11	mg/kg wet	0.10		109	80-120	3.98	20	
,1-Dichloroethene	0.10	mg/kg wet	0.10		105	80-120	4.08	20	
,2,4-Trimethylbenzene	0.10	mg/kg wet	0.10		103	77-120	0.997	20	
2-Dichlorobenzene	0.11	mg/kg wet	0.10		109	80-120	3.23	20	
2-Dichloroethane	0.11	mg/kg wet	0.10		106	80-120	2.42	20	
,2-Dichloropropane	0.10	mg/kg wet	0.10		104	80-120	3.02	20	
3,5-Trimethylbenzene	0.10	mg/kg wet	0.10		103	67-120	0.367	22	
3-Dichlorobenzene	0.11	mg/kg wet	0.10		109	74-145	2.30	20	
,3-Dichloropropene (Total)	0.21	mg/kg wet	0.20		105	73-121	5.52	20	
.4-Dichlorobenzene	0.10	mg/kg wet	0.10		103	69-135	3.50	20	
-Butanone (MEK)	1.1	mg/kg wet	1.0		107	53-130	9.87	20	
Hexanone	1.0	mg/kg wet	1.0		103	51-137	14.0	20	
-Methyl-2-pentanone (MIBK)	0.99	mg/kg wet	1.0		99.3	57-129	9.48	20	
cetone	1.1	mg/kg wet	1.0		106	70-149	14.2	20	
enzene	0.10	mg/kg wet	0.10		104	80-120	2.92	20	
romochloromethane	0.11	mg/kg wet	0.10		110	80-120	5.22	20	
romodichloromethane	0.10	mg/kg wet	0.10		104	80-120	4.38	20	
romoform	0.11	mg/kg wet	0.10		106	76-120	9.23	20	
romomethane	0.11	mg/kg wet	0.10		108	76-137	3.84	20	
arbon disulfide	0.10	mg/kg wet	0.10		102	71-146	3.03	20	
arbon tetrachloride	0.11	mg/kg wet	0.10		108	75-120	0.868	20	
hlorobenzene	0.10	mg/kg wet	0.10		104	80-120	4.56	20	
hloroethane	0.098	mg/kg wet	0.10		98.2	80-123	7.47	20	
hloroform	0.10	mg/kg wet	0.10		104	80-120	3.61	20	
hloromethane	0.11	mg/kg wet	0.10		105	70-126	8.54	20	
s-1,2-Dichloroethene	0.11	mg/kg wet	0.10		108	80-120	3.84	20	
ibromochloromethane	0.11	mg/kg wet	0.10		112	80-120	7.20	20	
ibromomethane	0.11	mg/kg wet	0.10		107	80-120	5.69	20	
ichlorodifluoromethane	0.096	mg/kg wet	0.10		96.1	78-128	0.428	20	
thylbenzene	0.10	mg/kg wet	0.10		100	80-120	4.02	20	
opropylbenzene	0.10	mg/kg wet	0.10		102	80-120	8.08	20	
ethylene Chloride	0.11	mg/kg wet	0.10		107	72-145	4.14	20	
ethyl tert-Butyl Ether (MTBE)	0.11	mg/kg wet	0.10		111	80-120	4.08	20	
tyrene	0.12	mg/kg wet	0.10		116	80-120	8.65	20	
etrachloroethene	0.12	mg/kg wet	0.10		116	80-120	5.42	20	
oluene	0.12	mg/kg wet	0.10		104	74-127	4.18	20	
ylenes (Total)	0.31	mg/kg wet	0.30		104	74-127	6.65	20	
ans-1,2-Dichloroethene	0.11	mg/kg wet	0.10		104	80-120	3.62	20	
richloroethene	0.11	mg/kg wet	0.10		107	80-112	2.47	20	
richlorofluoromethane	0.10		0.10		100	74-127	1.68		
nyl chloride	0.10	mg/kg wet mg/kg wet	0.10		100	74-127 78-131	7.44	20 20	
			0.10		101	70-131	7.77	20	
Matrix Spike (B005093-MS1)		e: 4051908-02		ared & Analyze					
urrogate: 4-Bromofluorobenzene	44	ng/mL	50		88.8	25-172			
urrogate: Dibromofluoromethane	53	ng/mL	50		105	77-126			
urrogate: Toluene-d8	51	ng/mL	50		101	78-118			
,1,1-Trichloroethane	0.095	mg/kg dry	0.084	ND	114	71-120			
,1,2,2-Tetrachloroethane	0.070	mg/kg dry	0.084	ND	82.7	71-124			
,1,2-Trichloroethane	0.081	mg/kg dry	0.084	ND	96.6	77-127			

SunLabs Project Number

4051601

Cardno TBE, Inc.

Project Description

BF-Washington Park

			Spike	Parent		%REC		RPD	
Analyte	Result	Units	Level	Result	%REC	Limits	RPD	Limit	Flags
Matrix Spike (B005093-MS1)	Parent Sampl	e: 4051908-02	Prep	pared & Analyz	ed: 05/20/14				
1,1-Dichloroethane	0.096	mg/kg dry	0.084	ND	114	79-120			
1,1-Dichloroethene	0.085	mg/kg dry	0.084	ND	101	63-126			
1,2,4-Trimethylbenzene	0.085	mg/kg dry	0.084	0.00066	100	52-129			
1,2-Dichlorobenzene	0.085	mg/kg dry	0.084	ND	101	80-122			
1,2-Dichloroethane	0.090	mg/kg dry	0.084	ND	108	81-122			
1,2-Dichloropropane	0.093	mg/kg dry	0.084	ND	111	80-120			
1,3,5-Trimethylbenzene	0.079	mg/kg dry	0.084	ND	94.2	46-129			
1,3-Dichlorobenzene	0.090	mg/kg dry	0.084	ND	107	60-154			
1,3-Dichloropropene (Total)	0.17	mg/kg dry	0.17	ND	104	57-120			
1,4-Dichlorobenzene	0.085	mg/kg dry	0.084	ND	101	68-135			
2-Butanone (MEK)	0.81	mg/kg dry	0.84	ND	96.2	55-143			
2-Hexanone	0.72	mg/kg dry	0.84	ND	86.3	51-150			
4-Methyl-2-pentanone (MIBK)	0.75	mg/kg dry	0.84	ND	89.3	61-135			
Acetone	0.79	mg/kg dry	0.84	0.012	93.3	45-169			
Benzene	0.085	mg/kg dry	0.084	ND	101	45-149			
Bromochloromethane	0.085	mg/kg dry	0.084	ND	101	80-120			
Bromodichloromethane	0.083	mg/kg dry	0.084	ND	98.3	80-123			
Bromoform	0.077	mg/kg dry	0.084	ND	91.4	65-120			
Bromomethane	0.090	mg/kg dry	0.084	ND	108	56-160			
Carbon disulfide	0.085	mg/kg dry	0.084	ND	102	74-143			
Carbon tetrachloride	0.0084	mg/kg dry	0.084	ND	9.98	70-120			J
Chlorobenzene	0.083	mg/kg dry	0.084	ND	98.8	73-120			
Chloroethane	0.086	mg/kg dry	0.084	ND	102	76-129			
Chloroform	0.084	mg/kg dry	0.084	ND	99.6	77-122			
Chloromethane	0.092	mg/kg dry	0.084	ND	109	58-147			
cis-1,2-Dichloroethene	0.092	mg/kg dry	0.084	ND	110	75-121			
Dibromochloromethane	0.084	mg/kg dry	0.084	ND	100	74-120			
Dibromomethane	0.081	mg/kg dry	0.084	ND	96.4	80-120			
Dichlorodifluoromethane	0.088	mg/kg dry	0.084	ND	105	57-145			
Ethylbenzene	0.082	mg/kg dry	0.084	ND	97.0	73-120			
isopropylbenzene	0.079	mg/kg dry	0.084	ND	93.9	68-120			
Methylene Chloride	0.085	mg/kg dry	0.084	ND	102	66-141			
Methyl tert-Butyl Ether (MTBE)	0.087	mg/kg dry	0.084	ND	103	79-128			
Styrene	0.092	mg/kg dry	0.084	ND	109	42-130			
Tetrachloroethene	0.10	mg/kg dry	0.084	ND	120	57-141			
Toluene	0.087	mg/kg dry	0.084	0.0010	102	62-122			
Xylenes (Total)	0.25	mg/kg dry	0.25	0.0017	96.9	44-136			
trans-1,2-Dichloroethene	0.088	mg/kg dry	0.084	ND	105	72-120			
Trichloroethene	0.094	mg/kg dry	0.084	ND	112	66-124			
Trichlorofluoromethane	0.090	mg/kg dry	0.084	ND	107	62-138			
Vinyl chloride	0.087	mg/kg dry	0.084	ND	104	71-142			
Matrix Spike Dup (B005093-MSD1)		e: 4051908-02		pared & Analyzo					
Surrogate: 4-Bromofluorobenzene	42	ng/mL	50		83.3	25-172			
Surrogate: Dibromofluoromethane	53	ng/mL	50		105	77-126			
Surrogate: Toluene-d8	49	ng/mL	50		97.7	78-118			
1,1,1-Trichloroethane	0.087	mg/kg dry	0.084	ND	103	71-120	9.76	20	
1,1,2,2-Tetrachloroethane	0.081	mg/kg dry	0.084	ND	96.0	71-124	15.0	20	
1,1,2-Trichloroethane	0.076	mg/kg dry	0.084	ND	90.4	77-127	6.48	20	
1,1-Dichloroethane	0.091	mg/kg dry	0.084	ND	108	79-120	5.60	20	
1,1-Dichloroethene	0.084	mg/kg dry	0.084	ND	99.9	63-126	1.04	20	
1/1 Dictionoculate	0.001	ilig/kg ui y	0.00	ND	55.5	03 120	1.07	20	

SunLabs Project Number

4051601

Cardno TBE, Inc.

Project Description

BF-Washington Park

			Spike	Parent		%REC		RPD	
Analyte	Result	Units	Level	Result	%REC	Limits	RPD	Limit	Flags
Matrix Spike Dup (B005093-MSD1)	Parent Sampl	e: 4051908-02	Prep	pared & Analyz	ed: 05/20/14				
1,2,4-Trimethylbenzene	0.086	mg/kg dry	0.084	0.00066	102	52-129	1.32	20	
1,2-Dichlorobenzene	0.084	mg/kg dry	0.084	ND	99.9	80-122	1.04	20	
1,2-Dichloroethane	0.086	mg/kg dry	0.084	ND	102	81-122	4.91	20	
1,2-Dichloropropane	0.090	mg/kg dry	0.084	ND	106	80-120	3.84	20	
1,3,5-Trimethylbenzene	0.091	mg/kg dry	0.084	ND	108	46-129	14.1	20	
1,3-Dichlorobenzene	0.090	mg/kg dry	0.084	ND	107	60-154	0.311	20	
1,3-Dichloropropene (Total)	0.17	mg/kg dry	0.17	ND	102	57-120	1.60	20	
1,4-Dichlorobenzene	0.086	mg/kg dry	0.084	ND	102	68-135	1.36	20	
2-Butanone (MEK)	0.79	mg/kg dry	0.84	ND	93.8	55-143	2.43	20	
2-Hexanone	0.67	mg/kg dry	0.84	ND	79.3	51-150	8.19	20	
4-Methyl-2-pentanone (MIBK)	0.70	mg/kg dry	0.84	ND	83.7	61-135	6.26	20	
Acetone	0.74	mg/kg dry	0.84	0.012	86.9	45-169	6.79	20	
Benzene	0.080	mg/kg dry	0.084	ND	95.6	45-149	4.98	20	
Bromochloromethane	0.081	mg/kg dry	0.084	ND	96.4	80-120	4.29	20	
Bromodichloromethane	0.078	mg/kg dry	0.084	ND	92.5	80-123	5.95	20	
Bromoform	0.075	mg/kg dry	0.084	ND	88.8	65-120	2.71	20	
Bromomethane	0.076	mg/kg dry	0.084	ND	90.0	56-160	17.7	20	
Carbon disulfide	0.079	mg/kg dry	0.084	ND	94.1	74-143	7.53	20	
Carbon tetrachloride	0.084	mg/kg dry	0.084	ND	99.2	70-120	164	20	J
Chlorobenzene	0.081	mg/kg dry	0.084	ND	95.7	73-120	2.98	20	
Chloroethane	0.072	mg/kg dry	0.084	ND	85.7	76-129	17.6	20	
Chloroform	0.079	mg/kg dry	0.084	ND	94.1	77-122	5.52	20	
Chloromethane	0.079	mg/kg dry	0.084	ND	93.8	58-147	14.8	20	
cis-1,2-Dichloroethene	0.090	mg/kg dry	0.084	ND	107	75-121	2.71	20	
Dibromochloromethane	0.079	mg/kg dry	0.084	ND	93.7	74-120	6.61	20	
Dibromomethane	0.077	mg/kg dry	0.084	ND	92.1	80-120	4.46	20	
Dichlorodifluoromethane	0.074	mg/kg dry	0.084	ND	88.5	57-145	17.0	20	
Ethylbenzene	0.078	mg/kg dry	0.084	ND	92.6	73-120	4.47	20	
isopropylbenzene	0.078	mg/kg dry	0.084	ND	92.5	68-120	1.33	20	
Methylene Chloride	0.075	mg/kg dry	0.084	ND	88.7	66-141	13.5	20	
Methyl tert-Butyl Ether (MTBE)	0.086	mg/kg dry	0.084	ND	103	79-128	0.286	20	
Styrene	0.085	mg/kg dry	0.084	ND	101	42-130	7.27	20	
Tetrachloroethene	0.091	mg/kg dry	0.084	ND	108	57-141	10.8	20	
Toluene	0.079	mg/kg dry	0.084	0.0010	92.7	62-122	9.40	20	
Xylenes (Total)	0.24	mg/kg dry	0.25	0.0017	92.6	44-136	4.28	20	
trans-1,2-Dichloroethene	0.086	mg/kg dry	0.084	ND	102	72-120	2.92	20	
Trichloroethene	0.087	mg/kg dry	0.084	ND	104	66-124	7.23	20	
Trichlorofluoromethane	0.079	mg/kg dry	0.084	ND	94.3	62-138	12.3	20	
Vinyl chloride	0.076	mg/kg dry	0.084	ND	90.7	71-142	13.7	20	

※SunLabs

SunLabs Project Number

4051601

Cardno TBE, Inc.

Project Description

BF-Washington Park

			Spike	Parent		%REC		RPD	
Analyte	Result	Units	Level	Result	%REC	Limits	RPD	Limit	Flags
Blank (B005098-BLK1)			Prep	pared & Analyze	ed: 05/20/14				_
Surrogate: 4-Bromofluorobenzene	51	ng/mL	50		102	82-118			
Surrogate: Dibromofluoromethane	50	ng/mL	50		101	85-120			
Surrogate: Toluene-d8	50	ng/mL	50		99.6	83-115			
1,1,1-Trichloroethane	0.19 U	ug/L							
1,1,2,2-Tetrachloroethane	0.19 U	ug/L							
1,1,2-Trichloroethane	0.92 U	ug/L							
1,1-Dichloroethane	0.23 U	ug/L							
1,1-Dichloroethene	0.34 U	ug/L							
1,2-Dichlorobenzene	0.40 U	ug/L							
1,2-Dichloroethane	0.24 U	ug/L							
1,2-Dichloropropane	0.28 U	ug/L							
1,2,4-Trimethylbenzene	0.37 U	ug/L							
1,3,5-Trimethylbenzene	0.24 U	ug/L							
1,3-Dichlorobenzene	0.34 U	ug/L							
1,3-Dichloropropene (Total)	0.11 U	ug/L							
1,4-Dichlorobenzene	0.21 U	ug/L							
2-Butanone (MEK)	2.1 U	ug/L							
2-Hexanone	1.5 U	ug/L							
4-Methyl-2-pentanone (MIBK)	1.3 U	ug/L							
Acetone	6.9 U	ug/L							
Benzene	0.23 U	ug/L							
Bromochloromethane	0.18 U	ug/L							
Bromodichloromethane	0.19 U	ug/L							
Bromoform	0.35 U	ug/L							
Bromomethane	0.43 U	ug/L							
Carbon disulfide	0.35 U	ug/L							
Carbon tetrachloride	0.18 U	ug/L							
Chlorobenzene	0.19 U	ug/L							
Chloroethane	0.36 U	ug/L							
Chloroform	0.19 U	ug/L							
Chloromethane	0.32 U	ug/L							
cis-1,2-Dichloroethene	0.32 U	ug/L ug/L							
Dibromochloromethane	0.33 U	ug/L ug/L							
Dibromomethane	0.25 U	ug/L ug/L							
Dichlorodifluoromethane	0.42 U	ug/L ug/L							
Ethylbenzene	0.42 U	ug/L ug/L							
sopropylbenzene	0.26 U	ug/L ug/L							
Methylene Chloride	0.65 U	ug/L ug/L							
Methyl tert-Butyl Ether (MTBE)	0.05 U								
Metnyi tert-Butyi Ether (MTBE) Styrene		ug/L							
otyrene Tetrachloroethene	0.23 U 0.36 U	ug/L							
Toluene	0.20 U	ug/L ug/L							
Yylenes (Total)	0.20 U								
		ug/L							
rans-1,2-Dichloroethene	0.22 U	ug/L							
Friehlandfungsmathan	0.48 U	ug/L							
Frichlorofluoromethane	0.51 U	ug/L							
/inyl chloride	0.25 U	ug/L							
LCS (B005098-BS1)			Prep	pared & Analyze	ed: 05/20/14				
Surrogate: 4-Bromofluorobenzene	50	ng/mL	50		99.2	82-118			
Surrogate: Dibromofluoromethane	49	ng/mL	50		97.5	85-120			

SunLabs Project Number

4051601

Cardno TBE, Inc.

Project Description

BF-Washington Park

			Spike	Parent		%REC		RPD	
Analyte	Result	Units	Level	Result	%REC	Limits	RPD	Limit	Flags
CS (B005098-BS1)			Prep	ared & Analyze	ed: 05/20/14				
urrogate: Toluene-d8	49	ng/mL	50		98.3	83-115			
1,1-Trichloroethane	10	ug/L	10		100	78-120			
1,2,2-Tetrachloroethane	10	ug/L	10		99.8	69-124			
1,2-Trichloroethane	10	ug/L	10		104	80-125			
1-Dichloroethane	9.8	ug/L	10		98.5	80-120			
1-Dichloroethene	10	ug/L	10		105	80-120			
2-Dichlorobenzene	10	ug/L	10		100	80-120			
2-Dichloroethane	10	ug/L	10		102	80-120			
2-Dichloropropane	9.8	ug/L	10		98.4	80-120			
,2,4-Trimethylbenzene	10	ug/L	10		105	77-120			
3,5-Trimethylbenzene	10	ug/L	10		103	67-120			
3-Dichlorobenzene	10	ug/L	10		100	74-145			
3-Dichloropropene (Total)	19	ug/L	20		94.6	73-121			
4-Dichlorobenzene	10	ug/L	10		103	69-135			
Butanone (MEK)	88	ug/L	100		88.3	53-130			
Hexanone	100	ug/L	100		102	51-137			
Methyl-2-pentanone (MIBK)	94	ug/L	100		93.7	57-129			
cetone	110	ug/L	100		111	70-149			
enzene	10	ug/L	10		101	80-120			
romochloromethane	9.8	ug/L	10		97.9	80-120			
romodichloromethane	9.7	ug/L	10		97.1	80-120			
romoform	9.4	ug/L	10		94.1	76-120			
romomethane	12	ug/L	10		122	76-120			
arbon disulfide									
	9.0	ug/L	10		89.8	71-146			
arbon tetrachloride	11	ug/L	10		108	75-120			
nlorobenzene	10	ug/L	10		101	80-120			
hloroethane	11	ug/L	10		111	80-123			
hloroform	9.9	ug/L	10		98.9	80-120			
hloromethane	8.4	ug/L	10		84.4	70-126			
s-1,2-Dichloroethene	9.6	ug/L	10		96.3	80-120			
bromochloromethane	9.7	ug/L	10		96.9	80-120			
bromomethane	10	ug/L	10		102	80-120			
chlorodifluoromethane	10	ug/L	10		100	78-128			
thylbenzene	10	ug/L	10		102	80-120			
opropylbenzene	10	ug/L	10		102	80-120			
ethylene Chloride	9.2	ug/L	10		92.4	72-145			
ethyl tert-Butyl Ether (MTBE)	9.7	ug/L	10		96.6	80-120			
yrene	9.6	ug/L	10		95.5	80-120			
etrachloroethene	10	ug/L	10		100	80-120			
oluene	9.7	ug/L	10		96.6	74-127			
/lenes (Total)	30	ug/L	30		98.3	74-129			
ans-1,2-Dichloroethene	10	ug/L	10		103	80-120			
ichloroethene	10	ug/L	10		99.5	80-120			
richlorofluoromethane	8.7	ug/L	10		86.8	74-127			
inyl chloride	11	ug/L	10		110	78-131			
CS Dup (B005098-BSD1)			Prep	ared & Analyze	ed: 05/20/14				
urrogate: 4-Bromofluorobenzene	51	ng/mL	50		102	82-118			
urrogate: Dibromofluoromethane	50	ng/mL	50		100	85-120			
urrogate: Toluene-d8	50	ng/mL	50		100	83-115			
,1,1-Trichloroethane	9.8	ug/L	10		98.3	78-120	2.01	20	

SunLabs Project Number

4051601

Cardno TBE, Inc.

Project Description

BF-Washington Park

Analyte	Result	Units	Spike Level	Parent Result	%REC	%REC Limits	RPD	RPD Limit	Flags
LCS Dup (B005098-BSD1)			Prep	pared & Analyze	ed: 05/20/14				
1,1,2,2-Tetrachloroethane	10	ug/L	10		101	69-124	1.29	20	
,1,2-Trichloroethane	11	ug/L	10		106	80-125	2.76	20	
,1-Dichloroethane	10	ug/L	10		100	80-120	1.51	20	
,1-Dichloroethene	11	ug/L	10		107	80-120	1.70	20	
,2-Dichlorobenzene	11	ug/L	10		106	80-120	5.24	20	
2-Dichloroethane	11	ug/L	10		107	80-120	4.40	20	
2-Dichloropropane	10	ug/L	10		101	80-120	2.81	20	
2,4-Trimethylbenzene	10	ug/L	10		104	77-120	0.961	20	
3,5-Trimethylbenzene	11	ug/L	10		106	67-120	2.69	22	
3-Dichlorobenzene	10	ug/L	10		102	74-145	1.39	20	
3-Dichloropropene (Total)	20	ug/L	20		99.0	73-121	4.49	20	
4-Dichlorobenzene	11	ug/L	10		108	69-135	3.98	20	
Butanone (MEK)	88	ug/L	100		88.5	53-130	0.272	20	
Hexanone	100	ug/L	100		102	51-137	0.166	20	
Methyl-2-pentanone (MIBK)	98	ug/L	100		97.8	57-129	4.28	20	
cetone	110	ug/L	100		107	70-149	3.53	20	
enzene	10	ug/L	10		105	80-120	3.79	20	
romochloromethane	10	ug/L	10		103	80-120	5.37	20	
romodichloromethane	9.6	ug/L	10		96.0	80-120	1.14	20	
omoform	9.9	ug/L	10		98.7	76-120	4.77	20	
romomethane	12	ug/L	10		117	76-137	4.36	20	
arbon disulfide	9.2	ug/L	10		91.7	71-146	2.09	20	
arbon tetrachloride	11	ug/L	10		113	75-120	5.16	20	
nlorobenzene	11	ug/L	10		105	80-120	4.66	20	
nloroethane	9.1	ug/L	10		91.4	80-123	19.5	20	
nloroform	10	ug/L	10		103	80-120	3.77	20	
hloromethane	8.7	ug/L	10		87.1	70-126	3.15	20	
s-1,2-Dichloroethene	10	ug/L	10		102	80-120	6.04	20	
ibromochloromethane	10	ug/L	10		102	80-120	5.23	20	
ibromomethane	11	ug/L	10		107	80-120	4.21	20	
ichlorodifluoromethane	9.9	ug/L	10		98.9	78-128	1.60	20	
thylbenzene	11	ug/L	10		108	80-120	5.62	20	
ppropylbenzene	11	ug/L	10		105	80-120	2.50	20	
ethylene Chloride	10	ug/L	10		100	72-145	8.20	20	
ethyl tert-Butyl Ether (MTBE)	9.8	ug/L	10		98.5	80-120	1.95	20	
yrene	9.8	ug/L	10		97.6	80-120	2.18	20	
etrachloroethene	10	ug/L	10		103	80-120	2.66	20	
bluene	10	ug/L	10		101	74-127	4.26	20	
ylenes (Total)	30	ug/L	30		101	74-129	2.54	20	
ans-1,2-Dichloroethene	10	ug/L	10		104	80-120	0.773	20	
richloroethene	10	ug/L	10		102	80-120	2.97	20	
richlorofluoromethane	8.9	ug/L	10		89.3	74-127	2.84	20	
nyl chloride	11	ug/L	10		114	78-131	4.19	20	
puplicate (B005098-DUP1)	Parent Sample			sauad Q Anabar		,0 131		20	
				pared & Analyze		Q7_11Q			
urrogate: 4-Bromofluorobenzene	51	ng/mL	50 50		101	82-118			
urrogate: Dibromofluoromethane	50	ng/mL	50		99.8	85-120			
urrogate: Toluene-d8	51	ng/mL	50	NE	103	83-115		200	
1,1-Trichloroethane	0.19 U	ug/L		ND				200	
1,2,2-Tetrachloroethane	0.19 U	ug/L		ND				200	
,1,2-Trichloroethane	0.92 U	ug/L		ND				200	

SunLabs Project Number

4051601

Cardno TBE, Inc.

Project Description

BF-Washington Park

Analyte	Result	Units	Spike Level	Parent Result	%REC	%REC Limits	RPD	RPD Limit	Flags
Duplicate (B005098-DUP1)	Parent Sample					LIIIIG	IN D	Zanik	- i iays
1,1-Dichloroethane	0.23 U	ug/L	Prep	oared & Analyz ND	ea: 05/20/14			200	
1,1-Dichloroethane	0.23 U	ug/L		ND				200	
1,2-Dichlorobenzene	0.40 U	ug/L		ND				200	
1,2-Dichloroethane	0.44 U	ug/L		ND				200	
1,2-Dichloropropane	0.28 U	ug/L		ND				200	
1,3,5-Trimethylbenzene	0.24 U	ug/L		ND				200	
1,2,4-Trimethylbenzene	0.27 U	ug/L		ND				200	
1,3-Dichlorobenzene	0.34 U	ug/L		ND				200	
1,3-Dichloropropene (Total)	0.11 U	ug/L		ND				200	
1,4-Dichlorobenzene	0.21 U	ug/L		ND				200	
2-Butanone (MEK)	2.1 U	ug/L		ND				200	
2-Hexanone	1.5 U	ug/L		ND				200	
4-Methyl-2-pentanone (MIBK)	1.3 U	ug/L		ND				200	
Acetone	6.9 U	ug/L		ND				200	
Benzene	0.23 U	ug/L		ND				200	
Bromochloromethane	0.18 U	ug/L		ND				200	
Bromodichloromethane	0.10 U	ug/L		ND				200	
Bromoform	0.35 U	ug/L		ND				200	
Bromomethane	0.43 U	ug/L		ND				200	
Carbon disulfide	0.45 U	ug/L		ND				200	
Carbon tetrachloride	0.18 U	ug/L		ND				200	
Chlorobenzene	0.18 U			ND				200	
Chloroethane	0.36 U	ug/L		ND				200	
Chloroform	0.30 U	ug/L		ND				200	
Chloromethane	0.19 U	ug/L ug/L		ND				200	
cis-1,2-Dichloroethene	0.32 U	ug/L ug/L		ND				200	
Dibromochloromethane	0.22 U	ug/L		ND				200	
Dibromomethane	0.35 U	ug/L ug/L		ND				200	
Dichlorodifluoromethane	0.42 U	ug/L ug/L		ND				200	
Ethylbenzene	0.42 U	ug/L		ND				200	
sopropylbenzene	4.3	ug/L ug/L		4.6			5.65	200	
Methylene Chloride	0.65 U	ug/L ug/L		ND			5.05	200	
·	0.28 U			ND				200	
Methyl tert-Butyl Ether (MTBE)	0.28 U	ug/L		ND				200	
Styrene Tetrachloroethene		ug/L							
	0.36 U	ug/L		ND				200	
Foluene (Hence (Tetal)	0.20 U	ug/L		ND 0.40			200	200	
Xylenes (Total)	0.22 U	ug/L		0.40			200	200	
trans-1,2-Dichloroethene	0.22 U	ug/L		ND				200	
Trichloroethene	0.48 U	ug/L		ND				200	
Trichlorofluoromethane	0.51 U	ug/L		ND				200	
/inyl chloride	0.25 U	ug/L		ND				200	
Matrix Spike (B005098-MS1)	Parent Sample	: 4051616-02		ared & Analyz					
Surrogate: 4-Bromofluorobenzene	49	ng/mL	50		98.9	82-118			
Surrogate: Dibromofluoromethane	51	ng/mL	50		102	85-120			
Surrogate: Toluene-d8	50	ng/mL	50		100	83-115			
1,1,1-Trichloroethane	7.8	ug/L	10	ND	77.8	71-120			
1,1,2,2-Tetrachloroethane	7.0	ug/L	10	ND	69.7	71-124			J
1,1,2-Trichloroethane	7.1	ug/L	10	ND	71.3	77-127			J
1,1-Dichloroethane	7.5	ug/L	10	ND	74.6	79-120			J
1,1-Dichloroethene	7.8	ug/L	10	ND	77.5	63-126			

SunLabs Project Number

4051601

Cardno TBE, Inc.

Project Description

BF-Washington Park

			Spike	Parent		%REC		RPD	
Analyte	Result	Units	Level	Result	%REC	Limits	RPD	Limit	Flags
Matrix Spike (B005098-MS1)	Parent Sample	: 4051616-02	Prep	oared & Analyz	ed: 05/20/14				
1,2-Dichlorobenzene	6.7	ug/L	10	ND	67.2	80-122			J
1,2-Dichloroethane	7.8	ug/L	10	ND	78.2	81-122			J
1,2-Dichloropropane	7.4	ug/L	10	ND	74.4	80-120			J
1,2,4-Trimethylbenzene	6.5	ug/L	10	ND	65.0	52-129			
1,3,5-Trimethylbenzene	6.5	ug/L	10	ND	64.8	46-129			
1,3-Dichlorobenzene	6.5	ug/L	10	ND	65.1	60-154			
1,3-Dichloropropene (Total)	9.8	ug/L	20	ND	49.2	57-120			J
1,4-Dichlorobenzene	6.6	ug/L	10	ND	66.1	68-135			J
2-Butanone (MEK)	63	ug/L	100	ND	63.4	55-143			
2-Hexanone	73	ug/L	100	ND	72.8	51-150			
4-Methyl-2-pentanone (MIBK)	67	ug/L	100	ND	67.1	61-135			
Acetone	75	ug/L	100	ND	75.1	45-169			
Benzene	7.3	ug/L	10	ND	73.3	45-149			
Bromochloromethane	7.5	ug/L	10	ND	74.6	80-120			J
Bromodichloromethane	7.1	ug/L	10	ND	70.8	80-123			J
Bromoform	6.1	ug/L	10	ND	61.2	65-120			J
Bromomethane	7.9	ug/L	10	ND	78.6	56-160			
Carbon disulfide	7.4	ug/L	10	ND	74.4	74-143			
Carbon tetrachloride	8.0	ug/L	10	ND	80.2	70-120			
Chlorobenzene	7.3	ug/L	10	ND	73.0	73-120			
Chloroethane	8.7	ug/L	10	ND	86.9	76-129			
Chloroform	7.7	ug/L	10	ND	77.1	77-122			
Chloromethane	6.0	ug/L	10	ND	59.7	58-147			
cis-1,2-Dichloroethene	7.0	ug/L	10	ND	70.0	75-121			J
Dibromochloromethane	6.7	ug/L	10	ND	66.9	74-120			J
Dibromomethane	7.3	ug/L	10	ND	73.2	80-120			J
Dichlorodifluoromethane	6.9	ug/L	10	ND	68.8	57-145			
Ethylbenzene	7.0	ug/L	10	ND	69.6	73-120			J
isopropylbenzene	6.7	ug/L	10	ND	66.7	68-120			J
Methylene Chloride	6.6	ug/L	10	ND	65.5	66-141			J
Methyl tert-Butyl Ether (MTBE)	7.2	ug/L	10	ND	71.5	79-128			J
Styrene	6.4	ug/L	10	ND	63.8	42-130			
Tetrachloroethene	6.5	ug/L	10	ND	65.1	57-141			
Toluene	6.8	ug/L	10	ND	68.3	62-122			
Xylenes (Total)	19	ug/L	30	ND	62.3	44-136			
trans-1,2-Dichloroethene	7.3	ug/L	10	ND	72.8	72-120			
Trichloroethene	7.5	ug/L	10	ND	75.1	66-124			
Trichlorofluoromethane	6.0	ug/L	10	ND	60.1	62-138			J
Vinyl chloride	8.7	ug/L	10	ND	87.1	71-142			

Samples Associated with QC Batches

QC Batch ID	Method	Sample List	
B005040	EPA 160.3	4051601-01, 4051601-02, 4051601-03, 4051601-04, 4051601-05, 4051601-06,	
		4051601-07, 4051601-08, 4051601-09, 4051601-10	
B005066	EPA 8260	4051601-01, 4051601-02, 4051601-03, 4051601-04, 4051601-05, 4051601-06,	
		4051601-07, 4051601-08, 4051601-09, 4051601-10	
B005074	EPA 7471	4051601-01, 4051601-02, 4051601-03, 4051601-04, 4051601-05, 4051601-06,	
		4051601-07, 4051601-08, 4051601-09, 4051601-10	
B005082	EPA 6010	4051601-01, 4051601-02, 4051601-03, 4051601-04, 4051601-05, 4051601-06,	
		4051601-07, 4051601-08, 4051601-09, 4051601-10	
B005089	EPA 8270	4051601-01, 4051601-02, 4051601-03, 4051601-04, 4051601-05, 4051601-06,	
		4051601-07, 4051601-08, 4051601-09, 4051601-10	
B005093	EPA 8260	4051601-01RE1	
B005098	EPA 8260	4051601-11	

SunLabs, Inc. Chain of Custody

Sambler Signature //Date: S = Soil Jar P = Plastic GA = Glass Amber GV = Glass Vial GW = Ground Water DW = Drinking Water A = AirMatrix Codes: ottle Type Codes 107 S & S & S 100 0 Client Name: Sample # SunLabs Phone / Fax: Received on Ice(Y) N / NA Temp upon receipt: 2.8°c Address: E-Mail: W = Water (Blanks) WS = Waste WW = Waste Water O = Other (Specif SW = Surface Water SO = Soil 26-26 56-4 € 0 = Other (Specify) T = Tedlar Bag 554 e GVS = Low Level Volatile Kit 217 Sample Description SOL = Solid C 2019 FOF. -HOS Suft -7 707 もで イプト なら 20+ Printed Name / Affiliation: H = Hydrochloric Acid + Ice Custody Seeks inted? B = Sodium bisulfate + loe N = Nitric Acid reservative Codes Shipping Bills attached? Proper containers and preservatives? Are visis head-space free? iample containers intact? Break Use Only buc 1688 Ident volume for all enalyses? ody Seeds present? He within holding times? to Constition Union Breasts 2-2-17 Date Sampled 09/25 Preservative SunLabs Project # 10:15 03/10 Matrix 10:00 Analysis / Method 16:15 13/40 11:40 S = Sulfuric Acid + loe 13/50 6,00 11,30 Time T = Sodium thiosulfate + ice VS = NaHSO4, MeOH, + los Requested 3**3** ₹ : ₹ Bottles # of 142 6 20 40511001 Relinquished By: Relinguished By Relinquished By: Belinquished By SUNILABS, INC. RESERVES THE RIGHT TO BILL FOR DISPOSAL OF UNUSED/ UNRETURNED SAMPLES AND TO RETURN UNUSED SAMPLES. 5460 Beaumont Center Blvd., Suite 520, Tampa, Florida 33634 Phone: 813-881-9401 / Fax: 813-354-4661 e-mail: info@SunLabsInc.com Relinquished To: Relinquished To: Refinquished To: Relinquished To: SunLabs, Inc. Due Date Requested* Remarks / Comments: Facility/Site ID: Project Name: other than 5 years:* Length of Record Retention if JADaPT EDD (PGM: FDEP PreApproval site Alt Bill To: Project #: Soil Volatiles have to be frozen AT THE LAB within www.SunLabsinc.com 48 hours of collection. Please ensure they reach the lab as quickly as possible after sampling to ensure Plan sampling schedule accordingly! PO#: auton samples do not go out of hold Be aware of holiday closures Date: Short hold time! Time: Time: Time: K.E1 0835

* See General Terms and Conditions on Reverse

Jennifer Arndt Cardno TBE, Inc. 380 Park Place Blvd, Suite 300 Clearwater, FL 33759

June 05, 2014

SunLabs Project Number:

Client Project Description: BF-Washington Park

Dear Mrs. Arndt,

Enclosed is the report of laboratory analysis for the following samples:

Sample Number	Sample Description	Date Collected	Date Received
4051906-01	TMW-1	05/19/14 10:47	05/19/14 15:15
4051906-02	TMW-2	05/19/14 11:27	05/19/14 15:15
4051906-03	TMW-3	05/19/14 12:15	05/19/14 15:15
4051906-04	TMW-4	05/19/14 13:07	05/19/14 15:15
4051906-05	Trip Blank	05/19/14 00:00	05/19/14 15:15

Narrative

Unless otherwise noted below or in the report and where applicable:

- Samples were received at the proper temperature and analyzed as received.
- Sample condition upon receipt is reported on the chain-of-custody attached to this report.

4051906

- Results for all solid matrices are reported on a dry weight basis.
- Appropriate calibration and QC criteria were satisfactorily met.
- All applicable holding times for analytes have been met.
- Copies of the chains-of-custody, if received, are attached to this report.

QC Batch B005098 had an exception for VOC's on the MS. The LCS and LCSD were acceptable, so the out of control was attributed to matrix.

QC Batch B005154 had an exception for PAH's on the MS/MSD RPD. The LCS and LCSD were acceptable, so the out of control was attributed to matrix.

If you have any questions or comments concerning this report, please do not hesitate to contact us.

Michael W. Palmer

Vice President, Laboratory Operations

Unless Otherwise Noted and Where Applicable:

The result herein relate only to the items tested or to the samples as received by the laboratory. This report shall not be reproduced except in full, without the written approval of SunLabs. All samples will be disposed of within 60 days of the date of receipt of the samples. All results meet the requirements of the NELAC standards. Uncertainty values are available upon request.

SunLabs
Project Number
4051906

Cardno TBE, Inc.

Project Description

BF-Washington Park

June 05, 2014

SunLabs Sample Number: Sample Designation: 4051906-01

TMW-1

Matrix: Date Collected: Groundwater

Date Received:

05/19/14 10:47 05/19/14 15:15

Parameters	Method	Units	Results	Dil Factor	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
Mercury by EPA 7470					Metho	od Qualifier	:		
Mercury	EPA 7470	ug/L	0.018 U	1	0.018	0.073	7439-97-6	05/21/14 11:40	05/20/14 14:29
Polynuclear Aromatic Hydrocarbons by	/ Method 8270				Metho	od Qualifier	:		
Surrogate: 2-Fluorobiphenyl (0-115)	EPA 8270	%	65.7	1			321-60-8	06/03/14 22:19	05/22/14 11:55
Surrogate: p-Terphenyl-d14 (1-148)	EPA 8270	%	87.2	1			1718-51-0	06/03/14 22:19	05/22/14 11:55
Acenaphthene	EPA 8270	ug/L	0.14	1	0.0043	0.018	83-32-9	06/03/14 22:19	05/22/14 11:55
Acenaphthylene	EPA 8270	ug/L	0.0092 U	1	0.0092	0.037	208-96-8	06/03/14 22:19	05/22/14 11:55
Anthracene	EPA 8270	ug/L	0.065	1	0.016	0.062	120-12-7	06/03/14 22:19	05/22/14 11:55
Benz[a]anthracene	EPA 8270	ug/L	0.015 I	1	0.010	0.042	56-55-3	06/03/14 22:19	05/22/14 11:55
Benzo[a]pyrene	EPA 8270	ug/L	0.014 U	1	0.014	0.057	50-32-8	06/03/14 22:19	05/22/14 11:55
Benzo[b]fluoranthene	EPA 8270	ug/L	0.018 I	1	0.014	0.058	205-99-2	06/03/14 22:19	05/22/14 11:55
Benzo[ghi]perylene	EPA 8270	ug/L	0.013 U	1	0.013	0.052	191-24-2	06/03/14 22:19	05/22/14 11:55
Benzo[k]fluoranthene	EPA 8270	ug/L	0.014 I	1	0.012	0.045	207-08-9	06/03/14 22:19	05/22/14 11:55
Chrysene	EPA 8270	ug/L	0.022 I	1	0.011	0.042	218-01-9	06/03/14 22:19	05/22/14 11:55
Dibenz[a,h]anthracene	EPA 8270	ug/L	0.0092 U	1	0.0092	0.036	53-70-3	06/03/14 22:19	05/22/14 11:55
Fluoranthene	EPA 8270	ug/L	0.032 I	1	0.015	0.060	206-44-0	06/03/14 22:19	05/22/14 11:55
Fluorene	EPA 8270	ug/L	0.0067 U	1	0.0067	0.027	86-73-7	06/03/14 22:19	05/22/14 11:55
Indeno[1,2,3-cd]pyrene	EPA 8270	ug/L	0.011 U	1	0.011	0.043	193-39-5	06/03/14 22:19	05/22/14 11:55
1-Methylnaphthalene	EPA 8270	ug/L	0.010 U	1	0.010	0.041	90-12-0	06/03/14 22:19	05/22/14 11:55
2-Methylnaphthalene	EPA 8270	ug/L	0.011 U	1	0.011	0.043	91-57-6	06/03/14 22:19	05/22/14 11:55
Naphthalene	EPA 8270	ug/L	0.017 U	1	0.017	0.065	91-20-3	06/03/14 22:19	05/22/14 11:55
Phenanthrene	EPA 8270	ug/L	0.022 I,V	1	0.014	0.057	85-01-8	06/03/14 22:19	05/22/14 11:55
Pyrene	EPA 8270	ug/L	0.019 I	1	0.013	0.052	129-00-0	06/03/14 22:19	05/22/14 11:55
RCRA7 Metals by EPA 6010					Metho	d Qualifier	:		
Arsenic	EPA 6010	ug/L	5.0 U	1	5.0	20	7440-38-2	05/20/14 21:15	05/20/14 10:16
Barium	EPA 6010	ug/L	180	1	0.52	2.1	7440-39-3	05/20/14 21:15	05/20/14 10:16
Cadmium	EPA 6010	ug/L	0.93 U	1	0.93	3.7	7440-43-9	05/20/14 21:15	05/20/14 10:16
Chromium	EPA 6010	ug/L	2.0 U	1	2.0	8.1	7440-47-3	05/20/14 21:15	05/20/14 10:16
Lead	EPA 6010	ug/L	4.7 U	1	4.7	19	7439-92-1	05/20/14 21:15	05/20/14 10:16
Selenium	EPA 6010	ug/L	4.4 U	1	4.4	18	7782-49-2	05/20/14 21:15	05/20/14 10:16
Silver	EPA 6010	ug/L	2.1 U	1	2.1	8.2	7440-22-4	05/20/14 21:15	05/20/14 10:16

SunLabs Project Number 4051906 Cardno TBE, Inc.

Project Description

BF-Washington Park

June 05, 2014

SunLabs Sample Number: Sample Designation: 4051906-01

TMW-1

Matrix: Date Collected: Groundwater

Date Received:

05/19/14 10:47 05/19/14 15:15

Parameters	Method	Units	Results	Dil Facto	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
Volatile Organic Compounds by EPA 8260)				Metho	od Qualifier	:		
Surrogate: 4-Bromofluorobenzene (82-118)	EPA 8260	%	99.9	1			460-00-4	05/20/14 15:49	05/20/14 08:00
Surrogate: Dibromofluoromethane (85-120)	EPA 8260	%	99.0	1			1868-53-7	05/20/14 15:49	05/20/14 08:00
Surrogate: Toluene-d8 (83-115)	EPA 8260	%	98.8	1			2037-26-5	05/20/14 15:49	05/20/14 08:00
1,1,1-Trichloroethane	EPA 8260	ug/L	0.19 U	1	0.19	0.78	71-55-6	05/20/14 15:49	05/20/14 08:00
1,1,2,2-Tetrachloroethane	EPA 8260	ug/L	0.19 U	1	0.19	0.76	79-34-5	05/20/14 15:49	05/20/14 08:00
1,1,2-Trichloroethane	EPA 8260	ug/L	0.92 U	1	0.92	3.7	79-00-5	05/20/14 15:49	05/20/14 08:00
1,1-Dichloroethane	EPA 8260	ug/L	0.23 U	1	0.23	0.92	75-34-3	05/20/14 15:49	05/20/14 08:00
1,1-Dichloroethene	EPA 8260	ug/L	0.34 U	1	0.34	1.3	75-35-4	05/20/14 15:49	05/20/14 08:00
1,2-Dichlorobenzene	EPA 8260	ug/L	0.40 U	1	0.40	1.6	95-50-1	05/20/14 15:49	05/20/14 08:00
1,2-Dichloroethane	EPA 8260	ug/L	0.24 U	1	0.24	0.97	107-06-2	05/20/14 15:49	05/20/14 08:00
1,2-Dichloropropane	EPA 8260	ug/L	0.28 U	1	0.28	1.1	78-87-5	05/20/14 15:49	05/20/14 08:00
1,2,4-Trimethylbenzene	EPA 8260	ug/L	0.37 U	1	0.37	1.5	95-63-6	05/20/14 15:49	05/20/14 08:00
1,3,5-Trimethylbenzene	EPA 8260	ug/L	0.24 U	1	0.24	0.94	108-67-8	05/20/14 15:49	05/20/14 08:00
1,3-Dichlorobenzene	EPA 8260	ug/L	0.34 U	1	0.34	1.4	541-73-1	05/20/14 15:49	05/20/14 08:00
1,3-Dichloropropene (Total)	EPA 8260	ug/L	0.11 U	1	0.11	0.50	542-75-6	05/20/14 15:49	05/20/14 08:00
1,4-Dichlorobenzene	EPA 8260	ug/L	0.21 U	1	0.21	0.84	106-46-7	05/20/14 15:49	05/20/14 08:00
2-Butanone (MEK)	EPA 8260	ug/L	2.1 U	1	2.1	8.4	78-93-3	05/20/14 15:49	05/20/14 08:00
2-Hexanone	EPA 8260	ug/L	1.5 U	1	1.5	10	591-78-6	05/20/14 15:49	05/20/14 08:00
4-Methyl-2-pentanone (MIBK)	EPA 8260	ug/L	1.3 U	1	1.3	5.2	108-10-1	05/20/14 15:49	05/20/14 08:00
Acetone	EPA 8260	ug/L	8.3 I	1	6.9	28	67-64-1	05/20/14 15:49	05/20/14 08:00
Benzene	EPA 8260	ug/L	0.23 U	1	0.23	0.92	71-43-2	05/20/14 15:49	05/20/14 08:00
Bromochloromethane	EPA 8260	ug/L	0.18 U	1	0.23	0.72	74-97-5	05/20/14 15:49	05/20/14 08:00
Bromodichloromethane	EPA 8260	ug/L	0.19 U	1	0.19	0.72	75-27-4	05/20/14 15:49	05/20/14 08:00
Bromoform	EPA 8260	ug/L ug/L	0.35 U	1	0.19	1.4	75-27-4 75-25-2	05/20/14 15:49	05/20/14 08:00
Bromomethane	EPA 8260	ug/L	0.43 U	1					
Carbon disulfide	EPA 8260	ug/L ug/L	0.45 U	1	0.43 0.35	1.7 1.4	74-83-9 75-15-0	05/20/14 15:49	05/20/14 08:00
Carbon tetrachloride	EPA 8260		0.18 U	1				05/20/14 15:49	05/20/14 08:00
		ug/L			0.18	0.72	56-23-5	05/20/14 15:49	05/20/14 08:00
Chlorophana	EPA 8260	ug/L	0.19 U 0.36 U	1	0.19	0.76	108-90-7	05/20/14 15:49	05/20/14 08:00
Chloroethane Chloroform	EPA 8260 EPA 8260	ug/L	0.36 U 0.19 U	1	0.36	1.4	75-00-3	05/20/14 15:49	05/20/14 08:00
		ug/L		1	0.19	0.74	67-66-3	05/20/14 15:49	05/20/14 08:00
Chloromethane	EPA 8260	ug/L	0.32 U	1	0.32	1.3	74-87-3	05/20/14 15:49	05/20/14 08:00
cis-1,2-Dichloroethene Dibromochloromethane	EPA 8260 EPA 8260	ug/L	0.22 U 0.33 U	1	0.22	0.88	156-59-2	05/20/14 15:49	05/20/14 08:00
		ug/L		1	0.33	1.3	124-48-1	05/20/14 15:49	05/20/14 08:00
Dibromomethane	EPA 8260	ug/L	0.25 U	1	0.25	1.0	74-95-3	05/20/14 15:49	05/20/14 08:00
Dichlorodifluoromethane	EPA 8260	ug/L	0.42 U	1	0.42	1.7	75-71-8	05/20/14 15:49	05/20/14 08:00
Ethylbenzene 	EPA 8260	ug/L	0.20 U	1	0.20	0.80	100-41-4	05/20/14 15:49	05/20/14 08:00
isopropylbenzene	EPA 8260	ug/L	0.26 U	1	0.26	1.0	98-82-8	05/20/14 15:49	05/20/14 08:00
Methylene Chloride	EPA 8260	ug/L	0.65 U	1	0.65	2.6	75-09-2	05/20/14 15:49	05/20/14 08:00
Methyl tert-Butyl Ether (MTBE)	EPA 8260	ug/L	0.28 U	1	0.28	1.1	1634-04-4	05/20/14 15:49	05/20/14 08:00
Styrene	EPA 8260	ug/L	0.23 U	1	0.23	0.93	100-42-5	05/20/14 15:49	05/20/14 08:00
Tetrachloroethene	EPA 8260	ug/L	0.36 U	1	0.36	1.4	127-18-4	05/20/14 15:49	05/20/14 08:00
Toluene	EPA 8260	ug/L	0.20 U	1	0.20	0.80	108-88-3	05/20/14 15:49	05/20/14 08:00
Xylenes (Total)	EPA 8260	ug/L	0.22 U	1	0.22	0.88	1330-20-7	05/20/14 15:49	05/20/14 08:00
trans-1,2-Dichloroethene	EPA 8260	ug/L	0.22 U	1	0.22	0.88	156-60-5	05/20/14 15:49	05/20/14 08:00
Trichloroethene	EPA 8260	ug/L	0.48 U	1	0.48	1.9	79-01-6	05/20/14 15:49	05/20/14 08:00
Trichlorofluoromethane	EPA 8260	ug/L	0.51 U	1	0.51	2.0	75-69-4	05/20/14 15:49	05/20/14 08:00
Vinyl chloride	EPA 8260	ug/L	0.25 U	1	0.25	1.0	75-01-4	05/20/14 15:49	05/20/14 08:00

SunLabs
Project Number
4051906

Cardno TBE, Inc.

Project Description

BF-Washington Park

June 05, 2014

SunLabs Sample Number: Sample Designation:

4051906-02 TMW-2 Matrix: Date Collected: Groundwater

Date Collected:

05/19/14 11:27 05/19/14 15:15

Parameters	Method	Units	Results	Dil Factor	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
Mercury by EPA 7470					Metho	d Qualifier	:		
Mercury	EPA 7470	ug/L	0.018 U	1	0.018	0.073	7439-97-6	05/21/14 11:42	05/20/14 14:29
Polynuclear Aromatic Hydrocarbons by	y Method 8270				Metho	d Qualifier	:		
Surrogate: 2-Fluorobiphenyl (0-115)	EPA 8270	%	54.5	1			321-60-8	06/03/14 22:41	05/22/14 11:55
Surrogate: p-Terphenyl-d14 (1-148)	EPA 8270	%	90.6	1			1718-51-0	06/03/14 22:41	05/22/14 11:55
Acenaphthene	EPA 8270	ug/L	0.035	1	0.0043	0.018	83-32-9	06/03/14 22:41	05/22/14 11:55
Acenaphthylene	EPA 8270	ug/L	0.0092 U	1	0.0092	0.037	208-96-8	06/03/14 22:41	05/22/14 11:55
Anthracene	EPA 8270	ug/L	0.016 U	1	0.016	0.062	120-12-7	06/03/14 22:41	05/22/14 11:55
Benz[a]anthracene	EPA 8270	ug/L	0.010 U	1	0.010	0.042	56-55-3	06/03/14 22:41	05/22/14 11:55
Benzo[a]pyrene	EPA 8270	ug/L	0.014 U	1	0.014	0.057	50-32-8	06/03/14 22:41	05/22/14 11:55
Benzo[b]fluoranthene	EPA 8270	ug/L	0.014 U	1	0.014	0.058	205-99-2	06/03/14 22:41	05/22/14 11:55
Benzo[ghi]perylene	EPA 8270	ug/L	0.013 U	1	0.013	0.052	191-24-2	06/03/14 22:41	05/22/14 11:55
Benzo[k]fluoranthene	EPA 8270	ug/L	0.012 U	1	0.012	0.045	207-08-9	06/03/14 22:41	05/22/14 11:55
Chrysene	EPA 8270	ug/L	0.011 U	1	0.011	0.042	218-01-9	06/03/14 22:41	05/22/14 11:55
Dibenz[a,h]anthracene	EPA 8270	ug/L	0.0092 U	1	0.0092	0.036	53-70-3	06/03/14 22:41	05/22/14 11:55
Fluoranthene	EPA 8270	ug/L	0.015 U	1	0.015	0.060	206-44-0	06/03/14 22:41	05/22/14 11:55
Fluorene	EPA 8270	ug/L	0.024 I	1	0.0067	0.027	86-73-7	06/03/14 22:41	05/22/14 11:55
Indeno[1,2,3-cd]pyrene	EPA 8270	ug/L	0.011 U	1	0.011	0.043	193-39-5	06/03/14 22:41	05/22/14 11:55
1-Methylnaphthalene	EPA 8270	ug/L	0.010 U	1	0.010	0.041	90-12-0	06/03/14 22:41	05/22/14 11:55
2-Methylnaphthalene	EPA 8270	ug/L	0.011 U	1	0.011	0.043	91-57-6	06/03/14 22:41	05/22/14 11:55
Naphthalene	EPA 8270	ug/L	0.068 V	1	0.017	0.065	91-20-3	06/03/14 22:41	05/22/14 11:55
Phenanthrene	EPA 8270	ug/L	0.014 U	1	0.014	0.057	85-01-8	06/03/14 22:41	05/22/14 11:55
Pyrene	EPA 8270	ug/L	0.013 U	1	0.013	0.052	129-00-0	06/03/14 22:41	05/22/14 11:55
RCRA7 Metals by EPA 6010					Metho	d Qualifier	:		
Arsenic	EPA 6010	ug/L	5.0 U	1	5.0	20	7440-38-2	05/20/14 21:19	05/20/14 10:16
Barium	EPA 6010	ug/L	62	1	0.52	2.1	7440-39-3	05/20/14 21:19	05/20/14 10:16
Cadmium	EPA 6010	ug/L	0.93 U	1	0.93	3.7	7440-43-9	05/20/14 21:19	05/20/14 10:16
Chromium	EPA 6010	ug/L	2.0 U	1	2.0	8.1	7440-47-3	05/20/14 21:19	05/20/14 10:16
Lead	EPA 6010	ug/L	4.7 U	1	4.7	19	7439-92-1	05/20/14 21:19	05/20/14 10:16
Selenium	EPA 6010	ug/L	4.4 U	1	4.4	18	7782-49-2	05/20/14 21:19	05/20/14 10:16
Silver	EPA 6010	ug/L	2.1 U	1	2.1	8.2	7440-22-4	05/20/14 21:19	05/20/14 10:16

SunLabs Project Number 4051906 Cardno TBE, Inc.

Project Description

BF-Washington Park

June 05, 2014

SunLabs Sample Number: Sample Designation: 4051906-02

TMW-2

Matrix:

Groundwater

Date Collected:

05/19/14 11:27

Date Received: **05/19/14 15:15**

Parameters	Method	Units	Results	Dil Factor	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
Volatile Organic Compounds by EPA 8260					Metho	od Qualifier	:		
Surrogate: 4-Bromofluorobenzene (82-118)	EPA 8260	%	96.8	1			460-00-4	05/20/14 16:09	05/20/14 08:00
Surrogate: Dibromofluoromethane (85-120)	EPA 8260	%	105	1			1868-53-7	05/20/14 16:09	05/20/14 08:00
Surrogate: Toluene-d8 (83-115)	EPA 8260	%	98.7	1			2037-26-5	05/20/14 16:09	05/20/14 08:00
1,1,1-Trichloroethane	EPA 8260	ug/L	0.19 U	1	0.19	0.78	71-55-6	05/20/14 16:09	05/20/14 08:00
1,1,2,2-Tetrachloroethane	EPA 8260	ug/L	0.19 U	1	0.19	0.76	79-34-5	05/20/14 16:09	05/20/14 08:00
1,1,2-Trichloroethane	EPA 8260	ug/L	0.92 U	1	0.92	3.7	79-00-5	05/20/14 16:09	05/20/14 08:00
1,1-Dichloroethane	EPA 8260	ug/L	0.23 U	1	0.32	0.92	75-34-3	05/20/14 16:09	05/20/14 08:00
1,1-Dichloroethene	EPA 8260	ug/L	0.34 U	1	0.34	1.3	75-35-4	05/20/14 16:09	05/20/14 08:00
1,2-Dichlorobenzene	EPA 8260	ug/L	0.40 U	1	0.40	1.6	95-50-1	05/20/14 16:09	05/20/14 08:00
1,2-Dichloroethane	EPA 8260	ug/L	0.24 U	1	0.40	0.97	107-06-2	05/20/14 16:09	05/20/14 08:00
1,2-Dichloropropane	EPA 8260	ug/L	0.28 U	1	0.24	1.1	78-87-5	05/20/14 16:09	05/20/14 08:00
1,2,4-Trimethylbenzene	EPA 8260	ug/L	0.37 U	1	0.20	1.5	95-63-6	05/20/14 16:09	05/20/14 08:00
1,3,5-Trimethylbenzene	EPA 8260	ug/L	0.24 U	1	0.24	0.94	108-67-8	05/20/14 16:09	05/20/14 08:00
1.3-Dichlorobenzene	EPA 8260	ug/L	0.24 U	1	0.24	1.4	541-73-1	05/20/14 16:09	05/20/14 08:00
1,3-Dichloropropene (Total)	EPA 8260	ug/L	0.11 U	1	0.11	0.50	542-75-6	05/20/14 16:09	05/20/14 08:00
1,4-Dichlorobenzene	EPA 8260		0.21 U	1	0.11	0.84	106-46-7		
2-Butanone (MEK)	EPA 8260	ug/L	2.1 U	1	2.1	8.4	78-93-3	05/20/14 16:09	05/20/14 08:00 05/20/14 08:00
2-Hexanone	EPA 8260	ug/L ug/L	1.5 U					05/20/14 16:09	
			1.3 U	1	1.5	10	591-78-6	05/20/14 16:09	05/20/14 08:00
4-Methyl-2-pentanone (MIBK)	EPA 8260 EPA 8260	ug/L	8.0 I	1	1.3	5.2	108-10-1	05/20/14 16:09	05/20/14 08:00
Acetone Benzene	EPA 8260 EPA 8260	ug/L	0.23 U	=	6.9	28	67-64-1	05/20/14 16:09	05/20/14 08:00
		ug/L		1	0.23	0.92	71-43-2	05/20/14 16:09	05/20/14 08:00
Bromochloromethane	EPA 8260	ug/L	0.18 U	1	0.18	0.72	74-97-5	05/20/14 16:09	05/20/14 08:00
Bromodichloromethane	EPA 8260	ug/L	0.19 U	1	0.19	0.76	75-27-4	05/20/14 16:09	05/20/14 08:00
Bromoform	EPA 8260	ug/L	0.35 U	1	0.35	1.4	75-25-2	05/20/14 16:09	05/20/14 08:00
Bromomethane	EPA 8260	ug/L	0.43 U	1	0.43	1.7	74-83-9	05/20/14 16:09	05/20/14 08:00
Carbon disulfide	EPA 8260	ug/L	0.35 U	1	0.35	1.4	75-15-0	05/20/14 16:09	05/20/14 08:00
Carbon tetrachloride	EPA 8260	ug/L	0.18 U	1	0.18	0.72	56-23-5	05/20/14 16:09	05/20/14 08:00
Chlorobenzene	EPA 8260	ug/L	0.19 U	1	0.19	0.76	108-90-7	05/20/14 16:09	05/20/14 08:00
Chloroethane	EPA 8260	ug/L	0.36 U	1	0.36	1.4	75-00-3	05/20/14 16:09	05/20/14 08:00
Chloroform	EPA 8260	ug/L	0.19 U	1	0.19	0.74	67-66-3	05/20/14 16:09	05/20/14 08:00
Chloromethane	EPA 8260	ug/L	0.32 U	1	0.32	1.3	74-87-3	05/20/14 16:09	05/20/14 08:00
cis-1,2-Dichloroethene	EPA 8260	ug/L	0.22 U	1	0.22	0.88	156-59-2	05/20/14 16:09	05/20/14 08:00
Dibromochloromethane	EPA 8260	ug/L	0.33 U	1	0.33	1.3	124-48-1	05/20/14 16:09	05/20/14 08:00
Dibromomethane	EPA 8260	ug/L	0.25 U	1	0.25	1.0	74-95-3	05/20/14 16:09	05/20/14 08:00
Dichlorodifluoromethane	EPA 8260	ug/L	0.42 U	1	0.42	1.7	75-71-8	05/20/14 16:09	05/20/14 08:00
Ethylbenzene	EPA 8260	ug/L	0.20 U	1	0.20	0.80	100-41-4	05/20/14 16:09	05/20/14 08:00
isopropylbenzene	EPA 8260	ug/L	0.26 U	1	0.26	1.0	98-82-8	05/20/14 16:09	05/20/14 08:00
Methylene Chloride	EPA 8260	ug/L	0.65 U	1	0.65	2.6	75-09-2	05/20/14 16:09	05/20/14 08:00
Methyl tert-Butyl Ether (MTBE)	EPA 8260	ug/L	0.28 U	1	0.28	1.1	1634-04-4	05/20/14 16:09	05/20/14 08:00
Styrene	EPA 8260	ug/L	0.23 U	1	0.23	0.93	100-42-5	05/20/14 16:09	05/20/14 08:00
Tetrachloroethene	EPA 8260	ug/L	0.36 U	1	0.36	1.4	127-18-4	05/20/14 16:09	05/20/14 08:00
Toluene	EPA 8260	ug/L	0.43 I	1	0.20	0.80	108-88-3	05/20/14 16:09	05/20/14 08:00
Xylenes (Total)	EPA 8260	ug/L	0.22 U	1	0.22	0.88	1330-20-7	05/20/14 16:09	05/20/14 08:00
trans-1,2-Dichloroethene	EPA 8260	ug/L	0.22 U	1	0.22	0.88	156-60-5	05/20/14 16:09	05/20/14 08:00
Trichloroethene	EPA 8260	ug/L	0.48 U	1	0.48	1.9	79-01-6	05/20/14 16:09	05/20/14 08:00
Trichlorofluoromethane	EPA 8260	ug/L	0.51 U	1	0.51	2.0	75-69-4	05/20/14 16:09	05/20/14 08:00
Vinyl chloride	EPA 8260	ug/L	0.25 U	1	0.25	1.0	75-01-4	05/20/14 16:09	05/20/14 08:00

SunLabs **Project Number** 4051906

Cardno TBE, Inc.

Project Description

BF-Washington Park

June 05, 2014

SunLabs Sample Number: Sample Designation:

4051906-03

TMW-3

Matrix: Date Collected: Groundwater

05/19/14 12:15

Date Received:	05/19/14 15:15	

Parameters	Method	Units	Results	Dil Factor	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
Mercury by EPA 7470					Metho	d Qualifier	:		
Mercury	EPA 7470	ug/L	0.018 U	1	0.018	0.073	7439-97-6	05/21/14 11:44	05/20/14 14:29
Polynuclear Aromatic Hydrocarbons by	/ Method 8270				Metho	d Qualifier	:		
Surrogate: 2-Fluorobiphenyl (0-115)	EPA 8270	%	58.0	1			321-60-8	06/03/14 23:04	05/22/14 11:55
Surrogate: p-Terphenyl-d14 (1-148)	EPA 8270	%	85.4	1			1718-51-0	06/03/14 23:04	05/22/14 11:55
Acenaphthene	EPA 8270	ug/L	0.012 I	1	0.0043	0.018	83-32-9	06/03/14 23:04	05/22/14 11:55
Acenaphthylene	EPA 8270	ug/L	0.0092 U	1	0.0092	0.037	208-96-8	06/03/14 23:04	05/22/14 11:55
Anthracene	EPA 8270	ug/L	0.032 I	1	0.016	0.062	120-12-7	06/03/14 23:04	05/22/14 11:55
Benz[a]anthracene	EPA 8270	ug/L	0.016 I	1	0.010	0.042	56-55-3	06/03/14 23:04	05/22/14 11:55
Benzo[a]pyrene	EPA 8270	ug/L	0.014 U	1	0.014	0.057	50-32-8	06/03/14 23:04	05/22/14 11:55
Benzo[b]fluoranthene	EPA 8270	ug/L	0.014 U	1	0.014	0.058	205-99-2	06/03/14 23:04	05/22/14 11:55
Benzo[ghi]perylene	EPA 8270	ug/L	0.013 U	1	0.013	0.052	191-24-2	06/03/14 23:04	05/22/14 11:55
Benzo[k]fluoranthene	EPA 8270	ug/L	0.012 U	1	0.012	0.045	207-08-9	06/03/14 23:04	05/22/14 11:55
Chrysene	EPA 8270	ug/L	0.011 U	1	0.011	0.042	218-01-9	06/03/14 23:04	05/22/14 11:55
Dibenz[a,h]anthracene	EPA 8270	ug/L	0.0092 U	1	0.0092	0.036	53-70-3	06/03/14 23:04	05/22/14 11:55
Fluoranthene	EPA 8270	ug/L	0.015 U	1	0.015	0.060	206-44-0	06/03/14 23:04	05/22/14 11:55
Fluorene	EPA 8270	ug/L	0.0067 U	1	0.0067	0.027	86-73-7	06/03/14 23:04	05/22/14 11:55
Indeno[1,2,3-cd]pyrene	EPA 8270	ug/L	0.011 U	1	0.011	0.043	193-39-5	06/03/14 23:04	05/22/14 11:55
1-Methylnaphthalene	EPA 8270	ug/L	0.010 U	1	0.010	0.041	90-12-0	06/03/14 23:04	05/22/14 11:55
2-Methylnaphthalene	EPA 8270	ug/L	0.011 U	1	0.011	0.043	91-57-6	06/03/14 23:04	05/22/14 11:55
Naphthalene	EPA 8270	ug/L	0.017 U	1	0.017	0.065	91-20-3	06/03/14 23:04	05/22/14 11:55
Phenanthrene	EPA 8270	ug/L	0.026 I,V	1	0.014	0.057	85-01-8	06/03/14 23:04	05/22/14 11:55
Pyrene	EPA 8270	ug/L	0.013 U	1	0.013	0.052	129-00-0	06/03/14 23:04	05/22/14 11:55
RCRA7 Metals by EPA 6010					Metho	d Qualifier	:		
Arsenic	EPA 6010	ug/L	52	1	5.0	20	7440-38-2	05/20/14 21:35	05/20/14 10:16
Barium	EPA 6010	ug/L	81	1	0.52	2.1	7440-39-3	05/20/14 21:35	05/20/14 10:16
Cadmium	EPA 6010	ug/L	0.93 U	1	0.93	3.7	7440-43-9	05/20/14 21:35	05/20/14 10:16
Chromium	EPA 6010	ug/L	2.0 U	1	2.0	8.1	7440-47-3	05/20/14 21:35	05/20/14 10:16
Lead	EPA 6010	ug/L	4.7 U	1	4.7	19	7439-92-1	05/20/14 21:35	05/20/14 10:16
Selenium	EPA 6010	ug/L	4.4 U	1	4.4	18	7782-49-2	05/20/14 21:35	05/20/14 10:16
Silver	EPA 6010	ug/L	2.1 U	1	2.1	8.2	7440-22-4	05/20/14 21:35	05/20/14 10:16

SunLabs **Project Number** 4051906

Cardno TBE, Inc.

Project Description

BF-Washington Park

June 05, 2014

SunLabs Sample Number: Sample Designation:

4051906-03

TMW-3

Matrix: Date Collected: Groundwater

05/19/14 12:15

Date Received: 05/19/14 15:15

Parameters	Method	Units	Results	Dil Facto	MDL r	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
Volatile Organic Compounds by EPA 8260)				Metho	od Qualifier	:		
Surrogate: 4-Bromofluorobenzene (82-118)	EPA 8260	%	99.6	1			460-00-4	05/20/14 16:28	05/20/14 08:00
Surrogate: Dibromofluoromethane (85-120)	EPA 8260	%	103	1			1868-53-7	05/20/14 16:28	05/20/14 08:00
Surrogate: Toluene-d8 (83-115)	EPA 8260	%	99.4	1			2037-26-5	05/20/14 16:28	05/20/14 08:00
1,1,1-Trichloroethane	EPA 8260	ug/L	0.19 U	1	0.19	0.78	71-55-6	05/20/14 16:28	05/20/14 08:00
1,1,2,2-Tetrachloroethane	EPA 8260	ug/L	0.19 U	1	0.19	0.76	79-34-5	05/20/14 16:28	05/20/14 08:00
1,1,2-Trichloroethane	EPA 8260	ug/L	0.92 U	1	0.92	3.7	79-00-5	05/20/14 16:28	05/20/14 08:00
1,1-Dichloroethane	EPA 8260	ug/L	0.23 U	1	0.23	0.92	75-34-3	05/20/14 16:28	05/20/14 08:00
1,1-Dichloroethene	EPA 8260	ug/L	0.34 U	1	0.34	1.3	75-35-4	05/20/14 16:28	05/20/14 08:00
1,2-Dichlorobenzene	EPA 8260	ug/L	0.40 U	1	0.40	1.6	95-50-1	05/20/14 16:28	05/20/14 08:00
1,2-Dichloroethane	EPA 8260	ug/L	0.24 U	1	0.24	0.97	107-06-2	05/20/14 16:28	05/20/14 08:00
1,2-Dichloropropane	EPA 8260	ug/L	0.28 U	1	0.28	1.1	78-87-5	05/20/14 16:28	05/20/14 08:00
1,2,4-Trimethylbenzene	EPA 8260	ug/L	0.37 U	1	0.37	1.5	95-63-6	05/20/14 16:28	05/20/14 08:00
1,3,5-Trimethylbenzene	EPA 8260	ug/L	0.24 U	1	0.24	0.94	108-67-8	05/20/14 16:28	05/20/14 08:00
1,3-Dichlorobenzene	EPA 8260	ug/L	0.34 U	1	0.34	1.4	541-73-1	05/20/14 16:28	05/20/14 08:00
1,3-Dichloropropene (Total)	EPA 8260	ug/L	0.11 U	1	0.11	0.50	542-75-6	05/20/14 16:28	05/20/14 08:00
1,4-Dichlorobenzene	EPA 8260	ug/L	0.21 U	1	0.21	0.84	106-46-7	05/20/14 16:28	05/20/14 08:00
2-Butanone (MEK)	EPA 8260	ug/L	2.1 U	1	2.1	8.4	78-93-3	05/20/14 16:28	05/20/14 08:00
2-Hexanone	EPA 8260	ug/L	1.5 U	1	1.5	10	591-78-6	05/20/14 16:28	05/20/14 08:00
4-Methyl-2-pentanone (MIBK)	EPA 8260	ug/L	1.3 U	1	1.3	5.2	108-10-1	05/20/14 16:28	05/20/14 08:00
Acetone	EPA 8260	ug/L	1.3 U	1	6.9	28	67-64-1	05/20/14 16:28	05/20/14 08:00
Benzene	EPA 8260	ug/L	0.23 U	1	0.23	0.92	71-43-2		
Bromochloromethane	EPA 8260	ug/L	0.18 U	1	0.23	0.92	71-43-2 74-97-5	05/20/14 16:28	05/20/14 08:00
Bromodichloromethane	EPA 8260	- -	0.19 U	1	0.19	0.72	74-97-5 75-27-4	05/20/14 16:28 05/20/14 16:28	05/20/14 08:00 05/20/14 08:00
Bromoform	EPA 8260	ug/L	0.35 U	=					
Bromomethane	EPA 8260	ug/L	0.43 U	1	0.35	1.4 1.7	75-25-2	05/20/14 16:28	05/20/14 08:00
Carbon disulfide	EPA 8260	ug/L	0.45 U	1	0.43		74-83-9	05/20/14 16:28	05/20/14 08:00
Carbon tetrachloride	EPA 8260	ug/L	0.35 U	=	0.35	1.4	75-15-0	05/20/14 16:28	05/20/14 08:00
		ug/L		1	0.18	0.72	56-23-5	05/20/14 16:28	05/20/14 08:00
Chlorobenzene	EPA 8260	ug/L	0.19 U	1	0.19	0.76	108-90-7	05/20/14 16:28	05/20/14 08:00
Chloroethane	EPA 8260	ug/L	0.36 U	1	0.36	1.4	75-00-3	05/20/14 16:28	05/20/14 08:00
Chloroform	EPA 8260	ug/L	0.19 U	1	0.19	0.74	67-66-3	05/20/14 16:28	05/20/14 08:00
Chloromethane	EPA 8260	ug/L	0.32 U	1	0.32	1.3	74-87-3	05/20/14 16:28	05/20/14 08:00
cis-1,2-Dichloroethene	EPA 8260	ug/L	0.22 U	1	0.22	0.88	156-59-2	05/20/14 16:28	05/20/14 08:00
Dibromochloromethane	EPA 8260	ug/L	0.33 U	1	0.33	1.3	124-48-1	05/20/14 16:28	05/20/14 08:00
Dibromomethane	EPA 8260	ug/L	0.25 U	1	0.25	1.0	74-95-3	05/20/14 16:28	05/20/14 08:00
Dichlorodifluoromethane	EPA 8260	ug/L	0.42 U	1	0.42	1.7	75-71-8	05/20/14 16:28	05/20/14 08:00
Ethylbenzene	EPA 8260	ug/L	0.20 U	1	0.20	0.80	100-41-4	05/20/14 16:28	05/20/14 08:00
isopropylbenzene	EPA 8260	ug/L	0.26 U	1	0.26	1.0	98-82-8	05/20/14 16:28	05/20/14 08:00
Methylene Chloride	EPA 8260	ug/L	0.65 U	1	0.65	2.6	75-09-2	05/20/14 16:28	05/20/14 08:00
Methyl tert-Butyl Ether (MTBE)	EPA 8260	ug/L	0.28 U	1	0.28	1.1	1634-04-4	05/20/14 16:28	05/20/14 08:00
Styrene	EPA 8260	ug/L	0.23 U	1	0.23	0.93	100-42-5	05/20/14 16:28	05/20/14 08:00
Tetrachloroethene	EPA 8260	ug/L	0.36 U	1	0.36	1.4	127-18-4	05/20/14 16:28	05/20/14 08:00
Toluene	EPA 8260	ug/L	0.20 U	1	0.20	0.80	108-88-3	05/20/14 16:28	05/20/14 08:00
Xylenes (Total)	EPA 8260	ug/L	0.22 U	1	0.22	0.88	1330-20-7	05/20/14 16:28	05/20/14 08:00
trans-1,2-Dichloroethene	EPA 8260	ug/L	0.22 U	1	0.22	0.88	156-60-5	05/20/14 16:28	05/20/14 08:00
Trichloroethene	EPA 8260	ug/L	0.48 U	1	0.48	1.9	79-01-6	05/20/14 16:28	05/20/14 08:00
Trichlorofluoromethane	EPA 8260	ug/L	0.51 U	1	0.51	2.0	75-69-4	05/20/14 16:28	05/20/14 08:00
Vinyl chloride	EPA 8260	ug/L	0.25 U	1	0.25	1.0	75-01-4	05/20/14 16:28	05/20/14 08:00

Tampa, FL 33634

SunLabs Project Number 4051906 Cardno TBE, Inc.

Project Description

BF-Washington Park

June 05, 2014

SunLabs Sample Number: Sample Designation: 4051906-04 TMW-4 Matrix: Date Collected: Groundwater

Date Collected:

Date Received:

05/19/14 13:07 05/19/14 15:15

Parameters	Method	Units	Results	Dil Factor	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
Mercury by EPA 7470					Metho	d Qualifier:			
Mercury	EPA 7470	ug/L	0.018 U	1	0.018	0.073	7439-97-6	05/27/14 10:02	05/23/14 14:27
Polynuclear Aromatic Hydrocarbons b	y Method 8270				Metho	d Qualifier:			
Surrogate: 2-Fluorobiphenyl (0-115)	EPA 8270	%	61.5	1			321-60-8	06/03/14 23:26	05/22/14 11:55
Surrogate: p-Terphenyl-d14 (1-148)	EPA 8270	%	83.2	1			1718-51-0	06/03/14 23:26	05/22/14 11:55
Acenaphthene	EPA 8270	ug/L	0.0043 U	1	0.0043	0.018	83-32-9	06/03/14 23:26	05/22/14 11:55
Acenaphthylene	EPA 8270	ug/L	0.0092 U	1	0.0092	0.037	208-96-8	06/03/14 23:26	05/22/14 11:55
Anthracene	EPA 8270	ug/L	0.016 U	1	0.016	0.062	120-12-7	06/03/14 23:26	05/22/14 11:55
Benz[a]anthracene	EPA 8270	ug/L	0.019 I	1	0.010	0.042	56-55-3	06/03/14 23:26	05/22/14 11:55
Benzo[a]pyrene	EPA 8270	ug/L	0.014 U	1	0.014	0.057	50-32-8	06/03/14 23:26	05/22/14 11:55
Benzo[b]fluoranthene	EPA 8270	ug/L	0.024 I	1	0.014	0.058	205-99-2	06/03/14 23:26	05/22/14 11:55
Benzo[ghi]perylene	EPA 8270	ug/L	0.028 I	1	0.013	0.052	191-24-2	06/03/14 23:26	05/22/14 11:55
Benzo[k]fluoranthene	EPA 8270	ug/L	0.027 I	1	0.012	0.045	207-08-9	06/03/14 23:26	05/22/14 11:55
Chrysene	EPA 8270	ug/L	0.035 I	1	0.011	0.042	218-01-9	06/03/14 23:26	05/22/14 11:55
Dibenz[a,h]anthracene	EPA 8270	ug/L	0.17	1	0.0092	0.036	53-70-3	06/03/14 23:26	05/22/14 11:55
Fluoranthene	EPA 8270	ug/L	0.015 U	1	0.015	0.060	206-44-0	06/03/14 23:26	05/22/14 11:55
Fluorene	EPA 8270	ug/L	0.0067 U	1	0.0067	0.027	86-73-7	06/03/14 23:26	05/22/14 11:55
Indeno[1,2,3-cd]pyrene	EPA 8270	ug/L	0.020 I	1	0.011	0.043	193-39-5	06/03/14 23:26	05/22/14 11:55
1-Methylnaphthalene	EPA 8270	ug/L	0.010 U	1	0.010	0.041	90-12-0	06/03/14 23:26	05/22/14 11:55
2-Methylnaphthalene	EPA 8270	ug/L	0.011 U	1	0.011	0.043	91-57-6	06/03/14 23:26	05/22/14 11:55
Naphthalene	EPA 8270	ug/L	0.094 V	1	0.017	0.065	91-20-3	06/03/14 23:26	05/22/14 11:55
Phenanthrene	EPA 8270	ug/L	0.014 U	1	0.014	0.057	85-01-8	06/03/14 23:26	05/22/14 11:55
Pyrene	EPA 8270	ug/L	0.013 U	1	0.013	0.052	129-00-0	06/03/14 23:26	05/22/14 11:55
RCRA7 Metals by EPA 6010					Metho	d Qualifier:			
Arsenic	EPA 6010	ug/L	5.0 U	1	5.0	20	7440-38-2	05/22/14 19:08	05/22/14 10:37
Barium	EPA 6010	ug/L	65	1	0.52	2.1	7440-39-3	05/22/14 19:08	05/22/14 10:37
Cadmium	EPA 6010	ug/L	0.93 U	1	0.93	3.7	7440-43-9	05/22/14 19:08	05/22/14 10:37
Chromium	EPA 6010	ug/L	2.0 U	1	2.0	8.1	7440-47-3	05/22/14 19:08	05/22/14 10:37
Lead	EPA 6010	ug/L	4.7 U	1	4.7	19	7439-92-1	05/22/14 19:08	05/22/14 10:37
Selenium	EPA 6010	ug/L	11 I	1	4.4	18	7782-49-2	05/22/14 19:08	05/22/14 10:37
Silver	EPA 6010	ug/L	2.1 U	1	2.1	8.2	7440-22-4	05/22/14 19:08	05/22/14 10:37

SunLabs Project Number 4051906 Cardno TBE, Inc.

Project Description

BF-Washington Park

June 05, 2014

SunLabs Sample Number: Sample Designation: 4051906-04

TMW-4

Matrix: Date Collected: Groundwater

Date Collected:

05/19/14 13:07 05/19/14 15:15

Parameters	Method	Units	Results	Dil Factor	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
Volatile Organic Compounds by EPA 8260					Metho	od Qualifier:			
Surrogate: 4-Bromofluorobenzene (82-118)	EPA 8260	%	97.7	1			460-00-4	05/20/14 16:48	05/20/14 08:00
Surrogate: Dibromofluoromethane (85-120)	EPA 8260	%	105	1			1868-53-7	05/20/14 16:48	05/20/14 08:00
Surrogate: Toluene-d8 (83-115)	EPA 8260	%	98.7	1			2037-26-5	05/20/14 16:48	05/20/14 08:00
1,1,1-Trichloroethane	EPA 8260	ug/L	0.19 U	1	0.19	0.78	71-55-6	05/20/14 16:48	05/20/14 08:00
1,1,2,2-Tetrachloroethane	EPA 8260	ug/L	0.19 U	1	0.19	0.76	79-34-5	05/20/14 16:48	05/20/14 08:00
1,1,2-Trichloroethane	EPA 8260	ug/L	0.92 U	1	0.92	3.7	79-00-5	05/20/14 16:48	05/20/14 08:00
1,1-Dichloroethane	EPA 8260	ug/L	0.23 U	1	0.23	0.92	75-34-3	05/20/14 16:48	05/20/14 08:00
1,1-Dichloroethene	EPA 8260	ug/L	0.34 U	1	0.34	1.3	75-35-4	05/20/14 16:48	05/20/14 08:00
1,2-Dichlorobenzene	EPA 8260	ug/L	0.40 U	1	0.40	1.6	95-50-1	05/20/14 16:48	05/20/14 08:00
1,2-Dichloroethane	EPA 8260	ug/L	0.24 U	1	0.24	0.97	107-06-2	05/20/14 16:48	05/20/14 08:00
1,2-Dichloropropane	EPA 8260	ug/L	0.28 U	1	0.28	1.1	78-87-5	05/20/14 16:48	05/20/14 08:00
1,2,4-Trimethylbenzene	EPA 8260	ug/L	0.37 U	1	0.37	1.5	95-63-6	05/20/14 16:48	05/20/14 08:00
1,3,5-Trimethylbenzene	EPA 8260	ug/L	0.24 U	1	0.24	0.94	108-67-8	05/20/14 16:48	05/20/14 08:00
1,3-Dichlorobenzene	EPA 8260	ug/L	0.34 U	1	0.34	1.4	541-73-1	05/20/14 16:48	05/20/14 08:00
1,3-Dichloropropene (Total)	EPA 8260	ug/L	0.11 U	1	0.11	0.50	542-75-6	05/20/14 16:48	05/20/14 08:00
1,4-Dichlorobenzene	EPA 8260	ug/L	0.21 U	1	0.21	0.84	106-46-7	05/20/14 16:48	05/20/14 08:00
2-Butanone (MEK)	EPA 8260	ug/L	2.1 U	1	2.1	8.4	78-93-3	05/20/14 16:48	05/20/14 08:00
2-Hexanone	EPA 8260	ug/L	1.5 U	1	1.5	10	591-78-6	05/20/14 16:48	05/20/14 08:00
4-Methyl-2-pentanone (MIBK)	EPA 8260	ug/L	1.3 U	1	1.3	5.2	108-10-1	05/20/14 16:48	05/20/14 08:00
Acetone	EPA 8260	ug/L	6.9 U	1	6.9	28	67-64-1	05/20/14 16:48	05/20/14 08:00
Benzene	EPA 8260	ug/L	0.23 U	1	0.23	0.92	71-43-2	05/20/14 16:48	05/20/14 08:00
Bromochloromethane	EPA 8260	ug/L	0.18 U	1	0.18	0.72	74-97-5	05/20/14 16:48	05/20/14 08:00
Bromodichloromethane	EPA 8260	ug/L	0.19 U	1	0.19	0.76	75-27-4	05/20/14 16:48	05/20/14 08:00
Bromoform	EPA 8260	ug/L	0.35 U	1	0.35	1.4	75-25-2	05/20/14 16:48	05/20/14 08:00
Bromomethane	EPA 8260	ug/L	0.43 U	1	0.43	1.7	74-83-9	05/20/14 16:48	05/20/14 08:00
Carbon disulfide	EPA 8260	ug/L	0.35 U	1	0.35	1.4	75-15-0	05/20/14 16:48	05/20/14 08:00
Carbon tetrachloride	EPA 8260	ug/L	0.18 U	1	0.18	0.72	56-23-5	05/20/14 16:48	05/20/14 08:00
Chlorobenzene	EPA 8260	ug/L	0.19 U	1	0.19	0.76	108-90-7	05/20/14 16:48	05/20/14 08:00
Chloroethane	EPA 8260	ug/L	0.36 U	1	0.36	1.4	75-00-3	05/20/14 16:48	05/20/14 08:00
Chloroform	EPA 8260	ug/L	0.19 U	1	0.19	0.74	67-66-3	05/20/14 16:48	05/20/14 08:00
Chloromethane	EPA 8260	ug/L	0.32 U	1	0.32	1.3	74-87-3	05/20/14 16:48	05/20/14 08:00
cis-1,2-Dichloroethene	EPA 8260	ug/L	0.22 U	1	0.22	0.88	156-59-2	05/20/14 16:48	05/20/14 08:00
Dibromochloromethane	EPA 8260	ug/L	0.33 U	1	0.33	1.3	124-48-1	05/20/14 16:48	05/20/14 08:00
Dibromomethane	EPA 8260	ug/L	0.25 U	1	0.25	1.0	74-95-3	05/20/14 16:48	05/20/14 08:00
Dichlorodifluoromethane	EPA 8260	ug/L	0.42 U	1	0.42	1.7	75-71-8	05/20/14 16:48	05/20/14 08:00
Ethylbenzene	EPA 8260	ug/L	0.20 U	1	0.20	0.80	100-41-4	05/20/14 16:48	05/20/14 08:00
isopropylbenzene	EPA 8260	ug/L	0.26 U	1	0.26	1.0	98-82-8	05/20/14 16:48	05/20/14 08:00
Methylene Chloride	EPA 8260	ug/L	0.65 U	1	0.65	2.6	75-09-2	05/20/14 16:48	05/20/14 08:00
Methyl tert-Butyl Ether (MTBE)	EPA 8260	ug/L	0.28 U	1	0.28	1.1	1634-04-4	05/20/14 16:48	05/20/14 08:00
Styrene	EPA 8260	ug/L	0.23 U	1	0.23	0.93	100-42-5	05/20/14 16:48	05/20/14 08:00
Tetrachloroethene	EPA 8260	ug/L	0.36 U	1	0.36	1.4	127-18-4	05/20/14 16:48	05/20/14 08:00
Toluene	EPA 8260	ug/L	0.20 U	1	0.20	0.80	108-88-3	05/20/14 16:48	05/20/14 08:00
Xylenes (Total)	EPA 8260	ug/L	0.22 U	1	0.22	0.88	1330-20-7	05/20/14 16:48	05/20/14 08:00
trans-1,2-Dichloroethene	EPA 8260	ug/L	0.22 U	1	0.22	0.88	156-60-5	05/20/14 16:48	05/20/14 08:00
Trichloroethene	EPA 8260	ug/L	0.48 U	1	0.48	1.9	79-01-6	05/20/14 16:48	05/20/14 08:00
Trichlorofluoromethane	EPA 8260	ug/L	0.51 U	1	0.51	2.0	75-69-4	05/20/14 16:48	05/20/14 08:00
Vinyl chloride	EPA 8260	ug/L	0.25 U	1	0.25	1.0	75-01-4	05/20/14 16:48	05/20/14 08:00

SunLabs Project Number 4051906 Cardno TBE, Inc.

Project Description

BF-Washington Park

June 05, 2014

SunLabs Sample Number: Sample Designation:

4051906-05 Trip Blank Matrix:

Water

Date Collected: Date Received: 05/19/14 00:00

05/19/14 15:15

Parameters	Method	Units	Results	Dil Factor	MDL	PQL	CAS Number	Date/Time Analyzed	Date/Time Prep
Volatile Organic Compounds by EPA 8260					Metho	od Qualifier:			
Surrogate: 4-Bromofluorobenzene (82-118)	EPA 8260	%	97.8	1			460-00-4	05/20/14 10:44	05/20/14 08:00
Surrogate: Dibromofluoromethane (85-120)	EPA 8260	%	99.5	1			1868-53-7	05/20/14 10:44	05/20/14 08:00
Surrogate: Toluene-d8 (83-115)	EPA 8260	%	100	1			2037-26-5	05/20/14 10:44	05/20/14 08:00
1,1,1-Trichloroethane	EPA 8260	ug/L	0.19 U	1	0.19	0.78	71-55-6	05/20/14 10:44	05/20/14 08:00
1,1,2,2-Tetrachloroethane	EPA 8260	ug/L	0.19 U	1	0.19	0.76	79-34-5	05/20/14 10:44	05/20/14 08:00
1,1,2-Trichloroethane	EPA 8260	ug/L	0.92 U	1	0.92	3.7	79-00-5	05/20/14 10:44	05/20/14 08:00
1,1-Dichloroethane	EPA 8260	ug/L	0.23 U	1	0.23	0.92	75-34-3	05/20/14 10:44	05/20/14 08:00
1,1-Dichloroethene	EPA 8260	ug/L	0.34 U	1	0.34	1.3	75-35-4	05/20/14 10:44	05/20/14 08:00
1,2-Dichlorobenzene	EPA 8260	ug/L	0.40 U	1	0.40	1.6	95-50-1	05/20/14 10:44	05/20/14 08:00
1,2-Dichloroethane	EPA 8260	ug/L	0.24 U	1	0.24	0.97	107-06-2	05/20/14 10:44	05/20/14 08:00
1,2-Dichloropropane	EPA 8260	ug/L	0.28 U	1	0.28	1.1	78-87-5	05/20/14 10:44	05/20/14 08:00
1,2,4-Trimethylbenzene	EPA 8260	ug/L	0.37 U	1	0.37	1.5	95-63-6	05/20/14 10:44	05/20/14 08:00
1,3,5-Trimethylbenzene	EPA 8260	ug/L	0.24 U	1	0.24	0.94	108-67-8	05/20/14 10:44	05/20/14 08:00
1,3-Dichlorobenzene	EPA 8260	ug/L	0.34 U	1	0.34	1.4	541-73-1	05/20/14 10:44	05/20/14 08:00
1,3-Dichloropropene (Total)	EPA 8260	ug/L	0.11 U	1	0.11	0.50	542-75-6	05/20/14 10:44	05/20/14 08:00
1,4-Dichlorobenzene	EPA 8260	ug/L	0.21 U	1	0.21	0.84	106-46-7	05/20/14 10:44	05/20/14 08:00
2-Butanone (MEK)	EPA 8260	ug/L	2.1 U	1	2.1	8.4	78-93-3	05/20/14 10:44	05/20/14 08:00
2-Hexanone	EPA 8260	ug/L	1.5 U	1	1.5	10	591-78-6	05/20/14 10:44	05/20/14 08:00
4-Methyl-2-pentanone (MIBK)	EPA 8260	ug/L	1.3 U	1	1.3	5.2	108-10-1	05/20/14 10:44	05/20/14 08:00
Acetone	EPA 8260	ug/L	6.9 U	1	6.9	28	67-64-1	05/20/14 10:44	05/20/14 08:00
Benzene	EPA 8260	ug/L	0.23 U	1	0.23	0.92	71-43-2	05/20/14 10:44	05/20/14 08:00
Bromochloromethane	EPA 8260	ug/L	0.18 U	1	0.18	0.72	74-97-5	05/20/14 10:44	05/20/14 08:00
Bromodichloromethane	EPA 8260	ug/L	0.19 U	1	0.19	0.76	75-27-4	05/20/14 10:44	05/20/14 08:00
Bromoform	EPA 8260	ug/L	0.35 U	1	0.35	1.4	75-25-2	05/20/14 10:44	05/20/14 08:00
Bromomethane	EPA 8260	ug/L	0.43 U	1	0.43	1.7	74-83-9	05/20/14 10:44	05/20/14 08:00
Carbon disulfide	EPA 8260	ug/L	0.35 U	1	0.35	1.4	75-15-0	05/20/14 10:44	05/20/14 08:00
Carbon tetrachloride	EPA 8260	ug/L	0.18 U	1	0.18	0.72	56-23-5	05/20/14 10:44	05/20/14 08:00
Chlorobenzene	EPA 8260	ug/L	0.19 U	1	0.19	0.76	108-90-7	05/20/14 10:44	05/20/14 08:00
Chloroethane	EPA 8260	ug/L	0.36 U	1	0.36	1.4	75-00-3	05/20/14 10:44	05/20/14 08:00
Chloroform	EPA 8260	ug/L	0.19 U	1	0.19	0.74	67-66-3	05/20/14 10:44	05/20/14 08:00
Chloromethane	EPA 8260	ug/L	0.32 U	1	0.32	1.3	74-87-3	05/20/14 10:44	05/20/14 08:00
cis-1,2-Dichloroethene	EPA 8260	ug/L	0.22 U	1	0.22	0.88	156-59-2	05/20/14 10:44	05/20/14 08:00
Dibromochloromethane	EPA 8260	ug/L	0.33 U	1	0.33	1.3	124-48-1	05/20/14 10:44	05/20/14 08:00
Dibromomethane	EPA 8260	ug/L	0.25 U	1	0.25	1.0	74-95-3	05/20/14 10:44	05/20/14 08:00
Dichlorodifluoromethane	EPA 8260	ug/L	0.42 U	1	0.42	1.7	75-71-8	05/20/14 10:44	05/20/14 08:00
Ethylbenzene	EPA 8260	ug/L	0.20 U	1	0.20	0.80	100-41-4	05/20/14 10:44	05/20/14 08:00
isopropylbenzene	EPA 8260	ug/L	0.26 U	1	0.26	1.0	98-82-8	05/20/14 10:44	05/20/14 08:00
Methylene Chloride	EPA 8260	ug/L	0.73 I	1	0.65	2.6	75-09-2	05/20/14 10:44	05/20/14 08:00
Methyl tert-Butyl Ether (MTBE)	EPA 8260	ug/L	0.28 U	1	0.28	1.1	1634-04-4	05/20/14 10:44	05/20/14 08:00
Styrene	EPA 8260	ug/L	0.23 U	1	0.23	0.93	100-42-5	05/20/14 10:44	05/20/14 08:00
Tetrachloroethene	EPA 8260	ug/L	0.36 U	1	0.36	1.4	127-18-4	05/20/14 10:44	05/20/14 08:00
Toluene	EPA 8260	ug/L	0.20 U	1	0.20	0.80	108-88-3	05/20/14 10:44	05/20/14 08:00
Xylenes (Total)	EPA 8260	ug/L	0.22 U	1	0.22	0.88	1330-20-7	05/20/14 10:44	05/20/14 08:00
trans-1,2-Dichloroethene	EPA 8260	ug/L	0.22 U	1	0.22	0.88	156-60-5	05/20/14 10:44	05/20/14 08:00
Trichloroethene	EPA 8260	ug/L	0.48 U	1	0.48	1.9	79-01-6	05/20/14 10:44	05/20/14 08:00
Trichlorofluoromethane	EPA 8260	ug/L	0.51 U	1	0.51	2.0	75-69-4	05/20/14 10:44	05/20/14 08:00
Vinyl chloride	EPA 8260	ug/L	0.25 U	1	0.25	1.0	75-01-4	05/20/14 10:44	05/20/14 08:00

Footnotes

V The analyte was detected in both the sample and the associated method blank.

U The compound was analyzed for but not detected.

The reported value failed to meet the established quality control criteria for either precision or accuracy (see cover letter for explanation)

I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

* SunLabs is not currently NELAC certified for this analyte. Unless directed otherwise by client, a NELAC certified sub-contract laboratory has

performed this analysis (see cover letter for details).

LCS / LCSD Laboratory Control Sample / Laboratory Control Sample Duplicate

MB Method Blank

MS / MSD Matrix Spike / Matrix Spike Duplicate RPD Relative Percent Difference

SunLabs Project Number

4051906

Cardno TBE, Inc.

Project Description

BF-Washington Park

L	_		Spike	Parent	o. =	%REC		RPD	
Analyte	Result	Units	Level	Result	%REC	Limits	RPD	Limit	Flags
Blank (B005098-BLK1)			Prep	pared & Analyze	ed: 05/20/14				
Surrogate: 4-Bromofluorobenzene	51	ng/mL	50		102	82-118			
Surrogate: Dibromofluoromethane	50	ng/mL	50		101	85-120			
Surrogate: Toluene-d8	50	ng/mL	50		99.6	83-115			
1,1,1-Trichloroethane	0.19 U	ug/L							
1,1,2,2-Tetrachloroethane	0.19 U	ug/L							
1,1,2-Trichloroethane	0.92 U	ug/L							
1,1-Dichloroethane	0.23 U	ug/L							
1,1-Dichloroethene	0.34 U	ug/L							
1,2-Dichlorobenzene	0.40 U	ug/L							
1,2-Dichloroethane	0.24 U	ug/L							
1,2-Dichloropropane	0.28 U	ug/L							
1,2,4-Trimethylbenzene	0.37 U	ug/L							
1,3,5-Trimethylbenzene	0.24 U	ug/L							
1,3-Dichlorobenzene	0.34 U	ug/L							
1,3-Dichloropropene (Total)	0.11 U	ug/L							
1,4-Dichlorobenzene	0.21 U	ug/L							
2-Butanone (MEK)	2.1 U	ug/L							
2-Hexanone	1.5 U	ug/L							
4-Methyl-2-pentanone (MIBK)	1.3 U	ug/L							
Acetone	6.9 U	ug/L							
Benzene	0.23 U	ug/L							
Bromochloromethane	0.18 U	ug/L							
Bromodichloromethane	0.19 U	ug/L							
Bromoform	0.35 U	ug/L							
Bromomethane	0.43 U	ug/L							
Carbon disulfide	0.35 U	ug/L							
Carbon tetrachloride	0.18 U	ug/L							
Chlorobenzene	0.19 U	ug/L							
Chloroethane	0.36 U	ug/L							
Chloroform	0.19 U	ug/L							
Chloromethane	0.32 U	ug/L							
cis-1,2-Dichloroethene	0.22 U	ug/L							
Dibromochloromethane	0.33 U	ug/L							
Dibromomethane	0.25 U	ug/L							
Dichlorodifluoromethane	0.42 U	ug/L							
Ethylbenzene	0.20 U	ug/L							
sopropylbenzene	0.26 U	ug/L							
Methylene Chloride	0.65 U	ug/L							
Methyl tert-Butyl Ether (MTBE)	0.28 U	ug/L							
Styrene Sotrachloroothono	0.23 U	ug/L							
Fetrachloroethene	0.36 U	ug/L							
Toluene (Total)	0.20 U	ug/L							
(ylenes (Total)	0.22 U	ug/L							
rans-1,2-Dichloroethene Frichloroethene	0.22 U	ug/L							
	0.48 U	ug/L							
Frichlorofluoromethane	0.51 U	ug/L							
/inyl chloride	0.25 U	ug/L							
LCS (B005098-BS1)				pared & Analyze					
Surrogate: 4-Bromofluorobenzene	50	ng/mL	50		99.2	82-118			
Surrogate: Dibromofluoromethane	49	ng/mL	50		97.5	85-120			

SunLabs Project Number

4051906

Cardno TBE, Inc.

Project Description

BF-Washington Park

Analyte	DII	11-:4-	Spike	Parent	/ DEC	%REC	DDD	RPD Limit	El.
Analyte	Result	Units	Level	Result 9	%REC	Limits	RPD	Limit	Flags
LCS (B005098-BS1)			Prep	pared & Analyzed: (05/20/14				
Surrogate: Toluene-d8	49	ng/mL	50		98.3	83-115			
1,1,1-Trichloroethane	10	ug/L	10		100	78-120			
1,1,2,2-Tetrachloroethane	10	ug/L	10		99.8	69-124			
1,1,2-Trichloroethane	10	ug/L	10		104	80-125			
1,1-Dichloroethane	9.8	ug/L	10		98.5	80-120			
1,1-Dichloroethene	10	ug/L	10		105	80-120			
1,2-Dichlorobenzene	10	ug/L	10		100	80-120			
1,2-Dichloroethane	10	ug/L	10		102	80-120			
1,2-Dichloropropane	9.8	ug/L	10		98.4	80-120			
1,2,4-Trimethylbenzene	10	ug/L	10		105	77-120			
1,3,5-Trimethylbenzene	10	ug/L	10		103	67-120			
1,3-Dichlorobenzene	10	ug/L	10		100	74-145			
1,3-Dichloropropene (Total)	19	ug/L	20		94.6	73-121			
1,4-Dichlorobenzene	10	ug/L	10		103	69-135			
2-Butanone (MEK)	88	ug/L	100		88.3	53-130			
2-Hexanone	100	ug/L	100		102	51-137			
4-Methyl-2-pentanone (MIBK)	94	ug/L	100		93.7	57-129			
Acetone	110	ug/L	100		111	70-149			
Benzene	10	ug/L	10		101	80-120			
Bromochloromethane	9.8	ug/L	10		97.9	80-120			
Bromodichloromethane	9.7	ug/L	10		97.1	80-120			
Bromoform	9.4	ug/L	10		94.1	76-120			
Bromomethane	12	ug/L	10		122	76-137			
Carbon disulfide	9.0	ug/L	10		89.8	71-146			
Carbon tetrachloride	11	ug/L	10		108	75-120			
Chlorobenzene	10	ug/L	10		101	80-120			
Chloroethane	11	ug/L	10		111	80-123			
Chloroform	9.9	ug/L	10		98.9	80-120			
Chloromethane	8.4	ug/L	10		84.4	70-126			
cis-1,2-Dichloroethene	9.6	ug/L	10		96.3	80-120			
Dibromochloromethane	9.7	ug/L	10		96.9	80-120			
Dibromomethane	10	ug/L	10		102	80-120			
Dichlorodifluoromethane	10	ug/L	10		100	78-128			
Ethylbenzene	10	ug/L	10		102	80-120			
isopropylbenzene	10	ug/L	10		102	80-120			
Methylene Chloride	9.2	ug/L	10		92.4	72-145			
Methyl tert-Butyl Ether (MTBE)	9.7	ug/L	10		96.6	80-120			
Styrene	9.6	ug/L	10		95.5	80-120			
Tetrachloroethene	10	ug/L	10		100	80-120			
Toluene	9.7	ug/L	10		96.6	74-127			
Xylenes (Total)	30	ug/L	30		98.3	74-129			
trans-1,2-Dichloroethene	10	ug/L	10		103	80-120			
Trichloroethene	10	ug/L	10		99.5	80-120			
Trichlorofluoromethane	8.7	ug/L	10		86.8	74-127			
Vinyl chloride	11	ug/L	10		110	78-131			
LCS Dup (B005098-BSD1)				pared & Analyzed: (
Surrogate: 4-Bromofluorobenzene	51	ng/mL	50	cu ca / wildiy2cu. (102	82-118			
Surrogate: 4-Bromondorobenzene Surrogate: Dibromofluoromethane	50		50		102	85-120			
Surrogate: Dibromonuoromenane Surrogate: Toluene-d8		ng/mL				83-120			
-	50	ng/mL	50		100		2.01	20	
1,1,1-Trichloroethane	9.8	ug/L	10		98.3	78-120	2.01	20	

SunLabs Project Number

4051906

Cardno TBE, Inc.

Project Description

BF-Washington Park

Analyte	Result	Units	Spike Level	Parent Result	%REC	%REC Limits	RPD	RPD Limit	Flags
.CS Dup (B005098-BSD1)			Prep	pared & Analyze	ed: 05/20/14				
,1,2,2-Tetrachloroethane	10	ug/L	10		101	69-124	1.29	20	
,1,2-Trichloroethane	11	ug/L	10		106	80-125	2.76	20	
,1-Dichloroethane	10	ug/L	10		100	80-120	1.51	20	
,1-Dichloroethene	11	ug/L	10		107	80-120	1.70	20	
,2-Dichlorobenzene	11	ug/L	10		106	80-120	5.24	20	
2-Dichloroethane	11	ug/L	10		107	80-120	4.40	20	
2-Dichloropropane	10	ug/L	10		101	80-120	2.81	20	
3,5-Trimethylbenzene	11	ug/L	10		106	67-120	2.69	22	
2,4-Trimethylbenzene	10	ug/L	10		104	77-120	0.961	20	
3-Dichlorobenzene	10	ug/L	10		102	74-145	1.39	20	
3-Dichloropropene (Total)	20	ug/L	20		99.0	73-121	4.49	20	
4-Dichlorobenzene	11	ug/L	10		108	69-135	3.98	20	
Butanone (MEK)	88	ug/L	100		88.5	53-130	0.272	20	
Hexanone	100	ug/L	100		102	51-137	0.166	20	
Methyl-2-pentanone (MIBK)	98	ug/L	100		97.8	57-129	4.28	20	
cetone	110	ug/L	100		107	70-149	3.53	20	
enzene	10	ug/L	10		105	80-120	3.79	20	
romochloromethane	10	ug/L	10		103	80-120	5.37	20	
romodichloromethane	9.6	ug/L	10		96.0	80-120	1.14	20	
omoform	9.9	ug/L	10		98.7	76-120	4.77	20	
omomethane	12	ug/L	10		117	76-137	4.36	20	
arbon disulfide	9.2	ug/L	10		91.7	71-146	2.09	20	
arbon tetrachloride	11	ug/L	10		113	75-120	5.16	20	
nlorobenzene	11	ug/L	10		105	80-120	4.66	20	
nloroethane	9.1	ug/L	10		91.4	80-123	19.5	20	
nloroform	10	ug/L	10		103	80-120	3.77	20	
hloromethane	8.7	ug/L	10		87.1	70-126	3.15	20	
s-1,2-Dichloroethene	10	ug/L	10		102	80-120	6.04	20	
ibromochloromethane	10	ug/L	10		102	80-120	5.23	20	
bromomethane	11	ug/L	10		107	80-120	4.21	20	
chlorodifluoromethane	9.9	ug/L	10		98.9	78-128	1.60	20	
hylbenzene	11	ug/L	10		108	80-120	5.62	20	
ppropylbenzene	11	ug/L	10		105	80-120	2.50	20	
ethylene Chloride	10	ug/L	10		100	72-145	8.20	20	
ethyl tert-Butyl Ether (MTBE)	9.8	ug/L	10		98.5	80-120	1.95	20	
yrene	9.8	ug/L	10		97.6	80-120	2.18	20	
etrachloroethene	10	ug/L	10		103	80-120	2.66	20	
bluene	10	ug/L	10		101	74-127	4.26	20	
/lenes (Total)	30	ug/L	30		101	74-129	2.54	20	
ans-1,2-Dichloroethene	10	ug/L	10		104	80-120	0.773	20	
richloroethene	10	ug/L	10		102	80-120	2.97	20	
richlorofluoromethane	8.9	ug/L	10		89.3	74-127	2.84	20	
nyl chloride	11	ug/L	10		114	78-131	4.19	20	
uplicate (B005098-DUP1)	Parent Sample			pared & Analyze					
urrogate: 4-Bromofluorobenzene	51	ng/mL	50	Ja. Ca & Allaiy20	101	82-118			
urrogate: Dibromofluoromethane	50	ng/mL	50		99.8	85-120			
urrogate: Toluene-d8	51	ng/mL	50		103	83-115			
.1,1-Trichloroethane	0.19 U	ug/L	50	ND	100	00 110		200	
1,2,2-Tetrachloroethane	0.19 U	ug/L ug/L		ND				200	
,1,2-Trichloroethane	0.19 U	ug/L ug/L		ND				200	

SunLabs Project Number

4051906

Cardno TBE, Inc.

Project Description

BF-Washington Park

Analyte	Result	Units	Spike Level	Parent Result	%REC	%REC Limits	RPD	RPD Limit	Flags
Ouplicate (B005098-DUP1)	Parent Sample			ared & Analyz					
,1-Dichloroethane	0.23 U	ug/L		ND				200	
,1-Dichloroethene	0.34 U	ug/L		ND				200	
,2-Dichlorobenzene	0.40 U	ug/L		ND				200	
,2-Dichloroethane	0.24 U	ug/L		ND				200	
,2-Dichloropropane	0.28 U	ug/L		ND				200	
,2,4-Trimethylbenzene	0.37 U	ug/L		ND				200	
,3,5-Trimethylbenzene	0.24 U	ug/L		ND				200	
,3-Dichlorobenzene	0.34 U	ug/L		ND				200	
,3-Dichloropropene (Total)	0.11 U	ug/L		ND				200	
,4-Dichlorobenzene	0.21 U	ug/L		ND				200	
-Butanone (MEK)	2.1 U	ug/L		ND				200	
-Hexanone	1.5 U	ug/L		ND				200	
-Methyl-2-pentanone (MIBK)	1.3 U	ug/L		ND				200	
cetone	6.9 U	ug/L		ND				200	
enzene	0.23 U	ug/L		ND				200	
romochloromethane	0.18 U	ug/L		ND				200	
romodichloromethane	0.19 U	ug/L		ND				200	
romoform	0.35 U	ug/L		ND				200	
romomethane	0.43 U	ug/L		ND				200	
arbon disulfide	0.35 U	ug/L		ND				200	
arbon tetrachloride	0.18 U	ug/L		ND				200	
hlorobenzene	0.19 U	ug/L		ND				200	
hloroethane	0.36 U	ug/L		ND				200	
hloroform	0.30 U	ug/L ug/L		ND				200	
hloromethane	0.19 U	ug/L ug/L		ND				200	
s-1,2-Dichloroethene	0.32 U	ug/L		ND				200	
ibromochloromethane	0.22 U	ug/L ug/L		ND				200	
ibromomethane	0.33 U			ND				200	
	0.42 U	ug/L		ND				200	
ichlorodifluoromethane		ug/L						200	
thylbenzene	0.20 U	ug/L		ND 4.6			г.сг		
opropylbenzene lethylene Chloride	4.3 0.65 U	ug/L		4.6 ND			5.65	200 200	
•		ug/L		ND				200	
ethyl tert-Butyl Ether (MTBE)	0.28 U 0.23 U	ug/L		ND ND				200	
tyrene		ug/L							
etrachloroethene	0.36 U	ug/L		ND				200	
oluene	0.20 U	ug/L		ND			200	200	
ylenes (Total)	0.22 U	ug/L		0.40			200	200	
rans-1,2-Dichloroethene	0.22 U	ug/L		ND				200	
richloroethene	0.48 U	ug/L		ND				200	
richlorofluoromethane	0.51 U 0.25 U	ug/L		ND ND				200 200	
inyl chloride		ug/L						200	
Matrix Spike (B005098-MS1)	Parent Sample			ared & Analyz					
urrogate: 4-Bromofluorobenzene	49	ng/mL	50		98.9	82-118			
durrogate: Dibromofluoromethane	51	ng/mL	50		102	85-120			
urrogate: Toluene-d8	50	ng/mL	50		100	83-115			
1,1-Trichloroethane	7.8	ug/L	10	ND	77.8	71-120			
,1,2,2-Tetrachloroethane	7.0	ug/L	10	ND	69.7	71-124			J
,1,2-Trichloroethane	7.1	ug/L	10	ND	71.3	77-127			J
,1-Dichloroethane	7.5	ug/L	10	ND	74.6	79-120			J

SunLabs Project Number

4051906

Cardno TBE, Inc.

Project Description

BF-Washington Park

Analyte			Spike	Parent		%REC		RPD	
	Result	Units	Level	Result	%REC	Limits	RPD	Limit	Flags
Matrix Spike (B005098-MS1)	Parent Sample: 4051616-02		Prepared & Analyzed: 05/20/14						
1,2-Dichlorobenzene	6.7	ug/L	10	ND	67.2	80-122			J
1,2-Dichloroethane	7.8	ug/L	10	ND	78.2	81-122			J
1,2-Dichloropropane	7.4	ug/L	10	ND	74.4	80-120			J
1,2,4-Trimethylbenzene	6.5	ug/L	10	ND	65.0	52-129			
1,3,5-Trimethylbenzene	6.5	ug/L	10	ND	64.8	46-129			
1,3-Dichlorobenzene	6.5	ug/L	10	ND	65.1	60-154			
1,3-Dichloropropene (Total)	9.8	ug/L	20	ND	49.2	57-120			J
1,4-Dichlorobenzene	6.6	ug/L	10	ND	66.1	68-135			J
2-Butanone (MEK)	63	ug/L	100	ND	63.4	55-143			
2-Hexanone	73	ug/L	100	ND	72.8	51-150			
4-Methyl-2-pentanone (MIBK)	67	ug/L	100	ND	67.1	61-135			
Acetone	75	ug/L	100	ND	75.1	45-169			
Benzene	7.3	ug/L	10	ND	73.3	45-149			
Bromochloromethane	7.5	ug/L	10	ND	74.6	80-120			J
Bromodichloromethane	7.1	ug/L	10	ND	70.8	80-123			J
Bromoform	6.1	ug/L	10	ND	61.2	65-120			J
Bromomethane	7.9	ug/L	10	ND	78.6	56-160			
Carbon disulfide	7.4	ug/L	10	ND	74.4	74-143			
Carbon tetrachloride	8.0	ug/L	10	ND	80.2	70-120			
Chlorobenzene	7.3	ug/L	10	ND	73.0	73-120			
Chloroethane	8.7	ug/L	10	ND	86.9	76-129			
Chloroform	7.7	ug/L	10	ND	77.1	77-122			
Chloromethane	6.0	ug/L	10	ND	59.7	58-147			
cis-1,2-Dichloroethene	7.0	ug/L	10	ND	70.0	75-121			J
Dibromochloromethane	6.7	ug/L	10	ND	66.9	74-120			J
Dibromomethane	7.3	ug/L	10	ND	73.2	80-120			J
Dichlorodifluoromethane	6.9	ug/L	10	ND	68.8	57-145			
Ethylbenzene	7.0	ug/L	10	ND	69.6	73-120			J
isopropylbenzene	6.7	ug/L	10	ND	66.7	68-120			J
Methylene Chloride	6.6	ug/L	10	ND	65.5	66-141			J
Methyl tert-Butyl Ether (MTBE)	7.2	ug/L	10	ND	71.5	79-128			J
Styrene	6.4	ug/L	10	ND	63.8	42-130			
Tetrachloroethene	6.5	ug/L	10	ND	65.1	57-141			
Toluene	6.8	ug/L	10	ND	68.3	62-122			
Xylenes (Total)	19	ug/L	30	ND	62.3	44-136			
trans-1,2-Dichloroethene	7.3	ug/L	10	ND	72.8	72-120			
Trichloroethene	7.5	ug/L	10	ND	75.1	66-124			
Trichlorofluoromethane	6.0	ug/L	10	ND	60.1	62-138			J
Vinyl chloride	8.7	ug/L	10	ND	87.1	71-142			

SunLabs Project Number

4051906

Cardno TBE, Inc.

Project Description

BF-Washington Park

Batch No: **B005104**Test: **Mercury-W 7470**

			Spike	Parent		%REC		RPD	
Analyte	Result	Units	Level	Result	%REC	Limits	RPD	Limit	Flags
Blank (B005104-BLK1)			Prep	pared: 05/20/1	4 Analyzed: 0	5/21/14			
Mercury	0.018 U	ug/L							
LCS (B005104-BS1)			Prep	pared: 05/20/1	4 Analyzed: 0	5/21/14			
Mercury	4.8	ug/L	5.0		96.8	80-120			
LCS Dup (B005104-BSD1)			Prep	pared: 05/20/1	4 Analyzed: 0	5/21/14			
Mercury	4.9	ug/L	5.0		97.1	80-120	0.320	20	
Matrix Spike (B005104-MS1)	Parent Sample	: 4051906-02	Prep	pared: 05/20/1	4 Analyzed: 0	5/21/14			
Mercury	4.7	ug/L	5.0	ND	94.7	75-125			
Matrix Spike Dup (B005104-MSD1)	Parent Sample	: 4051906-02	Prep	pared: 05/20/1	4 Analyzed: 0	5/21/14			
Mercury	4.7	ug/L	5.0	ND	94.5	75-125	0.209	20	

Batch No: **B005106** Test: **RCRA7 6010**

			Spike	Parent		%REC		RPD	
Analyte	Result	Units	Level	Result	%REC	Limits	RPD	Limit	Flags
Blank (B005106-BLK1)			Prep	pared & Analyz	ed: 05/20/14				
Arsenic	5.0 U	ug/L							
Barium	0.52 U	ug/L							
Cadmium	0.93 U	ug/L							
Chromium	2.0 U	ug/L							
Lead	4.7 U	ug/L							
Selenium	4.4 U	ug/L							
Silver	2.1 U	ug/L							
LCS (B005106-BS1)			Prep	pared & Analyz	ed: 05/20/14				
Arsenic	990	ug/L	990		99.9	80-120			
Barium	890	ug/L	990		90.0	80-120			
Cadmium	950	ug/L	990		95.6	80-120			
Chromium	960	ug/L	990		97.0	80-120			
Lead	950	ug/L	990		96.4	80-120			
Selenium	960	ug/L	990		97.4	80-120			
Silver	870	ug/L	990		87.9	80-120			
LCS Dup (B005106-BSD1)			Prep	pared & Analyz	ed: 05/20/14				
Arsenic	970	ug/L	990		98.0	80-120	1.93	20	
Barium	930	ug/L	990		93.8	80-120	4.11	20	
Cadmium	950	ug/L	990		95.5	80-120	0.0747	20	
Chromium	910	ug/L	990		91.6	80-120	5.79	20	
Lead	940	ug/L	990		94.7	80-120	1.83	20	
Selenium	930	ug/L	990		94.2	80-120	3.26	20	
Silver	880	ug/L	990		88.9	80-120	1.13	20	
Matrix Spike (B005106-MS1)	Parent Sample	: 4051908-01	Prep	pared & Analyz	ed: 05/20/14				
Arsenic	1000	ug/L	990	ND	101	75-125			
Barium	1000	ug/L	990	57	98.0	75-125			
Cadmium	960	ug/L	990	ND	96.5	75-125			

SunLabs Project Number

4051906

Cardno TBE, Inc.

Project Description

BF-Washington Park

Batch No: **B005106** Test: **RCRA7 6010**

			Spike	Parent		%REC		RPD	
Analyte	Result	Units	Level	Result	%REC	Limits	RPD	Limit	Flags
Matrix Spike (B005106-MS1)	Parent Sampl	le: 4051908-01	Prep	pared & Analyz	ed: 05/20/14				
Chromium	1000	ug/L	990	17	98.9	75-125			
Lead	1000	ug/L	990	26	97.9	75-125			
Selenium	990	ug/L	990	ND	100	75-125			
Silver	890	ug/L	990	ND	90.2	75-125			
Matrix Spike Dup (B005106-MSD1)	Parent Sampl	le: 4051908-01	Prep	pared & Analyz	ed: 05/20/14				
Arsenic	1000	ug/L	990	ND	102	75-125	1.06	20	
Barium	1000	ug/L	990	57	99.4	75-125	1.32	20	
Cadmium	950	ug/L	990	ND	96.2	75-125	0.248	20	
Chromium	950	ug/L	990	17	94.0	75-125	5.07	20	
Lead	970	ug/L	990	26	95.6	75-125	2.33	20	
Selenium	970	ug/L	990	ND	98.0	75-125	2.37	20	
Silver	890	ug/L	990	ND	90.4	75-125	0.140	20	

Batch No: **B005143** Test: **RCRA7 6010**

			Spike	Parent		%REC		RPD	
Analyte	Result	Units	Level	Result	%REC	Limits	RPD	Limit	Flags
Blank (B005143-BLK1)			Prep	pared & Analyz	red: 05/22/14				
Arsenic	5.0 U	ug/L							
Barium	0.52 U	ug/L							
Cadmium	0.93 U	ug/L							
Chromium	2.0 U	ug/L							
Lead	4.7 U	ug/L							
Selenium	4.4 U	ug/L							
Silver	2.1 U	ug/L							
LCS (B005143-BS1)			Prep	pared & Analyz	ed: 05/22/14				
Arsenic	1000	ug/L	990		104	80-120			
Barium	960	ug/L	990		97.1	80-120			
Cadmium	970	ug/L	990		97.6	80-120			
Chromium	970	ug/L	990		97.9	80-120			
Lead	1000	ug/L	990		101	80-120			
Selenium	1000	ug/L	990		104	80-120			
Silver	930	ug/L	990		94.4	80-120			
LCS Dup (B005143-BSD1)			Prep	pared & Analyz	ed: 05/22/14				
Arsenic	1000	ug/L	990		105	80-120	0.647	20	
Barium	970	ug/L	990		98.0	80-120	0.911	20	
Cadmium	1000	ug/L	990		101	80-120	3.15	20	
Chromium	970	ug/L	990		98.3	80-120	0.405	20	
ead	1000	ug/L	990		101	80-120	0.866	20	
Selenium	1000	ug/L	990		102	80-120	1.98	20	
Silver	960	ug/L	990		97.3	80-120	3.04	20	
Matrix Spike (B005143-MS1)	Parent Sample	e: 4051906-04	Prep	pared & Analyz	ed: 05/22/14				
Arsenic	1000	ug/L	990	ND	101	75-125			
Barium	930	ug/L	990	65	87.0	75-125			
Cadmium	930	ug/L	990	ND	94.3	75-125			

SunLabs Project Number

4051906

Cardno TBE, Inc.

Project Description

BF-Washington Park

Batch No: **B005143** Test: **RCRA7 6010**

			Spike	Parent		%REC		RPD	
Analyte	Result	Units	Level	Result	%REC	Limits	RPD	Limit	Flags
Matrix Spike (B005143-MS1)	Parent Sampl	le: 4051906-04	Prep	pared & Analyz	ed: 05/22/14				
Chromium	890	ug/L	990	ND	90.3	75-125			
Lead	890	ug/L	990	ND	89.4	75-125			
Selenium	1000	ug/L	990	11	101	75-125			
Silver	880	ug/L	990	ND	89.3	75-125			
Matrix Spike Dup (B005143-MSD1)	Parent Sampl	le: 4051906-04	Prep	pared & Analyz	ed: 05/22/14				
Arsenic	1000	ug/L	990	ND	101	75-125	0.525	20	
Barium	920	ug/L	990	65	86.5	75-125	0.490	20	
Cadmium	940	ug/L	990	ND	95.0	75-125	0.766	20	
Chromium	880	ug/L	990	ND	89.4	75-125	1.05	20	
Lead	890	ug/L	990	ND	89.7	75-125	0.335	20	
Selenium	1000	ug/L	990	11	101	75-125	0.346	20	
Silver	890	ug/L	990	ND	89.5	75-125	0.268	20	

Batch No: **B005154**Test: **8270 LVI PAH**

			Spike	Parent		%REC		RPD	-
Analyte	Result	Units	Level	Result	%REC	Limits	RPD	Limit	Flags
Blank (B005154-BLK1)			Prep	ared: 05/22/1	4 Analyzed: 06	5/03/14			
Surrogate: p-Terphenyl-d14	5.0	ug/L	8.0		62.9	1-148			
Surrogate: 2-Fluorobiphenyl	4.8	ug/L	8.0		60.3	0-115			
Acenaphthene	0.0042 U	ug/L							
Acenaphthylene	0.0088 U	ug/L							
Anthracene	0.015 U	ug/L							
Benz[a]anthracene	0.0096 U	ug/L							
Benzo[a]pyrene	0.014 U	ug/L							
Benzo[b]fluoranthene	0.014 U	ug/L							
Benzo[ghi]perylene	0.013 U	ug/L							
Benzo[k]fluoranthene	0.011 U	ug/L							
Chrysene	0.010 U	ug/L							
Dibenz[a,h]anthracene	0.0088 U	ug/L							
Fluoranthene	0.014 U	ug/L							
Fluorene	0.0064 U	ug/L							
Indeno[1,2,3-cd]pyrene	0.010 U	ug/L							
1-Methylnaphthalene	0.0096 U	ug/L							
2-Methylnaphthalene	0.010 U	ug/L							
Naphthalene	0.047	ug/L							
Phenanthrene	0.017	ug/L							
Pyrene	0.013 U	ug/L							
LCS (B005154-BS1)			Prep	ared: 05/22/1	4 Analyzed: 06	5/04/14			
Surrogate: 2-Fluorobiphenyl	4.1	ug/L	8.0		51.7	0-115			
Surrogate: p-Terphenyl-d14	6.1	ug/L	8.0		76.8	1-148			
Acenaphthene	2.2	ug/L	4.0		54.7	49-90			
Acenaphthylene	2.2	ug/L	4.0		56.2	43-106			
Anthracene	2.6	ug/L	4.0		63.8	51-98			
Benz[a]anthracene	3.4	ug/L	4.0		86.0	47-106			
Benzo[a]pyrene	2.8	ug/L	4.0		68.8	31-118			

SunLabs Project Number

4051906

Cardno TBE, Inc.

Project Description

BF-Washington Park

Batch No: **B005154**Test: **8270 LVI PAH**

			Spike	Parent		%REC		RPD	
Analyte	Result	Units	Level	Result	%REC	Limits	RPD	Limit	Flag
CS (B005154-BS1)			Prep	pared: 05/22/14	4 Analyzed: 06	5/04/14			
enzo[b]fluoranthene	3.7	ug/L	4.0		91.8	23-119			
enzo[ghi]perylene	2.4	ug/L	4.0		60.1	38-110			
lenzo[k]fluoranthene	3.1	ug/L	4.0		77.2	30-112			
Chrysene	3.1	ug/L	4.0		77.7	53-95			
bibenz[a,h]anthracene	2.7	ug/L	4.0		68.7	39-119			
luoranthene	2.8	ug/L	4.0		69.1	25-122			
luorene	2.5	ug/L	4.0		62.9	50-96			
ndeno[1,2,3-cd]pyrene	2.8	ug/L	4.0		70.8	40-113			
-Methylnaphthalene	2.3	ug/L	4.0		56.8	44-98			
-Methylnaphthalene	2.2	ug/L	4.0		55.8	42-92			
laphthalene	2.3	ug/L	4.0		57.0	50-95			
henanthrene	2.5	ug/L	4.0		61.4	44-97			
yrene	2.8	ug/L	4.0		70.9	24-121			
CS Dup (B005154-BSD1)			Prep	pared: 05/22/14	4 Analyzed: 06	5/04/14			
urrogate: p-Terphenyl-d14	6.7	ug/L	8.0	. ,	84.3	1-148			
urrogate: 2-Fluorobiphenyl	5.0	ug/L	8.0		62.4	0-115			
cenaphthene	2.7	ug/L	4.0		66.8	49-90	20.0	20	
cenaphthylene	2.7	ug/L	4.0		68.2	43-106	19.2	20	
nthracene	3.0	ug/L	4.0		75.1	51-98	16.4	20	
enz[a]anthracene	3.6	ug/L	4.0		90.5	47-106	5.12	20	
enzo[a]pyrene	3.0	ug/L	4.0		74.9	31-118	8.39	20	
enzo[b]fluoranthene	3.8	ug/L	4.0		95.7	23-119	4.16	20	
enzo[ghi]perylene	2.7	ug/L	4.0		66.3	38-110	9.78	20	
enzo[k]fluoranthene	3.3	ug/L	4.0		82.5	30-112	6.57	20	
hrysene	3.3	ug/L	4.0		83.0	53-95	6.57	20	
ibenz[a,h]anthracene	2.9	ug/L	4.0		72.7	39-119	5.65	20	
luoranthene	3.1	ug/L	4.0		78.1	25-122	12.2	20	
luorene	3.0	ug/L	4.0		75.9	50-96	18.7	20	
ndeno[1,2,3-cd]pyrene	2.9	ug/L	4.0		71.7	40-113	1.22	20	
-Methylnaphthalene	2.6	ug/L	4.0		65.3	44-98	13.9	20	
-Methylnaphthalene	2.7	ug/L	4.0		67.8	42-92	19.4	20	
laphthalene	2.6	ug/L	4.0		66.2	50-95	14.8	20	
henanthrene	2.9	ug/L	4.0		72.3	44-97	16.2	20	
yrene	3.2	ug/L	4.0		78.8	24-121	10.6	20	
latrix Spike (B005154-MS1)	Parent Sample		Pren	pared: 05/22/14	1 Analyzed: Ne	5/04/14			
urrogate: 2-Fluorobiphenyl	3.9	ug/L	8.3		46.3	0-115			
urrogate: p-Terphenyl-d14	7.6	ug/L	8.3		90.7	1-148			
cenaphthene	2.1	ug/L	4.2	ND	50.4	47-94			
cenaphthylene	2.2	ug/L	4.2	ND	53.0	44-105			
nthracene	2.8	ug/L	4.2	ND	66.6	41-100			
enz[a]anthracene	3.9	ug/L	4.2	0.019	92.3	28-120			
enzo[a]pyrene	3.4	ug/L	4.2	ND	80.4	1-135			
enzo[b]fluoranthene	4.0	ug/L	4.2	0.024	95.5	1-149			
enzo[ghi]perylene	4.0	ug/L	4.2	0.028	94.9	1-138			
enzo[k]fluoranthene	3.9	ug/L	4.2	0.027	94.1	1-132			
hrysene	3.5	ug/L	4.2	0.035	83.8	31-108			
	5.8	ug/L	4.2	0.17	136	1-148			
ibenz[a.h]anthracene									
ibenz[a,h]anthracene luoranthene	3.3	ug/L	4.2	ND	78.5	6-140			

SunLabs Project Number

4051906

Cardno TBE, Inc.

Project Description

BF-Washington Park

Batch No: **B005154**Test: **8270 LVI PAH**

			Spike	Parent		%REC		RPD	
Analyte	Result	Units	Level	Result	%REC	Limits	RPD	Limit	Flags
Matrix Spike (B005154-MS1)	Parent Sample	: 4051906-04	Prep	pared: 05/22/1	4 Analyzed: 0	6/04/14			
indeno[1,2,3-cd]pyrene	4.7	ug/L	4.2	0.020	111	1-137			
-Methylnaphthalene	2.1	ug/L	4.2	ND	50.5	1-158			
2-Methylnaphthalene	2.1	ug/L	4.2	ND	50.2	1-125			
laphthalene	2.1	ug/L	4.2	0.094	48.0	1-148			
henanthrene	2.6	ug/L	4.2	ND	63.1	37-113			
yrene	3.4	ug/L	4.2	ND	80.7	3-140			
Matrix Spike Dup (B005154-MSD1)	Parent Sample	: 4051906-04	Prep	pared: 05/22/1	4 Analyzed: 0	6/04/14			
Surrogate: p-Terphenyl-d14	7.7	ug/L	8.3		92.2	1-148			
urrogate: 2-Fluorobiphenyl	5.7	ug/L	8.3		68.0	0-115			
cenaphthene	3.0	ug/L	4.2	ND	71.0	47-94	33.9	20	J
cenaphthylene	3.2	ug/L	4.2	ND	75.6	44-105	35.2	20	J
nthracene	3.3	ug/L	4.2	ND	79.8	41-100	18.0	20	
enz[a]anthracene	4.0	ug/L	4.2	0.019	95.5	28-120	3.46	20	
enzo[a]pyrene	3.4	ug/L	4.2	ND	82.7	1-135	2.80	20	
lenzo[b]fluoranthene	4.0	ug/L	4.2	0.024	96.6	1-149	1.16	20	
lenzo[ghi]perylene	4.0	ug/L	4.2	0.028	95.8	1-138	1.01	20	
enzo[k]fluoranthene	4.1	ug/L	4.2	0.027	98.0	1-132	4.04	20	
hrysene	3.6	ug/L	4.2	0.035	85.4	31-108	1.85	20	
ibenz[a,h]anthracene	6.1	ug/L	4.2	0.17	143	1-148	5.40	20	
luoranthene	3.5	ug/L	4.2	ND	83.2	6-140	5.80	20	
luorene	3.6	ug/L	4.2	ND	86.2	55-96	30.6	20	J
ndeno[1,2,3-cd]pyrene	4.8	ug/L	4.2	0.020	115	1-137	3.25	20	
-Methylnaphthalene	2.9	ug/L	4.2	ND	70.6	1-158	33.3	20	J
-Methylnaphthalene	3.0	ug/L	4.2	ND	73.2	1-125	37.2	20	J
laphthalene	2.8	ug/L	4.2	0.094	66.0	1-148	30.4	20	J
henanthrene	3.2	ug/L	4.2	ND	75.7	37-113	18.2	20	
yrene	3.6	ug/L	4.2	ND	85.3	3-140	5.47	20	

SunLabs Project Number

4051906

Cardno TBE, Inc.

Project Description

BF-Washington Park

Batch No: **B005198**Test: **Mercury-W 7470**

			Spike	Parent		%REC		RPD	
Analyte	Result	Units	Level	Result	%REC	Limits	RPD	Limit	Flags
Blank (B005198-BLK1)			Prep	pared: 05/23/14	4 Analyzed: 0	5/27/14			
Mercury	0.018 U	ug/L							
LCS (B005198-BS1)			Prep	ared: 05/23/14	4 Analyzed: 0	5/27/14			
Mercury	4.7	ug/L	5.0		94.2	80-120			
LCS Dup (B005198-BSD1)			Prep	ared: 05/23/14	4 Analyzed: 0	5/27/14			
Mercury	4.7	ug/L	5.0		93.4	80-120	0.791	20	
Matrix Spike (B005198-MS1)	Parent Sampl	e: 4051906-04	Prep	ared: 05/23/14	4 Analyzed: 0	5/27/14			
Mercury	4.6	ug/L	5.0	ND	91.5	75-125			
Matrix Spike Dup (B005198-MSD1)	Parent Sampl	e: 4051906-04	Prep	ared: 05/23/14	4 Analyzed: 0	5/27/14			
Mercury	4.7	ug/L	5.0	ND	93.6	75-125	2.23	20	

- Samples Associated with QC Batches

QC Batch ID	Method	Sample List
B005098	EPA 8260	4051906-01, 4051906-02, 4051906-03, 4051906-04, 4051906-05
B005104	EPA 7470	4051906-01, 4051906-02, 4051906-03
B005106	EPA 6010	4051906-01, 4051906-02, 4051906-03
B005143	EPA 6010	4051906-04
B005154	EPA 8270	4051906-01, 4051906-02, 4051906-03, 4051906-04
B005198	EPA 7470	4051906-04

See General Terms and Conditions on Reverse

APPENDIX C

Site Construction Plans

WASHINGTON PARK PRESERVE PHASE

SECTION 12, TOWNSHIP 34 SOUTH, RANGE 17 EAST, MANATEE COUNTY, FLORIDA

CLIENT

BOARD OF COUNTY COMMISSIONERS, MANATEE COUNTY, FL

1112 MANATEE AVENUE WEST BRADENTON, FL 34205 (941) 748-4501

2. IT IS THE CONTRACTOR'S RESPONSIBILITY TO CALCILLIFE AND VERRY ALL CUT AND FILL QUANTITIES OF EXPRENDENCE FOR THE PLACEMENT OF THE PLACEMENT

13. MAIEDNETY BEFORE REQUESTING FINAL INSPECTIONS, THE CONTRICTOR SHALL CHECK ALL LINES AND PRINCE TO THE FOREST BOWN MAINTAIND THE CASEST AND MAINTAIND THE CASEST AND MAINTAIND THE CASEST AND MAINTAIND THE CASES AND MAINTAIND THE CONTRICTOR SHALL MAKE ALLOWANCES THEN ROLDER GRADING FOR THE THISTED GRADES IN THESE MACLS.

14. POST GRADING SOIL CONDITIONS SHALL BE APPROPRIATE FOR PLANTING WITH LIMITED COMPACTION AS DETERMINED BY PROJECT ECOLOGIST OR LANDSCAPE ARCHITECT. 15. ANY DISTURBED AREAS ABOVE MEAN HICH WATER, NOT HARDSCAPED OR LANDSCAPED, WILL BE SEEDED/AMLICHED, HYDROSEEDED, SODGED OR PLANTED WITH MATERIALS AS SPECIFIED.

THE CONTRACTOR SHALL NOT BURBY UPON, OR ALTER THE WITLAND PRESERVE AREAS THAT MAY BE ONSITE OF DEBETTATION ADADATED THE PROJECT AREA, MI WITCH AREADANDED IN HE WASHINGT OF DEBY WITCH. WITCHAS, AND BETTAM DEBY OF THE BEST OF PROJECT OF THE WITCH AREA TO SHALL REMAY FOR THE STELL THE RESPONSIBLE FOR MAY FIRE RESULTING THE RESULTING OF PERMIT CONDITIONS OF PERMIT CONDITIONS.

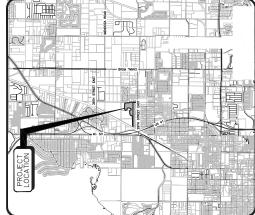
DEDARADAS SUBMAN LEERDA, RESERVATOR DA RESERVATOR DADAS RESERVATOR, DADAL JASSES RESERVATOR STE TOROSAMPIC DATA COLLECTED PI HAVIT SINFOY SERVATS. JANUARY 2017, SITE BENDHAMER OF 10 SA KON NOR DE DADA DEPRENDENT PROPERTY OF THE PROPERTY OF THE SERVATOR OF THE WAYDER OF THE SAME OF THE SERVATOR OF THE

THE CONTROLLO SHALL CLEAR AN ORGEN TO READY. STANDARD STOOKS, TREES, VEGETATION, AND THE CERTIFICATIONS TO THE WORK IN ALLA RESEA DESCHARIZE OFFICE CRAWING, ALL CITAMES, GROSS, AND THE CERTIFICATION AFENS TO A DEPTH OF ALL LESS TO THE CERTIFICATION AFENS TO A DEPTH OF ALL LESS TO THE CERTIFICATION AFENS TO A DEPTH OF ALL LESS TO THE PROPOSED GARDE.

10. ALL CLEMENG, GRUBBING AND EXCANATED MATERIAL WILL BE BURNED OR REMOVED FROM SITE AS DIR BY PROJECT MANAGER.

11. ALL CONSTRUCTION DEBRIS WILL BE REMOVED FROM THE SITE AND DISPOSED OF PROPERLY.

THE CONTRACTOR SHALL DETAIN AND/OR VERIEV EXISTENCE OF ALL REQUIRED PERMITS PRIOR TO STARTING POPULATION. THE CONTRACTOR SHALL BE RESPONSIBLE FOR DETAINING ANY PERMITS NOT FURNISHED BY THE OWNER.


PROPO TO THE STRIPT OF CONSTRUCTION ACTIVITY IS SHALL BE CONTRACTED'S RESPONSEDITY TO PROPERTY TO PROPERTY TO SHALL SHALL SHE ALD SHALL (1-800-422-4707), MAWITE COUNTY PIBLIC WRONS DEPORTURED. INCOMEDIATE & LIGHT, PROPER, AND MY DEPORTED TO SHE WITHING STORY OF COURT, ETC.) IT IS THOUGHTONE RESPONSEBILITY TO PROTECT DESTINA UTILITIES FROM DAMMAC.

ALL MATERIALS AND CONSTRUCTION SHALL BE IN ACCORDANCE WITH FDOT STANDARDS AND SPECIFICATION

IF HUMAN REMANS OR ARCHEOLOGICAL ARTIFACTS ARE DISCOVERED DURING THE COURSE OF COUNTYCTON, THE CONTRACTOR MUST STOP WINK MINEUMELY AND PROMETY WORLY THE VORTIVE THE CONTRACT OF STATE DIVISION OF HISTORICAL RESOURCES.

VENDERAD NE PROBLEM HERSEN PRESENT AND TO VENDER CONTRACTOR SESSION THE WANDER WITH AND THE OFFICE AND THE CONTRACTOR THE CONTRACTOR THE CONTRACTOR THE CONTRACTOR THE CONTRACTOR THE CONTRACTOR THE CONTRACTOR THE CONTRACTOR THE CONTRACTOR THE CONTRACTOR THE CONTRACTOR THE CONTRACTOR THE CONTRACTOR THE CONTRACTOR THE THEY BE DISCOURTED THAT THE CONTRACTOR THAT HAVE BE DISCOURTED THAT THE CONTRACTOR THAT HAVE BE DISCOURTED THAT THE CONTRACTOR THAT THAT THE CONTRACTOR THAT THAT THE CONTRACTOR THAT THE CONTRACTOR THAT THE CONTRACTOR THAT THE CONTRACTOR THAT THE CONTRACTOR THAT THE CONTRACTOR THAT THAT THE CONTRACTOR THAT THE CONTRACTOR THAT THE CONTRACTOR THAT THE CONTRACTOR THAT THE CONTRACTOR THAT THE CONTRACTOR THAT THE CONTRACTOR THAT THE CONTRACTOR THAT THE CONTRACTOR THAT THE CONTRACTOR THAT THE CONTRACTOR THAT THE CONTRACTOR THAT THE CONTRACTOR THAT THE CONTRACTOR THAT THE CONTRACTOR THAT THE CONTRACTOR THAT THE CONTRACTOR THAT THE CONTRACTOR THAT THE CONTRACTOR THAT TH

THE CONTRACTORS WORKING ON THIS SITE SHALL TAKE GREAT CARE IN AVOIDING UNIVE TO WETLANDS, VEGETATION, AND WILDLIFE.

LOCATION MAP

6, if it (Successor) requalquarte transmission to discussor estimate the configuracy eval. SERIMA LL PROCEED FERMING FROM THE TURBON DEPARTMENT OF DIMENSIAMEN, RESIDENCE TO COMPANION SIMIL, BEN ALL BEN ALL BENNESSEUT NEO DOSSY TOR OSTINANO NALOYON WIDDINING ALL PSYCLOLE FERMINE OF THE TEXT OF CONDINUENTS DEMICISING AND CONTINUENT WITH ALL USAGE, SHIPMIN, NO TEXT PERMINING CONDITIONS.

20. CONTOUR LINES OUTSIDE OF PROPERTY BOUNDARY SHOWN OBTAINED FROM 2007 SWFWIND LIDAR (NAND'88)

19. UPON COMPLETION OF CONSTRUCTION, GRASSED AREAS ARE TO BE MAINTAINED TO AVOID BARE EARTH CONDITIONS WHICH INCREASE THE POTENTIAL FOR EROSION.

propress that to be stacked never to instruction; that, unbusely mult, be fet directed to undured that the stacked to under the supervision of counts stayed on the count stayed on the count stayed on the count stayed on the count stayed on the count stayed on the count stayed on the count stayed on the count of the stayed stayed is stayed to be designed. We will see that the count of the count of the count of the stayed stayed in the stayed of th

16. EXISTING WELL HENGS TO BE PROTECTED & MARKED WITH ORANGE SAFETY FENCE (PLASTIC "SNOW FENCE") OR PROPERLY PLUGGED AND ABANDONED.

THE CONFRACTORS SALL GENERAL ALL APPLICAGE PROES STORMET PERMITTING FOR CONSTRUCTOR AND ALL SPENDAGE FOR STORMET PROTECTION (TREE). THE CONTRACTOR SUPPORTING FOR CONTRACTOR SUPPORTING DOCUMENTATION.

INDEX TO SHEETS

																					RQS/89561	RQS/89561	KG/101511	RB/115155	BY	
SHEET DESCRIPTION	COVER SHEET	A AERIAL LOCATION MAP	SITE PLAN KEY SHEET	4/8 SITE PLAN	GRADING AND DRAINAGE PLAN KEY SHEET	TATE GRADING AND DRAINAGE PLAN	17 UTILITY SITE PLAN GENERAL NOTES AND KEY SHEET	18-19 UTILITY PLAN AND PROFILES	20-27 CONSTRUCTION DETAILS	29-23 SECTIONS AND DETAILS	24-25 UTILITY DETAILS	27 BEST MANAGEMENT PRACTICES PLAN	28 BEST MANAGEMENT PRACTICES DETAILS	LP-101 LANDSCAPE PLANTING PLAN	LP-102 LANDSCAPE PLANTING PLAN	LP-501 LANDSCAPE DETAILS	LP-502 LANDSCAPE NOTES	DENOTES SHEETS SUBMITTED FOR ERP	₩	₩ ₩			A 07/10/19 REVISIONS ON SHEETS 2,3,5,8,7,8,9,10,14,16,17,22,LP-101,LP-102,LP-501,LP-601	81/90/60	NO. DATE DESCRIPTION	STATUS : REVISIONS

SITE MAP

R. CUNCE SELLERS, P.E. R. CHICAGO, 100074

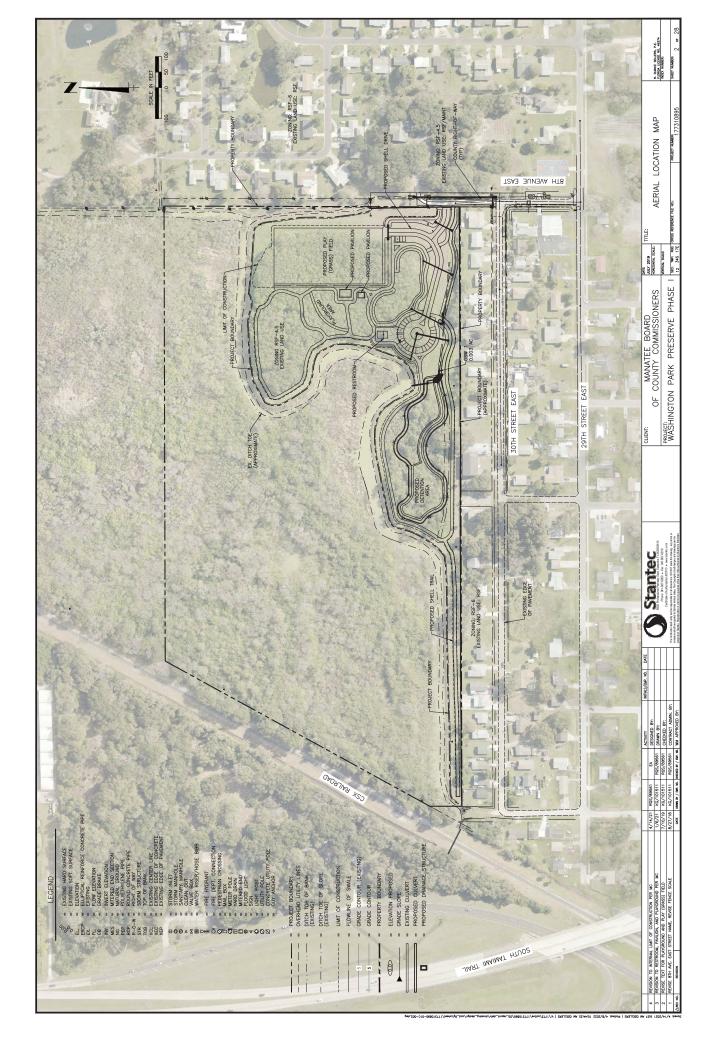
PROJECT ECOLOGIST

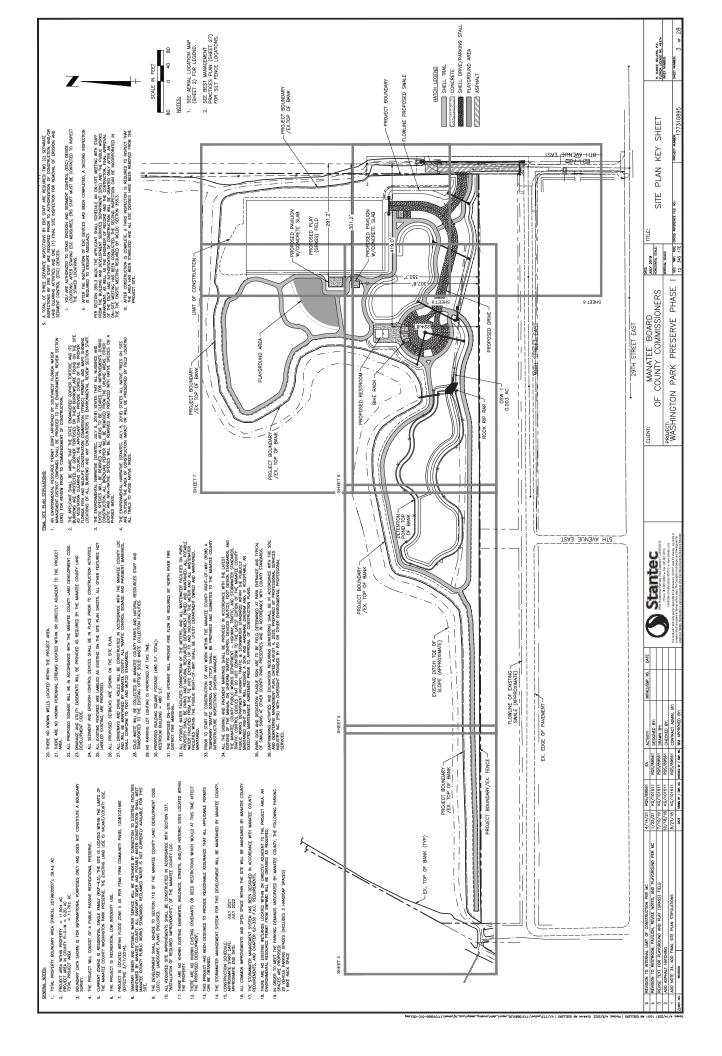
ENGINEERING TECH

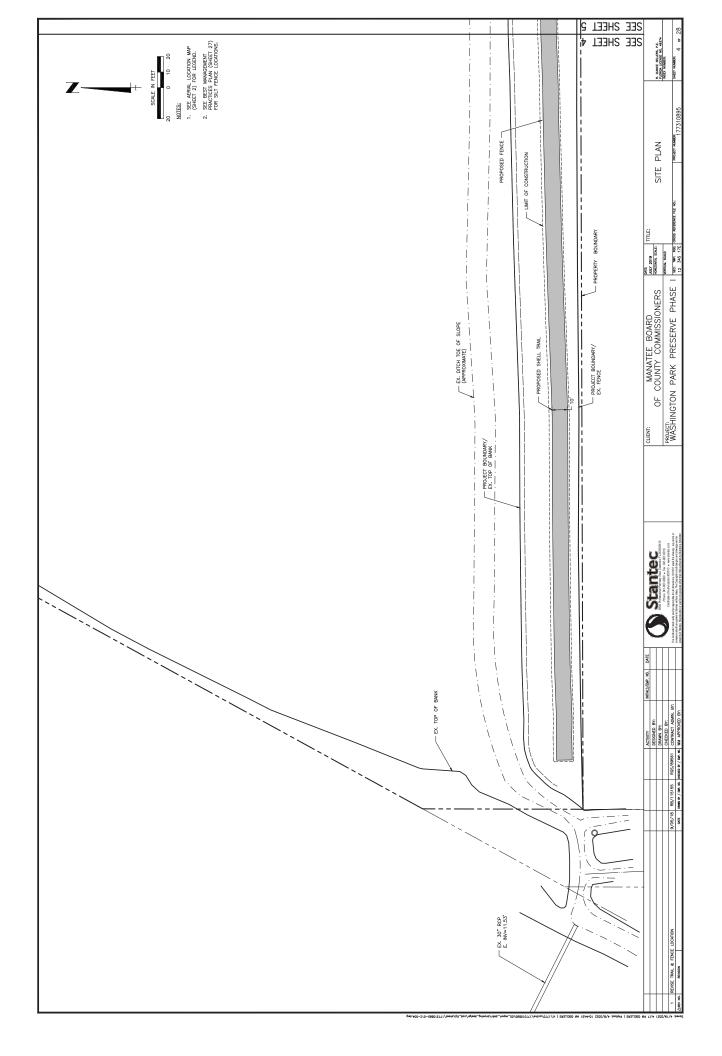
WHOSE DICHARIONS ARE IN CLOSE PROMAIN OF PRESS, THE CONTRICTOR SHALL USE DIFFICIENCE OFFET TO MAINTHING THE ROOT STATEM OF DOWNMAN THE STATEM OF THE WINNING THE OFFET STATEM OF THE WINNING THE OFFET STATEM OF THE WINNING TO INFORM ALL OF HIS STATEMENT OF THE WINNING TO INFORM ALL OF HIS STATEMENT AND TO THE UNIVERSITY OF THE WINNING TO WINNING THE WINN

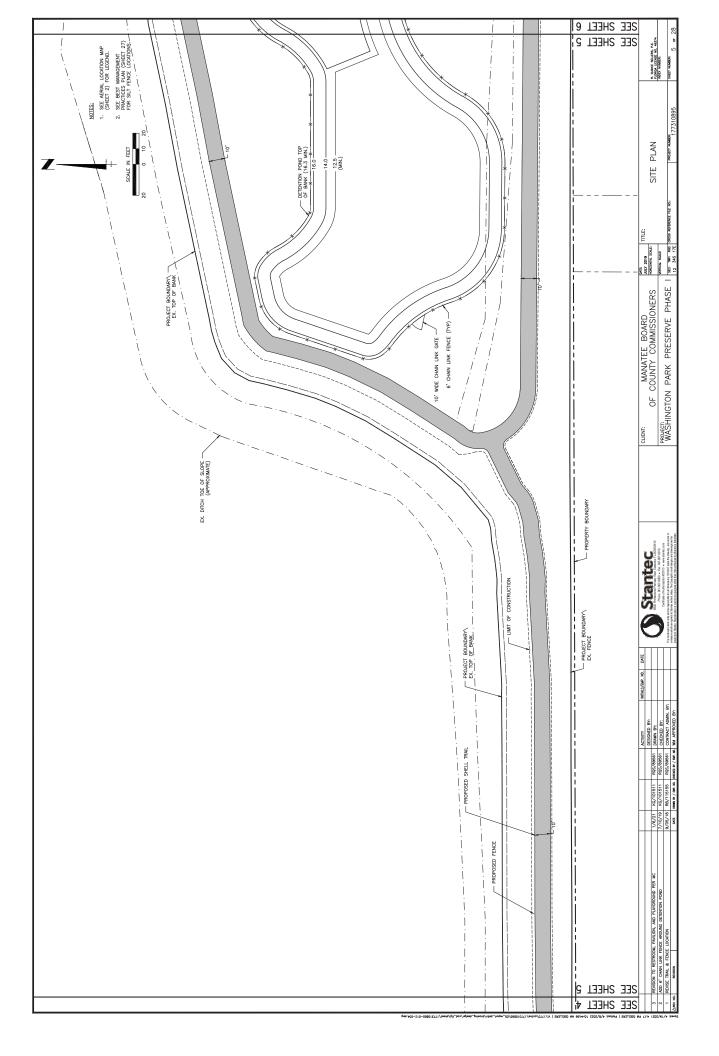
CERM RESER RESCRICTOR TO THE OWNERS AROUND HEAD TO THE WASHINGTON THE SHALL

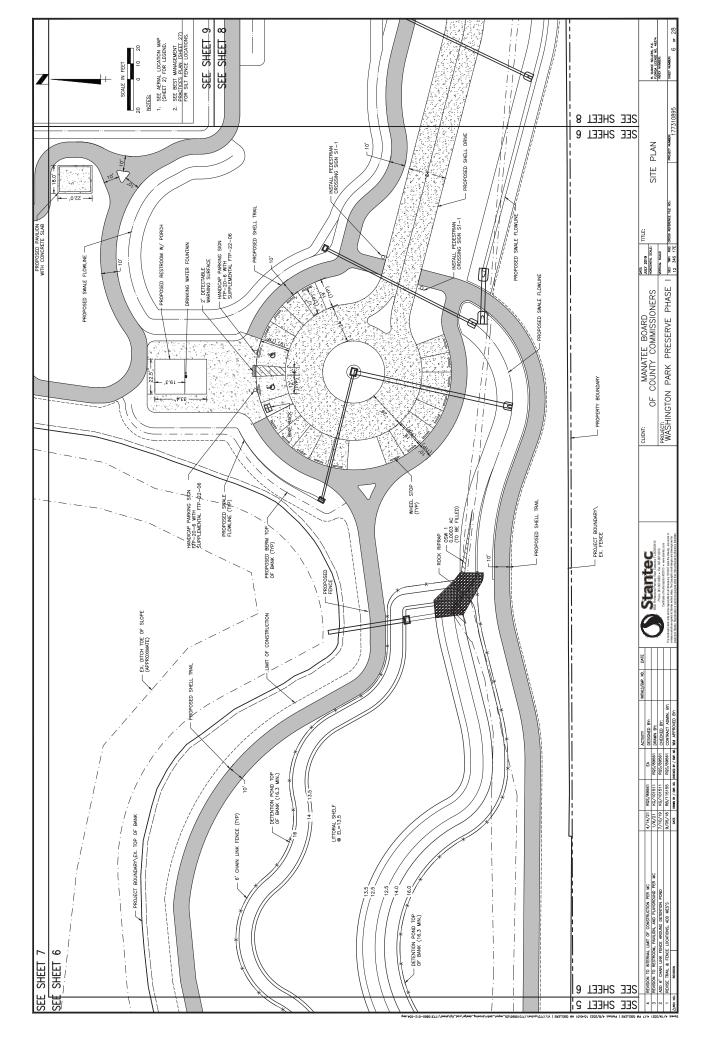
Stante C 6900 Professional Parkway East, Sarsota, El 34240-8414

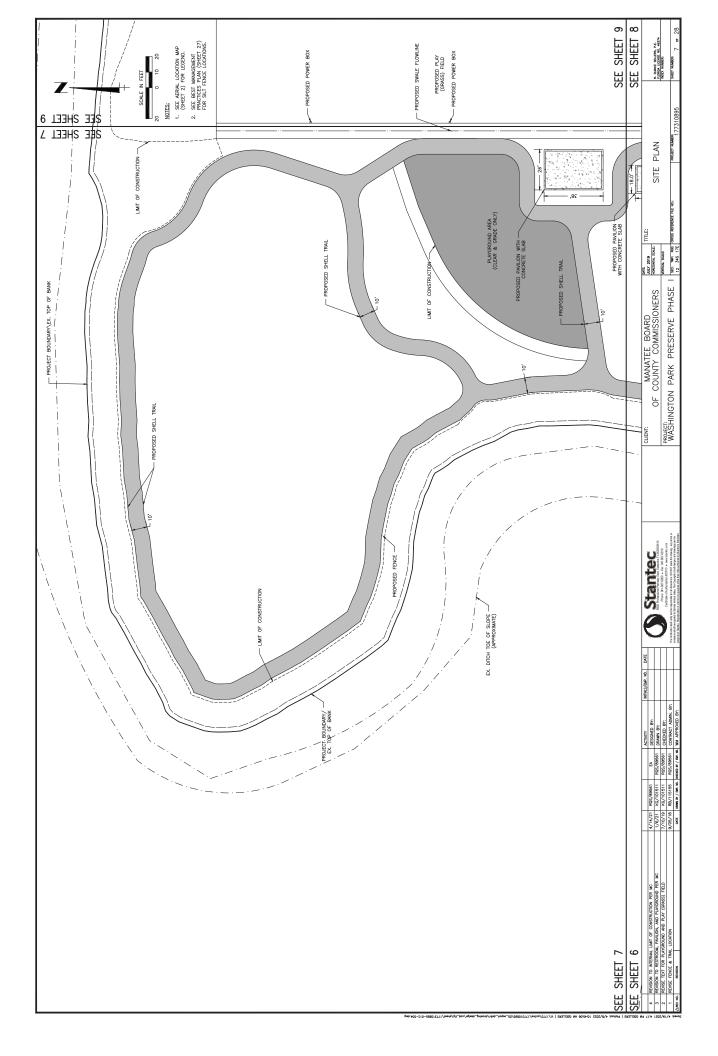

Certificate of Authorization #27013 • www.stantec.com Phone 941-907-6900 • Fax 941-907-6910

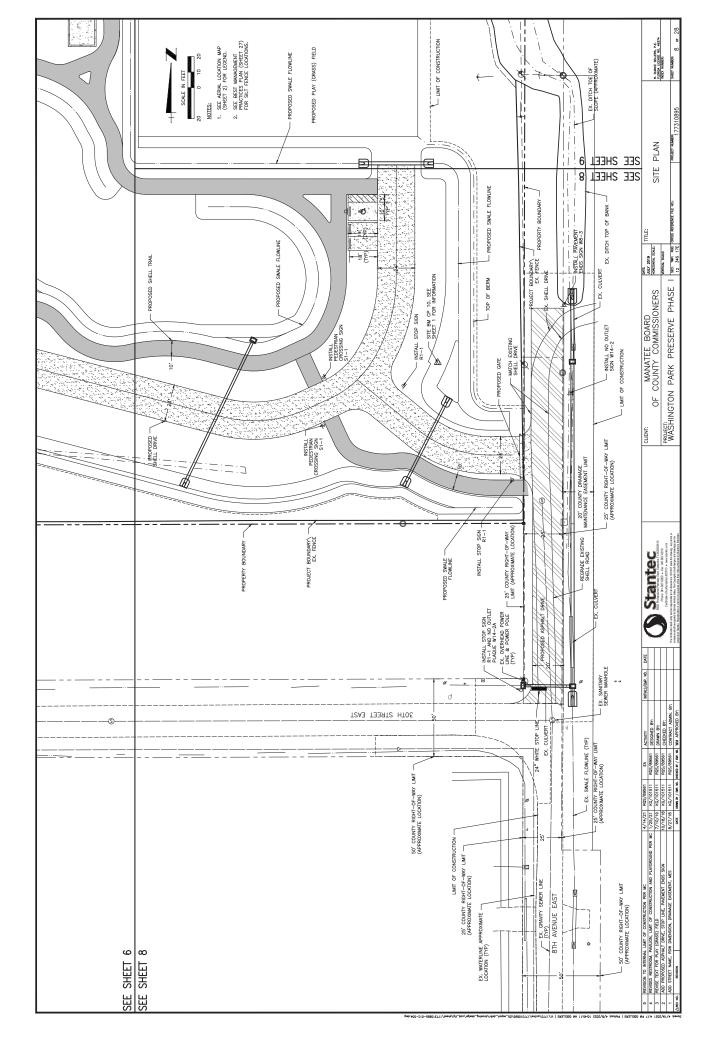

omissions shall be reported to Stantec without delay. The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden. The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or

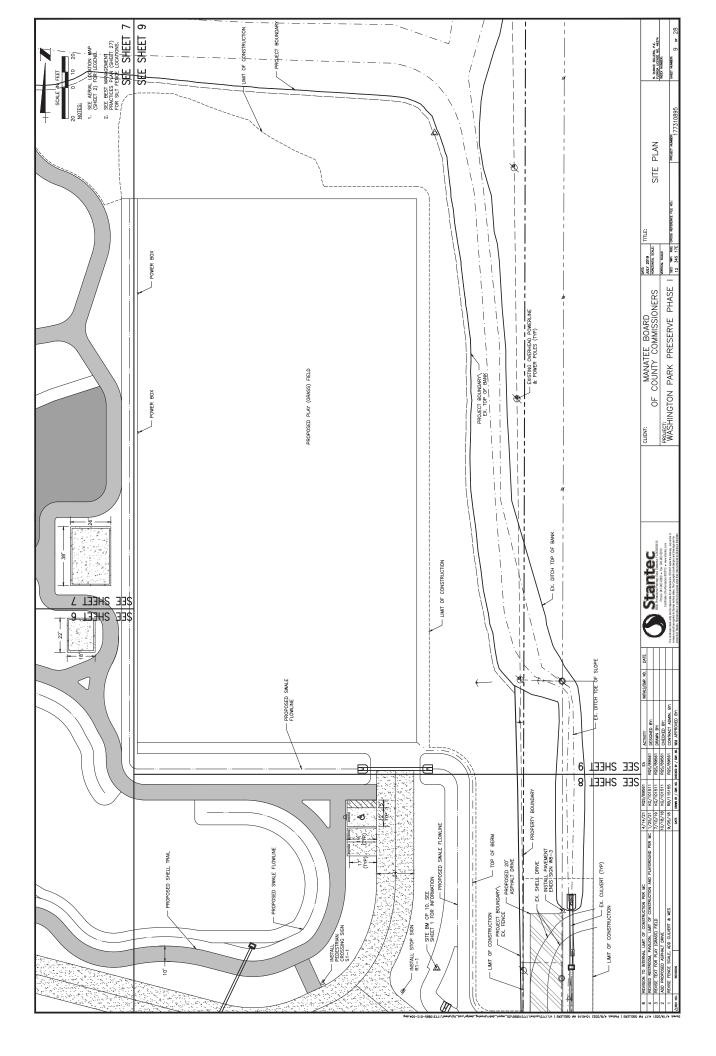

D-177310895-01C-001

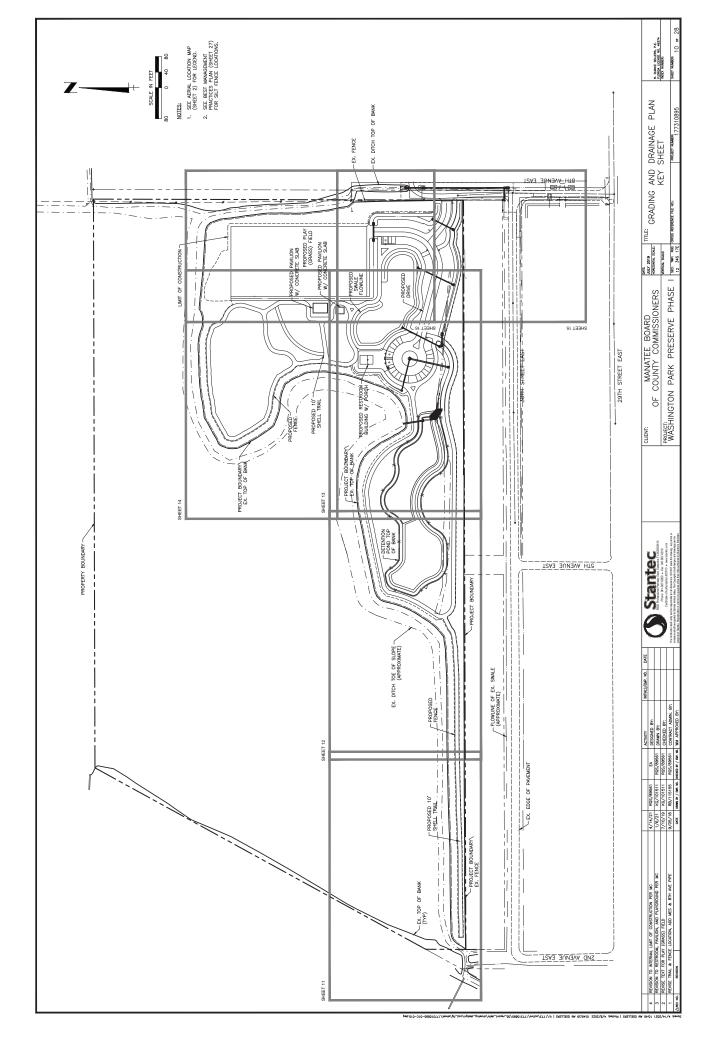

JULY 2019

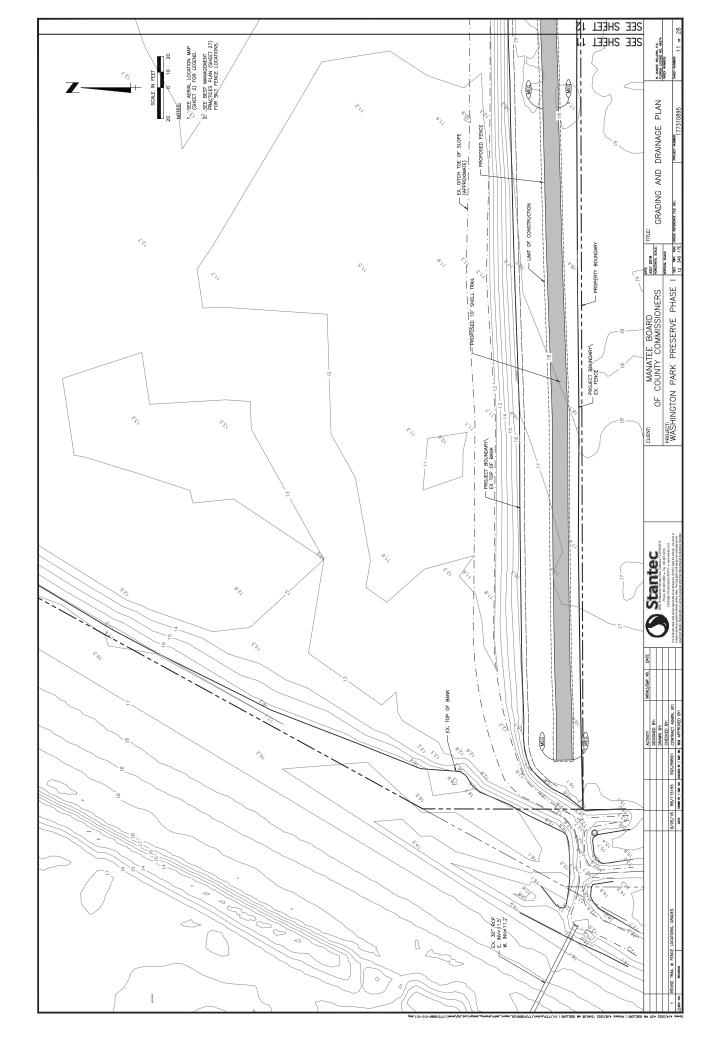

177310895

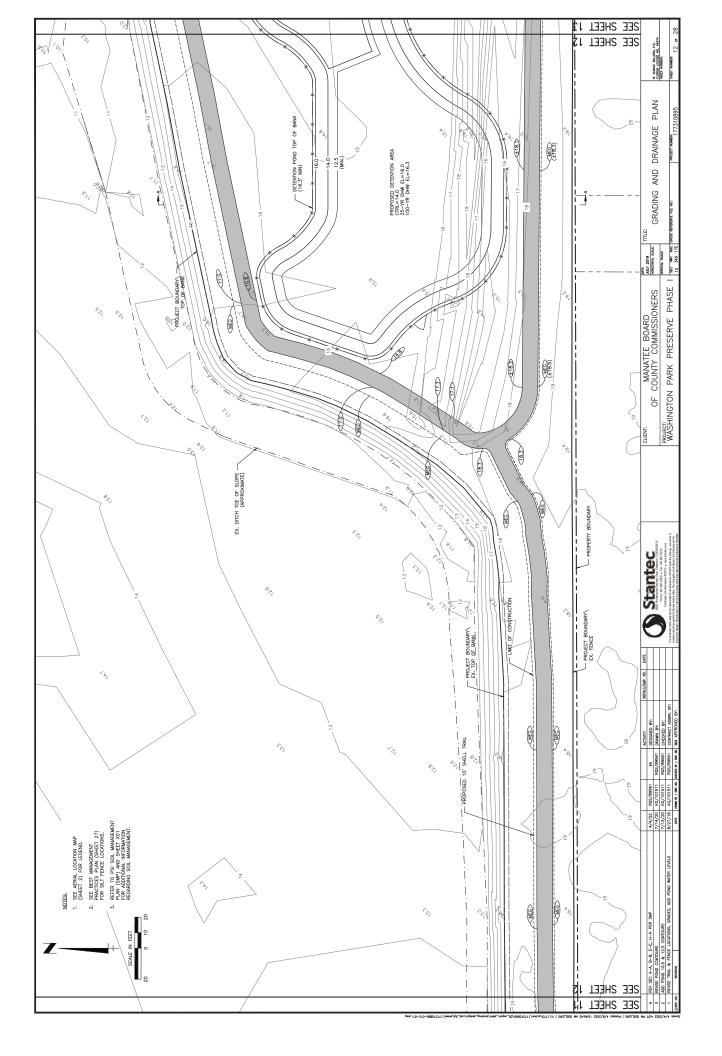


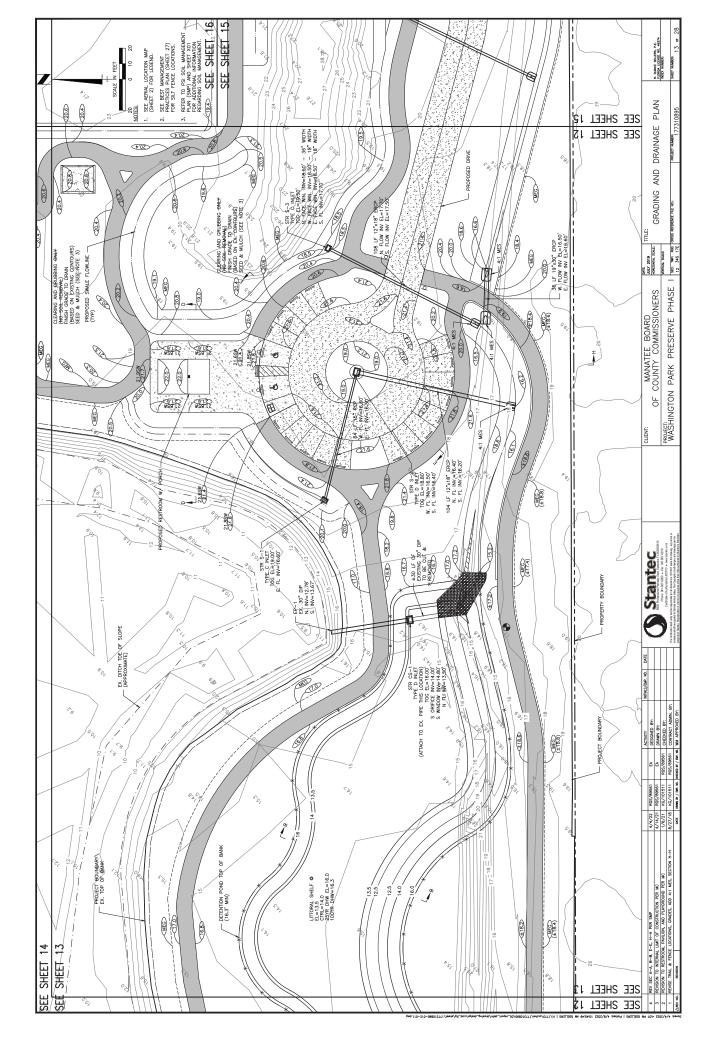


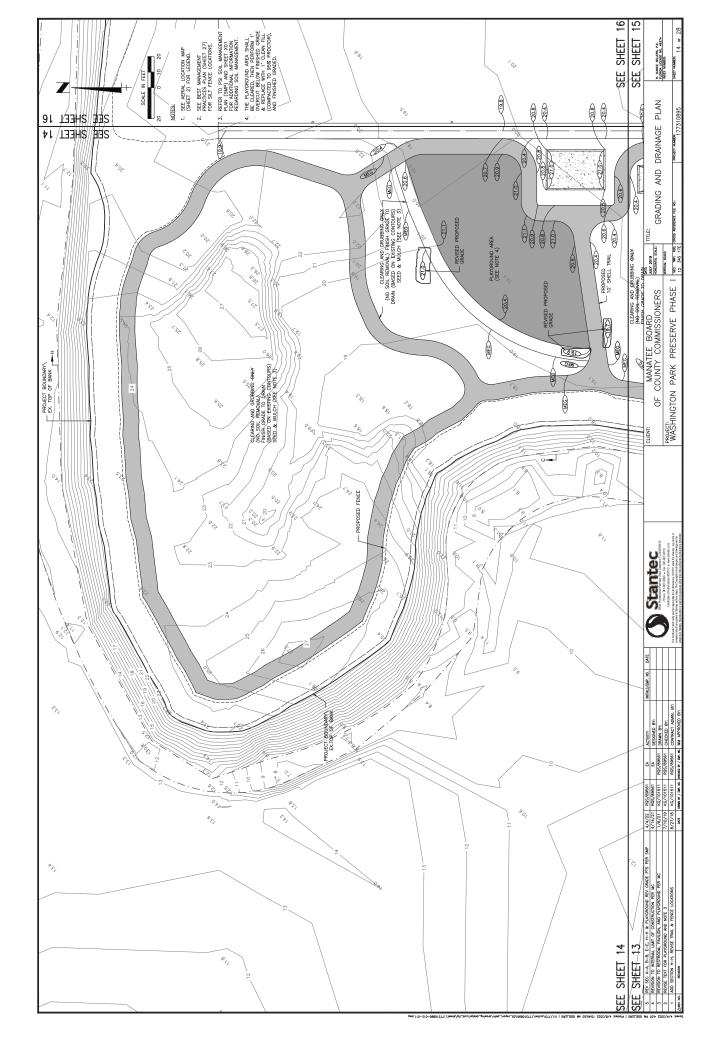


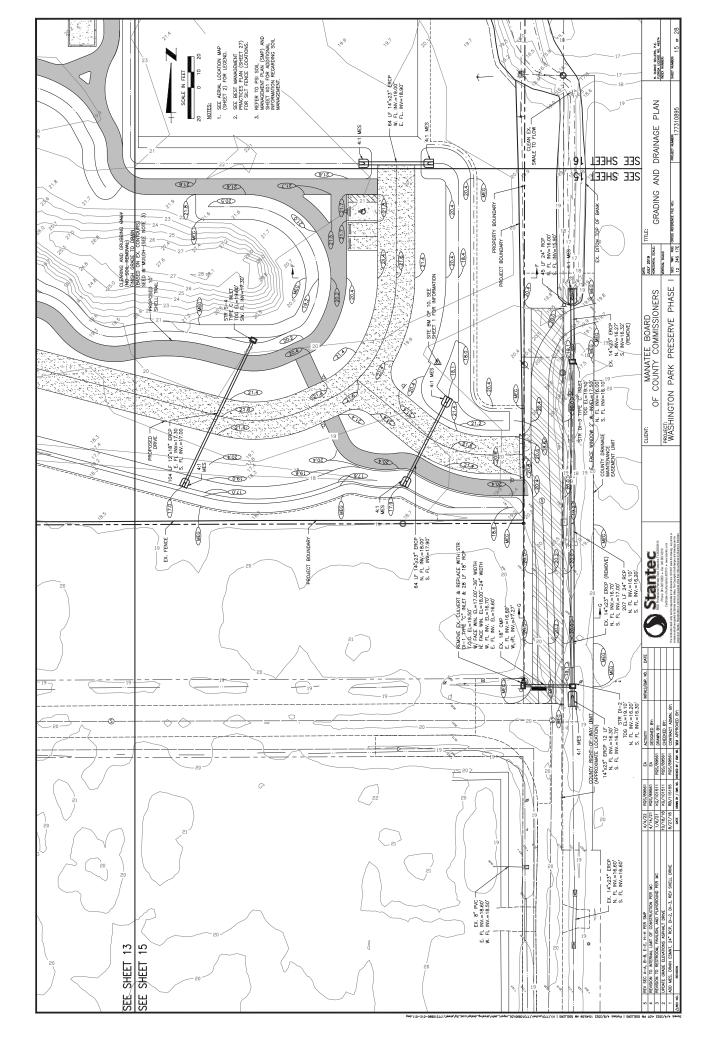


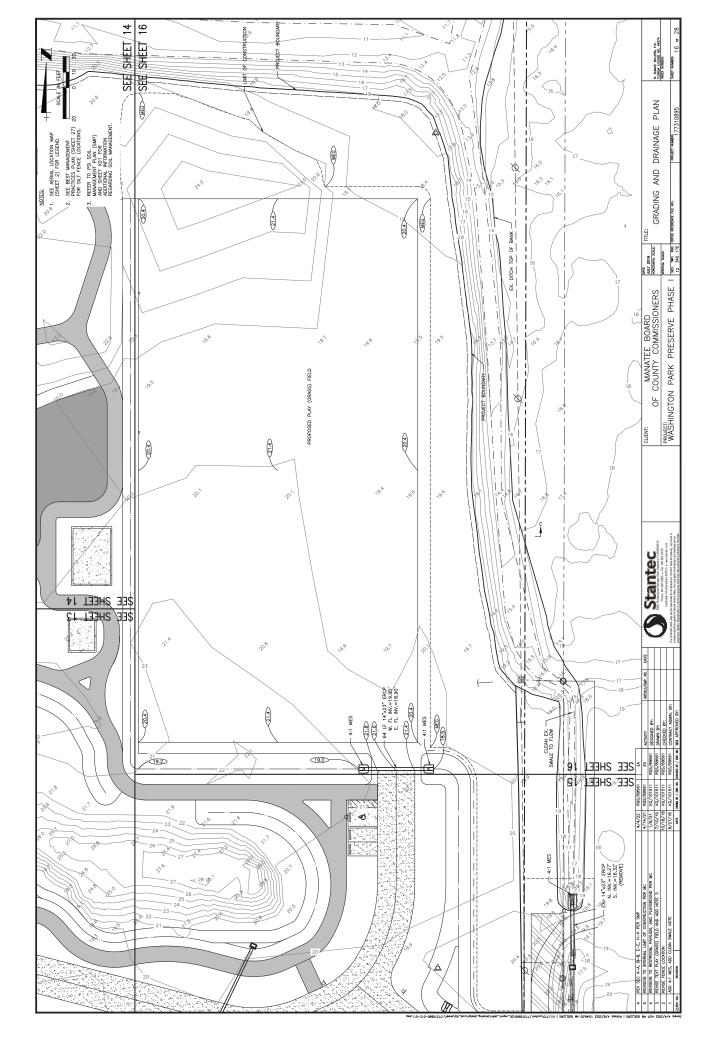


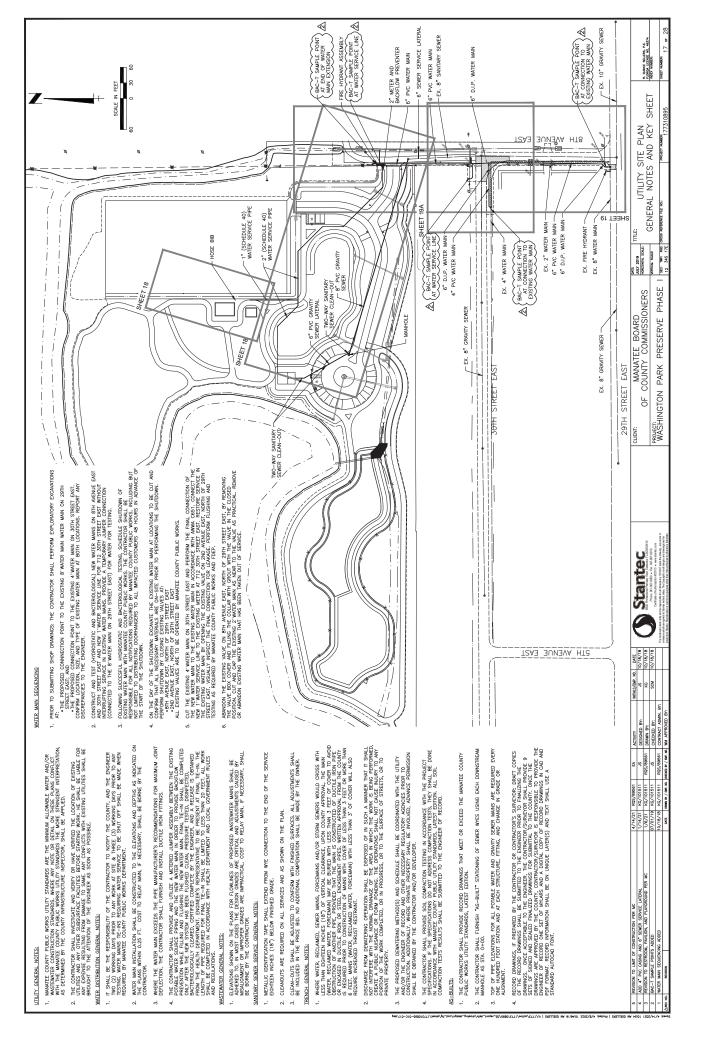


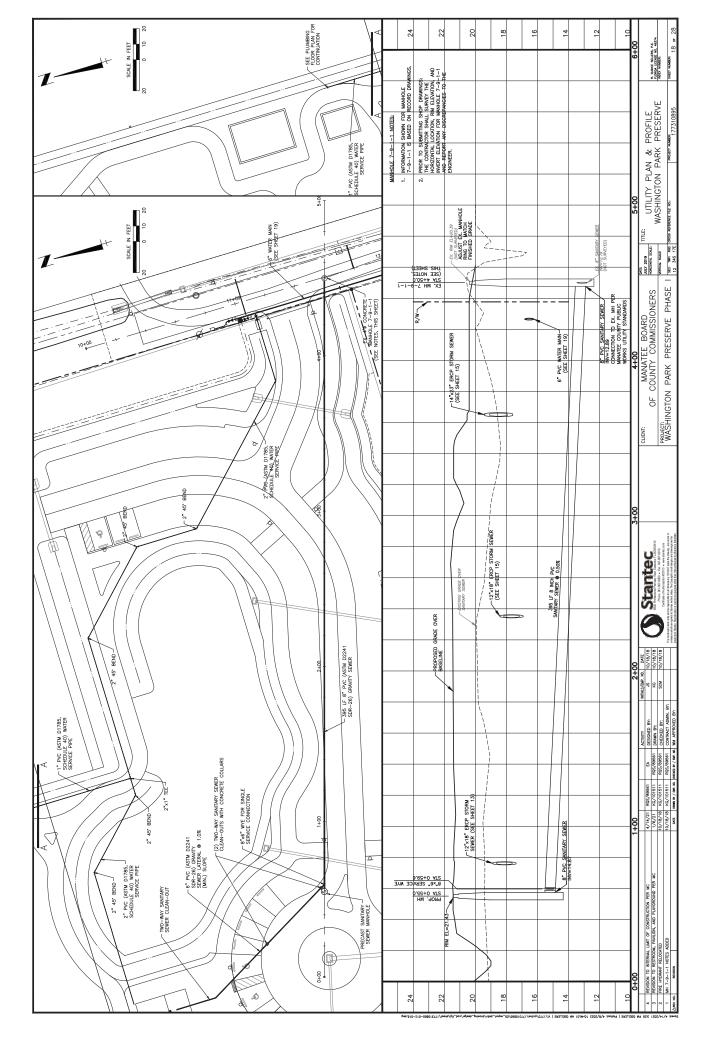


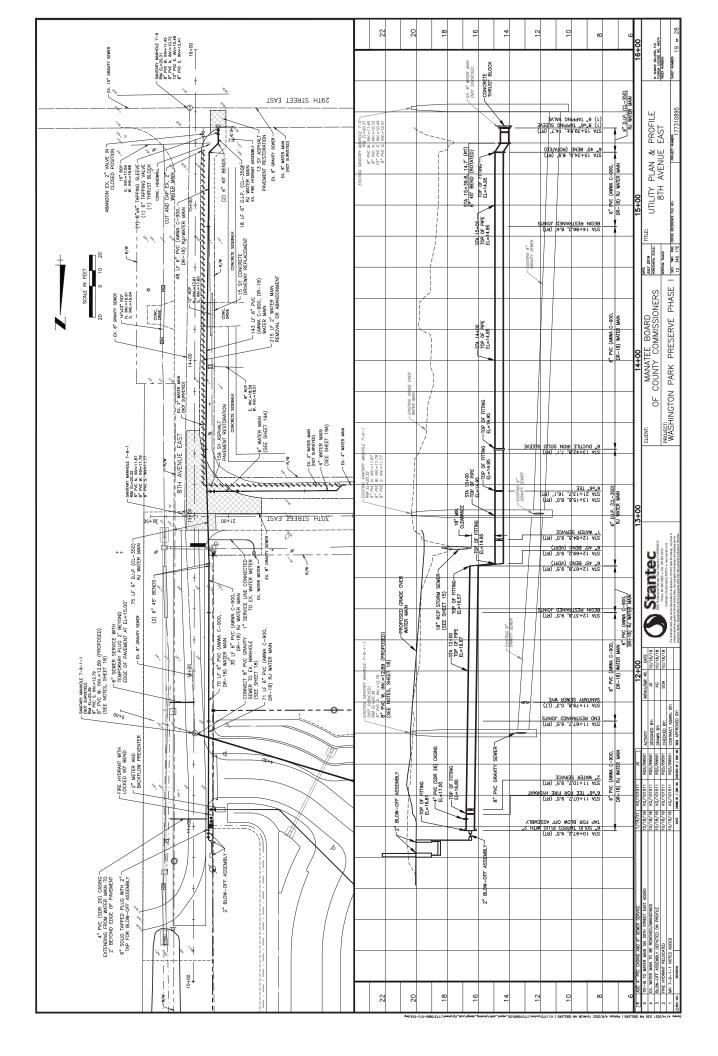


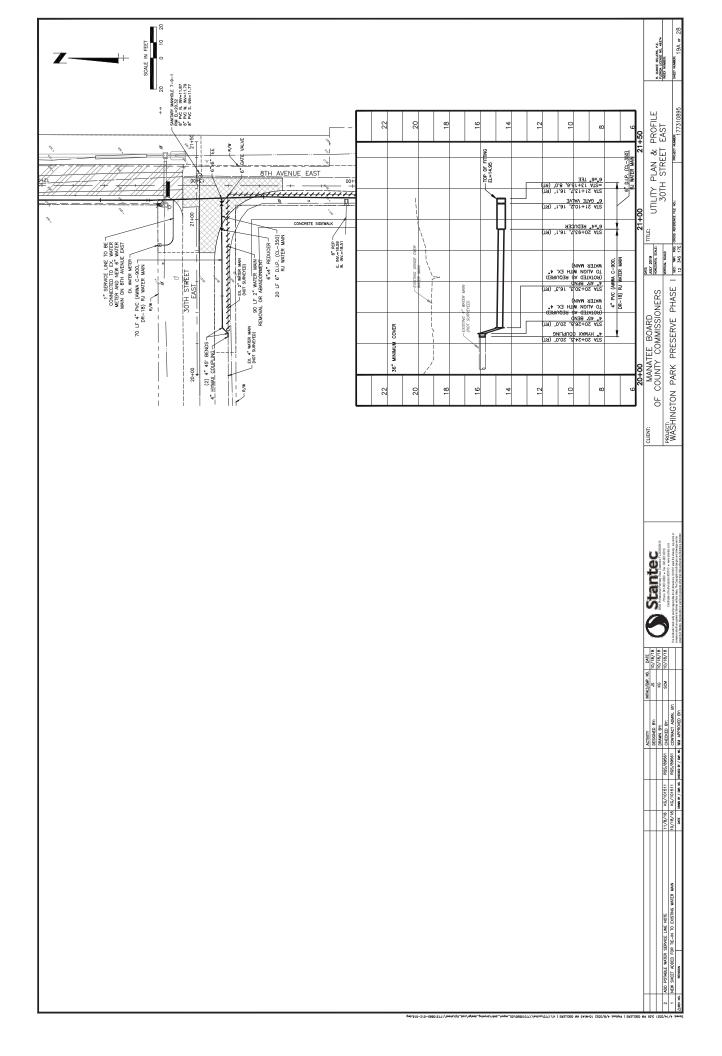


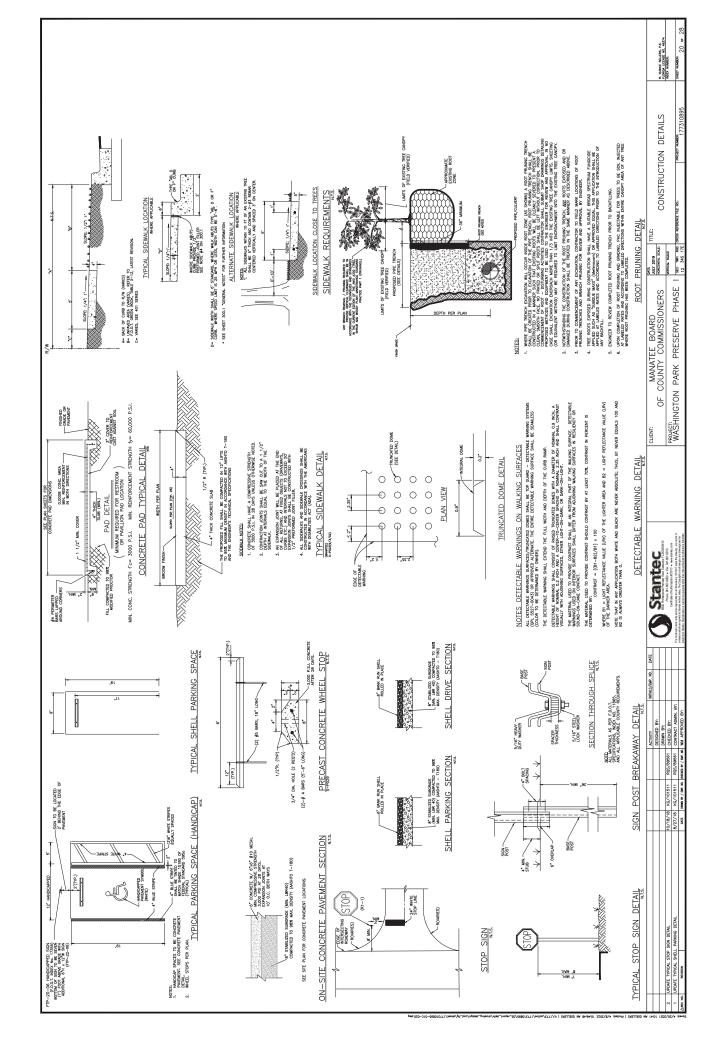


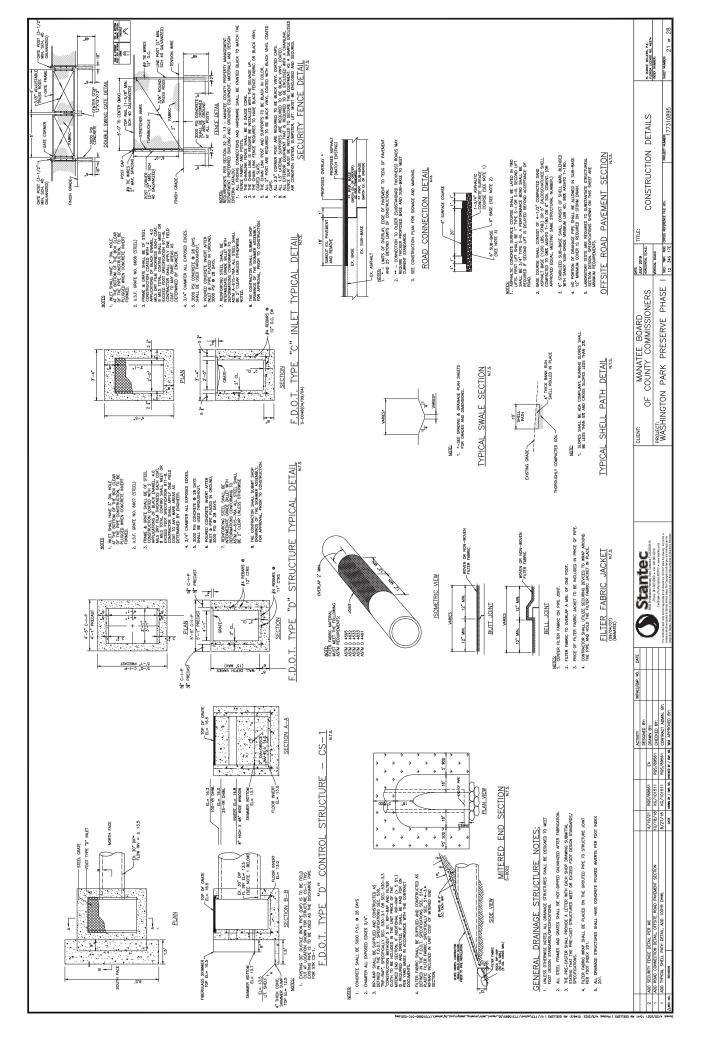


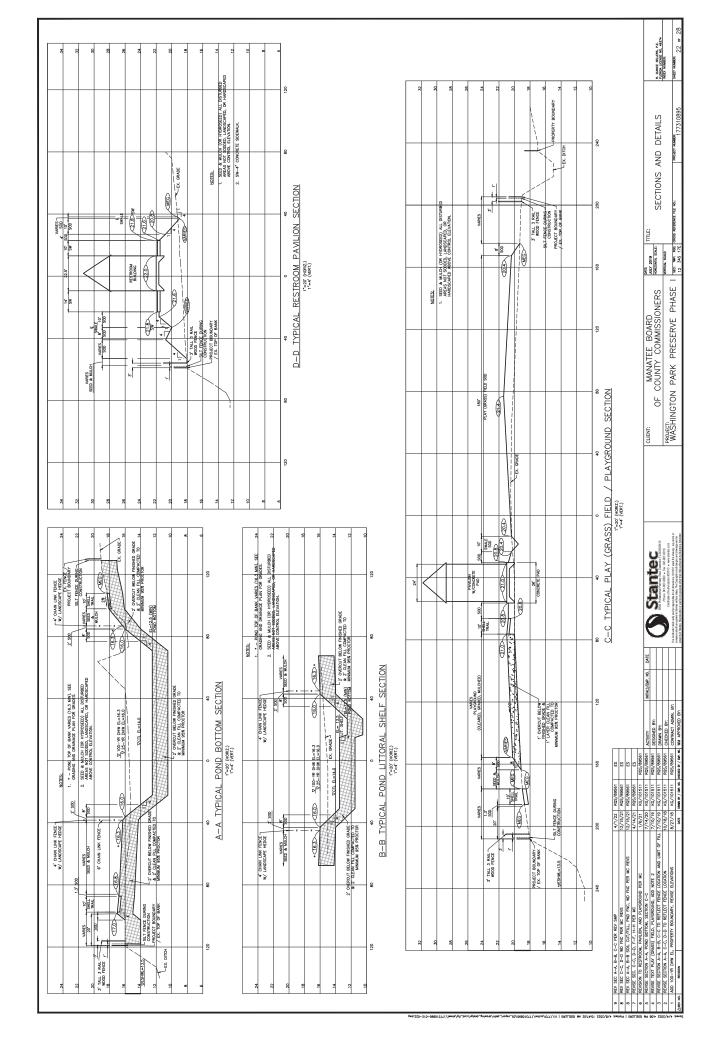


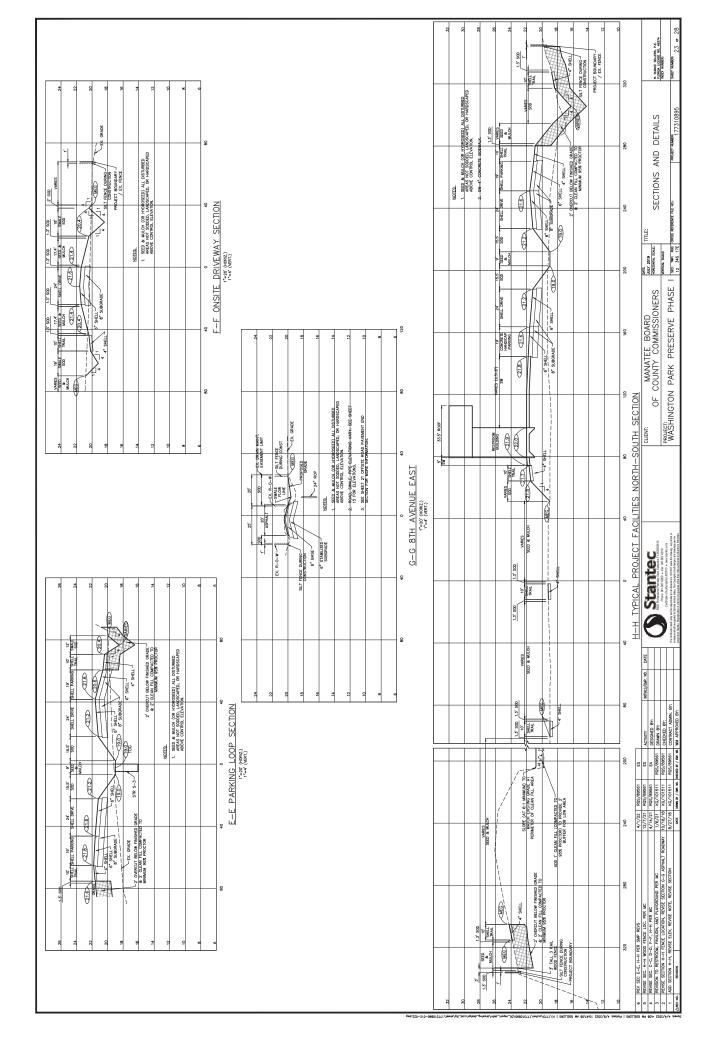


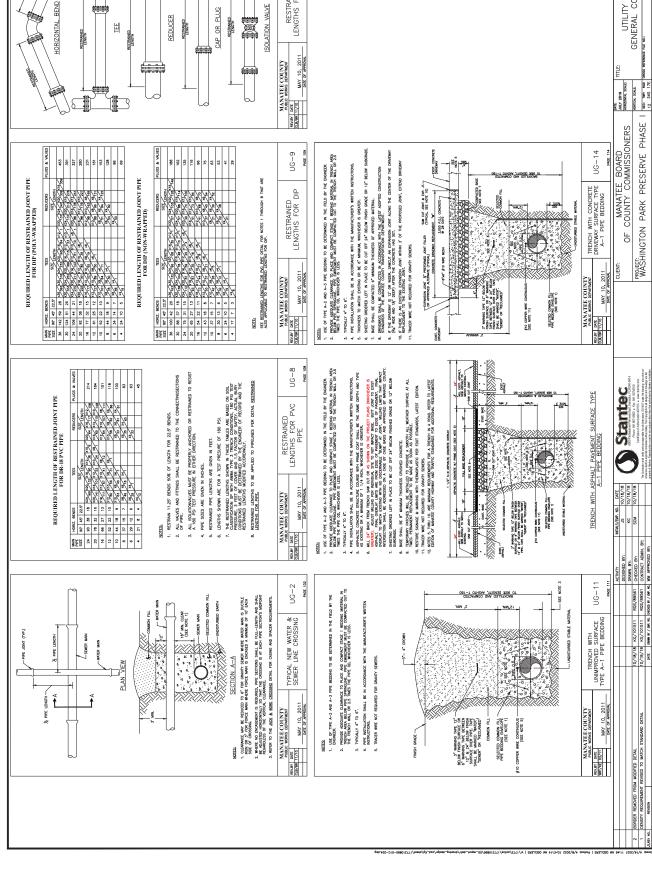












UG-10

RESTRAINED LENGTHS FOR PIPE

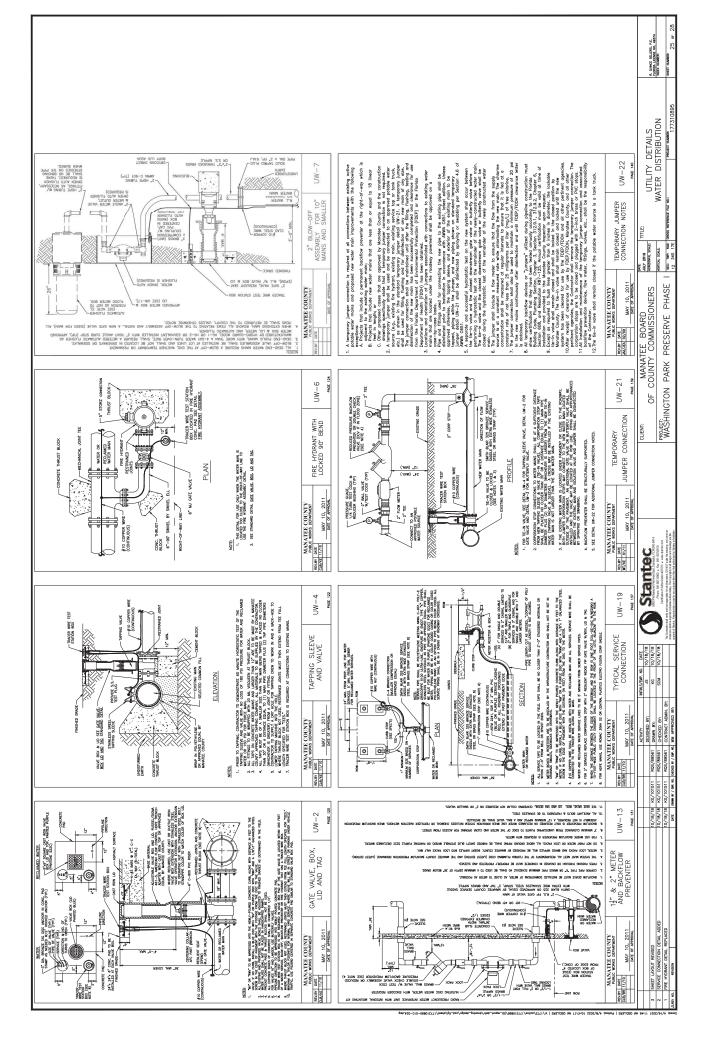
CAP OR PLUG

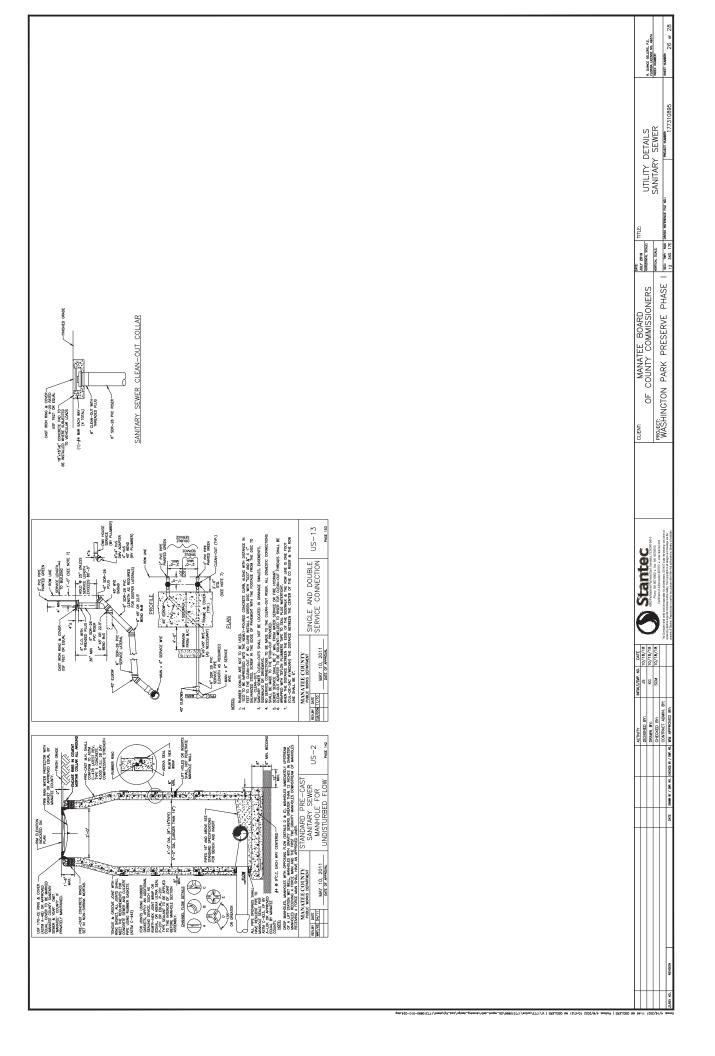
RESTRAINED

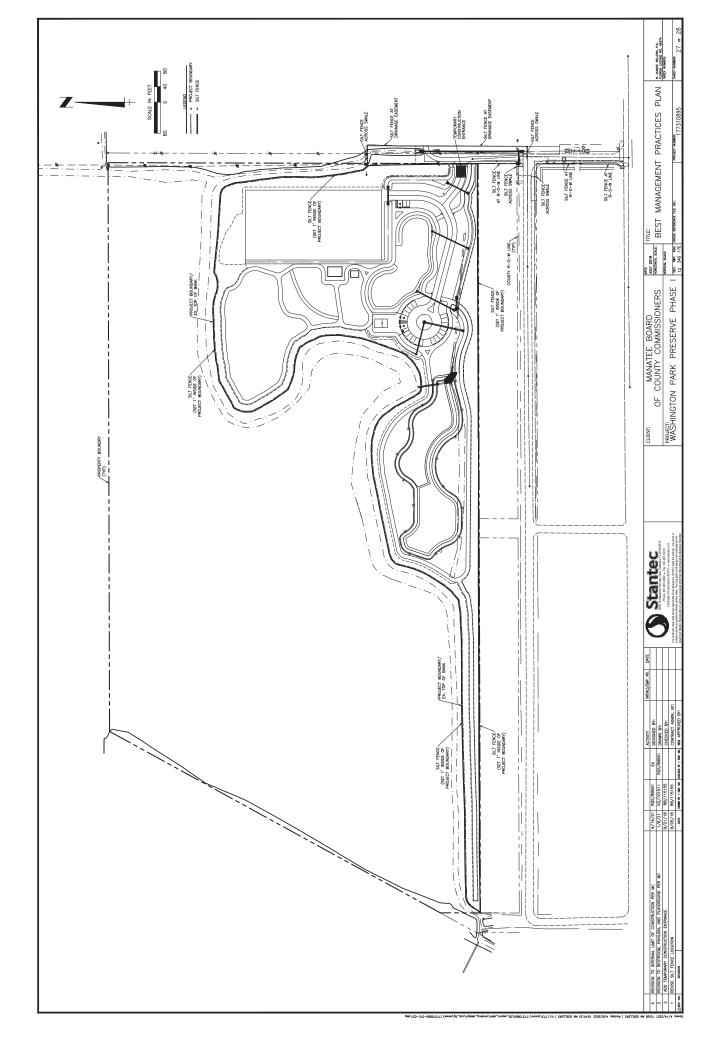
REDUCER

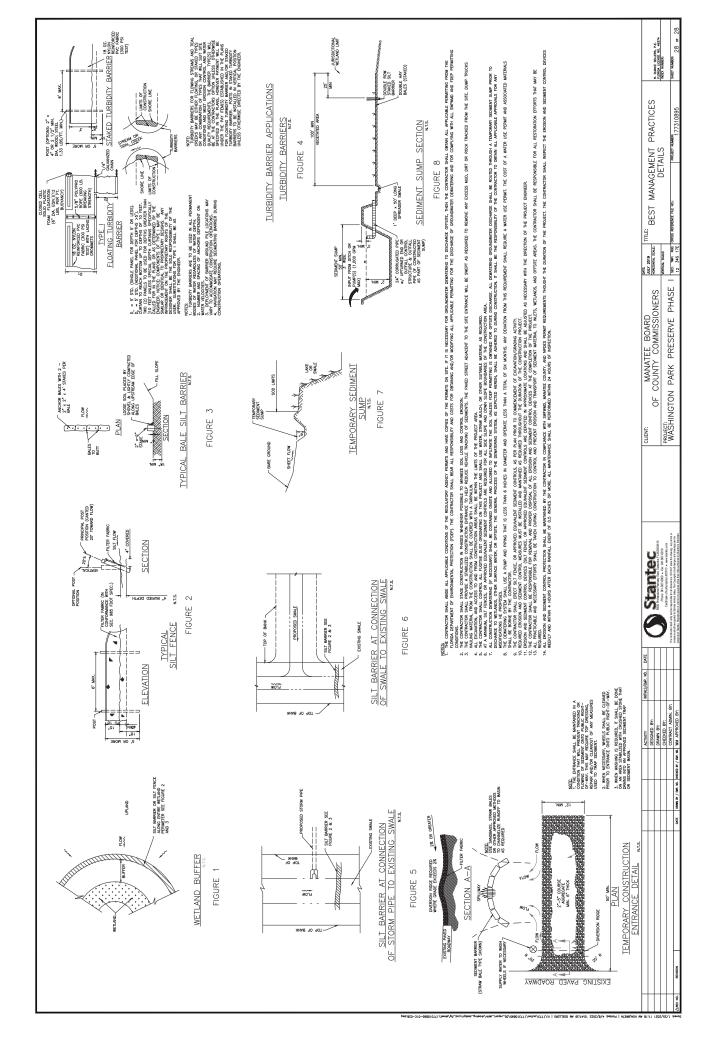
비

LENGTH


	DATE: JULY 2019	HORIZONTAL S	vos пошиал	SEC: TWP:
				_
_		ONERS		PHASE
PAGE 114	MANATEE BOARD	OF COUNTY COMMISSIONERS		SERVE
	뷜	ö		몺
	MANA	YUNOX		PARK
		OF O		WASHINGTON PARK PRESERVE PHASE
ROWL	CLIENT:		PROJECT:	WASH


10/18/18 10/18/18


BORDER REMOVED FROM MODIFIED DETAIL. DENSITY REQUIREMENT REVISED TO MATCH STANDARD DETAIL.


TITLE: UTILITY DETAILS GENERAL CONSTRUCTION

	R. QUINCE SELLENS, P.E.	NORDA LICENSE NO. 4937	SPEET NUMBER:
ше	1 UTILITY DETAILS	- CENERAL CONSTRICTION	ROE: OROSS REPRENCE PLE NO.: PROJECT NUMBER:
١.	SCALE	400	ROE

APPENDIX A

Correspondence Dated January 23, 2007 from Drs. Robert and Stuchal to FDEP Bureau of Waste Cleanup

APPENDIX B

Phase II Environmental Site Assessment Results
Washington Park Site
Palmetto, FL

Prepared by Cardno TBE Dated June 2014

APPENDIX C

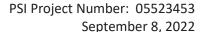
Site Construction Plans

APPENDIX A

Correspondence Dated January 23, 2007 from Drs. Robert and Stuchal to FDEP Bureau of Waste Cleanup

APPENDIX B

Phase II Environmental Site Assessment Results
Washington Park Site
Palmetto, FL


Prepared by Cardno TBE Dated June 2014

APPENDIX C

Site Construction Plans

Professional Service Industries, Inc. 5801 Benjamin Center Drive, Suite 112, Tampa, FL 33634

Phone: (813) 886-1075 Fax: (813) 249-4916

Mr. Robert Sellers
Florida Department of Environmental Protection – Southwest District
13051 Telecom Parkway
Temple Terrace, FL 33637
Robert.Sellers@FloridaDEP.gov

RE: Solid Waste Assessment Letter Report – Response to Comments

Washington Park Preserve 3011 8th Avenue East Palmetto, Manatee County, Florida 34221

Dear Mr. Sellers;

Professional Service Industries, Inc. (PSI), an Intertek company, is pleased to submit for your review and consideration our Solid Waste Assessment Letter Report – Response to Comments for the Washington Park Preserve. The comment letter was received on August 3, 2022, our responses are below each comment in *red*.

The Department of Environmental Protection has reviewed the above referenced report dated June 2, 2022, received June 6, 2022, prepared by Professional Service Industries, Inc. (PSI) on behalf of the Manatee County Parks and Recreation Division. The department has the following comments on the above referenced document:

1. The extent of the buried waste does not appear to have been fully delineated. Additional delineation should be conducted to the west and south of test pit #8, near the proposed playground area and the site boundary. The delineation should determine the extent of the buried waste within the boundaries of the site and ensure that there is a minimum of 2-foot of cover at all locations where buried waste will be left in place.

A 2-foot overcut below finished grade with 2 foot of clean fill will be conducted at the proposed playground area.

Test pit 8 was conducted on a low area on the site, further assessment to the south and west should not be necessary as solid waste is assumed to extend to the boundaries of the site in these directions.

2. It does not appear that groundwater has been fully assessed at the site. Temporary monitoring well TWM-3 recorded arsenic concentrations above regulatory limits, as documented in the 2014 Phase II Environmental Site Assessment Report. The department recommends the installation of permanent monitoring wells to complete groundwater assessment and delineation. Analysis of groundwater from

PSI Project No. 05523453 Washington Park Preserve Solid Waste Assessment Letter Report - RTC September 8, 2022 Page 2

temporary monitoring wells often have "false high" detections of metals due to their construction methodology and potentially higher turbidity levels in the samples.

A permanent monitoring well (MW-1) has been installed to the west of the playground area, in the same vicinity as the former TMW-3. The well was sampled on November 8, 2021 for arsenic, a result of 2.4 (I) μ g/L was returned. This result is below the GCTL for arsenic in groundwater of 10 μ g/L.

The arsenic detection in TMW-3 during the Phase II assessment was the only detection found.

3. Groundwater assessment should also include groundwater elevation measurements to determine the direction of groundwater flow in the surficial aquifer at the site.

At least two additional monitoring wells will be required to accurately determine groundwater flow direction. Groundwater contamination has been shown to not be present at the site from samples collected during the Phase II investigation and from the permanently installed monitoring well MW-1.

The site should be regulated under the solid waste regulations, not under 62-780.

4. Most of the deeper waste appears to be located in the area of the proposed stormwater detention pond. The horizontal and vertical extent of waste has not been fully delineated in this area and buried waste extends below the water table at some test pit locations. Figure 2 indicates a 2-foot overcut below finished grade of the pond and replaced with 2-foot thick, clean backfill. As discussed in the January 12, 2022 virtual meeting, if any buried waste is to be left in place within the proposed detention pond area, the pond will need to be lined.

All of the solid waste debris in and immediately surrounding the stormwater detention pond area will be excavated down to native soil and removed from site and backfilled with clean fill to design/natural grade. A redesign of the pond is currently underway.

5. Section 4.3, Item (b) of the Guidance For Disturbance And Use Of Old Closed Landfills Or Waste Disposal Areas In Florida, Version 2.3 Final, dated April 2, 2019 requires that a combustible gas survey be conducted prior to waste disturbance or removal. Soil monitoring probes must be installed where the wastes are located and sampled for combustible gases. Soil monitoring probes shall extend to the depth of the base of the buried waste or at least three feet below ground surface, whichever is deeper. Sampling must be conducted in the headspace of the monitoring probe without purging the gas before collecting the sample.

Buried waste will be removed from the proposed stormwater detention pond area. Solid waste extends to below the groundwater. In addition, buried waste will be removed and backfilled with clean fill back to natural grade within the hatched area northwest of the proposed playground, shown on Figure 2.

Only one enclosed structure will be present on the site, a restroom near the parking area, to the south of test pit #16. A passive methane mitigation system can be installed at this location as the foundation has not yet been constructed. The foundation for the restroom building will consist of 10-inches of crushed

PSI Project No. 05523453 Washington Park Preserve Solid Waste Assessment Letter Report - RTC September 8, 2022 Page 3

concrete. The restroom building has been fabricated off site and will be installed once the foundation is completed. The passive methane mitigation system can be adapted to be an active mitigation system if excess methane is detected at the restroom location.

6. Ambient air monitoring should be conducted during excavation activities to ensure that conditions for combustible gases are not being created.

Monitoring for methane gas can be conducted during the excavation of the solid waste at the proposed stormwater detention pond and in the hatched area northwest of the proposed playground (Figure 2).

7. If soils are screened during waste removal for use as backfill and placed on the surface or mixed within the top 2 feet, those soils must be managed so as to not cause violations of applicable Department standards and criteria. Section 4.5, Item (b) of the Guidance For Disturbance And Use Of Old Closed Landfills Or Waste Disposal Areas In Florida, Version 2.3 Final, dated April 2, 2019, allows for the calculation of a separate human health risk assessment (HRA) to determine the potential risks from the proposed use of the Screened Solid Waste (SSW). The Soil Cleanup Target Levels contained in Table II of Chapter 62-777, F.A.C. would apply if no HRA is conducted.

Screening of solid waste from soils will not occur at this site.

8. Sampling of SSW should include discrete and composite samples at the minimum frequency indicated in Table 1 of the guidance document referenced in Comment 7, above.

Screening of solid waste from soils will not occur at this site.

9. Discussion, Page 3: Please provide an explanation on how the section narrative which discusses pH, manholes in the vicinity of the lift station and corrosion of sump pumps is related to the solid waste assessment of the Washington Park Preserve site.

A corrected version of the Letter Report, omitting the erroneously included items, was submitted to Robert Sellers on July 8, 2022.

PSI Project No. 05523453 Washington Park Preserve Solid Waste Assessment Letter Report - RTC September 8, 2022 Page 4

PSI appreciates the opportunity to be of service to the FDEP – Solid Waste Permitting & Waste Cleanup Division. We look forward to working with you on this important project. If you have any questions, please feel free to contact us at (813) 886-1075.

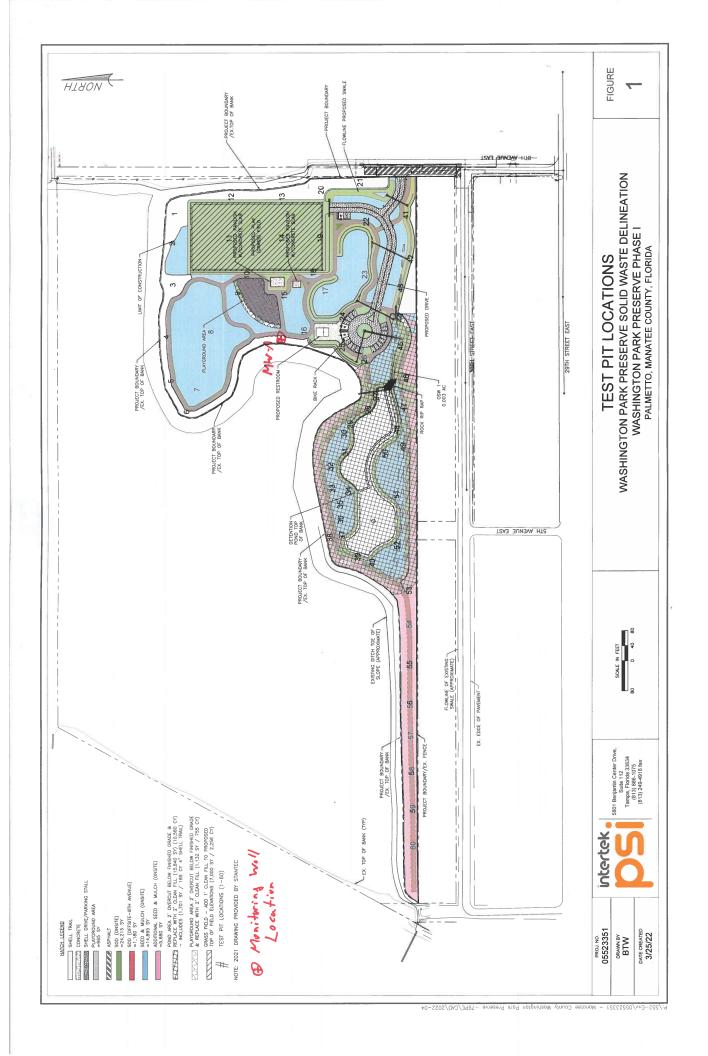
Respectfully submitted,

PROFESSIONAL SERVICE INDUSTRIES, INC.

Scott Jordan, P. E. Project Engineer

Michael Rothenburg, P. E.

Environmental Services Department Manager


Cc: Melissa Madden, Southwest District DEP, melissa.madden@FloridaDEP.gov

Justin Chamberlain, P.G., Southwest District DEP, justin.chamberlain@FloridaDEP.gov

Alissa Powers, Manatee County Parks and Natural Resources, Alissa.powers@mymanatee.org

Attachments: Figure 1, Analytical Report

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Tampa 6712 Benjamin Road Suite 100 Tampa, FL 33634

Tel: (813)885-7427

Laboratory Job ID: 660-115214-1 Client Project/Site: Washinton Park

For:

Professional Service Industries (PSI) 5801 Benjamin Center Drive Suite 112 Tampa, Florida 33634

Attn: Scott Jordan

Authorized for release by: 11/11/2021 1:08:36 PM

Amy Weinberg, Project Manager II (813)885-7427

amy.weinberg@Eurofinset.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

7

ŏ

4.0

13

1 /

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions/Glossary	5
Detection Summary	6
Client Sample Results	7
QC Sample Results	8
QC Association Summary	9
Lab Chronicle	10
Method Summary	11
Certification Summary	12
Chain of Custody	13
Receipt Checklists	14

4

4

9

10

12

13

Sample Summary

Client: Professional Service Industries (PSI) Project/Site: Washinton Park

Job ID: 660-115214-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
660-115214-1	MW-A	Water	11/08/21 10:43	11/08/21 15:00

Case Narrative

Client: Professional Service Industries (PSI)

Project/Site: Washinton Park

Job ID: 660-115214-1

Job ID: 660-115214-1

Laboratory: Eurofins TestAmerica, Tampa

Narrative

Job Narrative 660-115214-1

Comments

No additional comments.

Receipt

The sample was received on 11/8/2021 3:00 PM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.4° C.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

- 6

4

6

_

1.0

44

12

13

Definitions/Glossary

Client: Professional Service Industries (PSI)

Project/Site: Washinton Park

Job ID: 660-115214-1

Qualifiers

M	eta	ls

Qualifier **Qualifier Description**

The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

U Indicates that the compound was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery

CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) DER

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DΙ

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) Most Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) RER

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Detection Summary

Client: Professional Service Industries (PSI)

Project/Site: Washinton Park

Client Sample ID: MW-A

Lab Sample ID: 660-115214-1

Job ID: 660-115214-1

Г									
Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.0024	I	0.010	0.0019	mg/L	1	_	6010D	Total
									Recoverable

2

4

6

8

9

11

10

Client Sample Results

Client: Professional Service Industries (PSI)

Job ID: 660-115214-1

Project/Site: Washinton Park

Client Sample ID: MW-A Lab Sample ID: 660-115214-1

Date Collected: 11/08/21 10:43

Date Received: 11/08/21 15:00

Method: 6010D - Metals (ICP)	 Total Reco 	verable							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0024	T .	0.010	0.0019	mg/L		11/10/21 08:46	11/11/21 10:12	1

1

8

10

12

13

QC Sample Results

Job ID: 660-115214-1 Client: Professional Service Industries (PSI)

Project/Site: Washinton Park

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 660-245375/1-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 245436 MB MB **Prep Type: Total Recoverable Prep Batch: 245375**

Result Qualifier PQL **MDL** Unit Prepared Analyzed Dil Fac Analyte 0.010 0.0019 mg/L 11/10/21 08:46 11/11/21 09:52 Arsenic 0.0019 U

Lab Sample ID: LCS 660-245375/2-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Recoverable Analysis Batch: 245436 Prep Batch: 245375**

Spike LCS LCS %Rec. Added Result Qualifier Unit D %Rec Limits Analyte 1.00 80 - 120 Arsenic 1.00 mg/L 100

Lab Sample ID: 660-115185-B-1-D MS **Client Sample ID: Matrix Spike Matrix: Water Prep Type: Total Recoverable Analysis Batch: 245436 Prep Batch: 245375**

Sample Sample Spike MS MS %Rec.

Result Qualifier Added Result Qualifier Limits Analyte Unit %Rec Arsenic 0.0027 I 1.00 1.03 75 - 125 mg/L

Lab Sample ID: 660-115185-B-1-E MSD **Client Sample ID: Matrix Spike Duplicate Matrix: Water Prep Type: Total Recoverable**

Analysis Batch: 245436

Prep Batch: 245375 Spike MSD MSD %Rec. **RPD** Sample Sample

Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Arsenic 0.0027 I 1.00 1.02 75 - 125 mg/L 102

11/11/2021

QC Association Summary

Client: Professional Service Industries (PSI)

Project/Site: Washinton Park

Job ID: 660-115214-1

Metals

Prep Batch: 245375

Lab Sample ID 660-115214-1	Client Sample ID MW-A	Prep Type Total Recoverable	Matrix Water	Method 3005A	Prep Batch
MB 660-245375/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 660-245375/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
660-115185-B-1-D MS	Matrix Spike	Total Recoverable	Water	3005A	
660-115185-B-1-E MSD	Matrix Spike Duplicate	Total Recoverable	Water	3005A	

Analysis Batch: 245436

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
660-115214-1	MW-A	Total Recoverable	Water	6010D	245375
MB 660-245375/1-A	Method Blank	Total Recoverable	Water	6010D	245375
LCS 660-245375/2-A	Lab Control Sample	Total Recoverable	Water	6010D	245375
660-115185-B-1-D MS	Matrix Spike	Total Recoverable	Water	6010D	245375
660-115185-B-1-E MSD	Matrix Spike Duplicate	Total Recoverable	Water	6010D	245375

1

16

4

7

q

10

40

13

Lab Chronicle

Client: Professional Service Industries (PSI)

Job ID: 660-115214-1

Project/Site: Washinton Park

Client Sample ID: MW-A Lab Sample ID: 660-115214-1

Date Collected: 11/08/21 10:43 Matrix: Water

Date Received: 11/08/21 15:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			245375	11/10/21 08:46	GG	TAL TAM
Total Recoverable	Analysis	6010D		1	245436	11/11/21 10:12	GG	TAL TAM

Laboratory References:

TAL TAM = Eurofins TestAmerica, Tampa, 6712 Benjamin Road, Suite 100, Tampa, FL 33634, TEL (813)885-7427

4

6

9

10

12

13

Method Summary

Client: Professional Service Industries (PSI)

Project/Site: Washinton Park

Job ID: 660-115214-1

Method	Method Description	Protocol	Laboratory
6010D	Metals (ICP)	SW846	TAL TAM
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL TAM

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL TAM = Eurofins TestAmerica, Tampa, 6712 Benjamin Road, Suite 100, Tampa, FL 33634, TEL (813)885-7427

Л

5

6

0

9

11

10

13

Accreditation/Certification Summary

Client: Professional Service Industries (PSI)

Job ID: 660-115214-1

Project/Site: Washinton Park

Laboratory: Eurofins TestAmerica, Tampa

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Florida	NELAP	E84282	06-30-22

3

6

R

9

11

13

	Regulatory Program:		☐ DW ☐ NPDES	RCRA Other:			TAL-821	821
Client Contact	Project Manager:	Sc of J.	DE CHAN	Site Contact:	Date: /	11-8-21	COC No:	
ompany Name. PST	Tel/Email: 8/3 358	1112 Best	John Oak	Contact:	Carrier:		/ of / COCs	
ddress: 580/ Benjam Centen Dr 112	Analysis	Turnaround Time	rime				Sampler:	
ily/State/Zip TALLPA FL	CALENDAR DAYS	WORK	WORKING DAYS				For Lab Use Only:	
ie.	TAT if different f	from Below 5+4+DARD	ANDAKD	(N			Walk-in Client:	
		2 weeks	<u> </u>	/ A			Lab Sampling:	
roject Name: WAShwetow PARIC		1 week	7.6.7					
#C		2 days					Job / SDG No.:	
t D		1 day						- 1
	Sample Sample			N mno				
Sample Identification	-	(C=Comp, G=Grab)	Matrix Cont.	Perf			Sample Specific Notes:	
144-4	11-8-21 1843	1	6w 1	X X X				
	-							
		Loc: 660						
		115214						
990-113214 Chain of Custody								
reservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	5=NaOH; 6= Other							
ossible Hazard Identification: The any samples from a listed EPA Hazardous Waste? Pleas omments Section if the lab is to dispose of the sample.	Please List any EPA Wasto Codes for the sample in the	Codes for th	e sample in the		ee may be assess	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	longer than 1 month)	
K-Non-Hazard Flammable Skin Irritant	☐ Poison B	Unknown	U/	Return to Client	Disposal by Lab	Archive for	Months	
pecial Instructions/QC Requirements & Comments:					Þ			1
					- 1	2, 3.4		
s Intact: Yes No	Custody Seal No.:			Cooler Temp.	o. (°C): Obs'd: /	Corr'd:	Therm ID No.:	
einquished W:	Company		Date/Time: /-8-21 / 1500	Received by:	1	Company:	Date/Time:	
elinquished by:	Company:		e e	Received by:		Company:	Date/Time:	
elinquished by:	Company:		Date/Time:	Received in Laboratory by:		Company:	Date/Time:	

Environment Testing TestAmerica

528794 Seurofins

Chain of Custody Record

Address:


Client: Professional Service Industries (PSI) Job Number: 660-115214-1

Login Number: 115214 List Source: Eurofins TestAmerica, Tampa

List Number: 1

Creator: Arevalo, Maria L

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Professional Service Industries, Inc. 5801 Benjamin Center Drive, Suite 112, Tampa, FL 33634

Phone: (813) 886-1075 Fax: (813) 249-4916

Mr. Robert Sellers Environmental Specialist III Permitting and Waste Cleanup Florida Department of Environmental Protection 13051 North Telecom Parkway Temple Terrace FL

Attention: Mr. Robert Sellers

Re: Washington Park Preserve WACS Facility #107492

Dear Mr. Sellers:

Thank you for time today as well as that of Justin Chamberlain and Melissa Madden. We appreciate the time taken to address what amount to a pressing contractual issue for Manatee County. To that end, please find attached the additional information you requested along with the County's commitment to ensure that the completion of work on the eastern side of the project meets with the full health and safety requirements we discussed.

To that end please find attached the following:

- 1. Monitoring Well Location Map (MW-A)
- 2. Vapor Monitoring Point Diagram
- 3. Proposed Passive Landfill Gas Mitigation System
- 4. Monitoring Well Completion Report
- 5. Analytical Results from MW-A (arsenic only)
- 6. Construction Plan for the Modular Bathroom Building (Sent Under Separate Cover)

As was noted on our call, Manatee County has committed to conducting landfill gas monitoring at various locations around the eastern portion of the restroom building, will monitor for landfill gas during the de minimis excavations, which may be required for the placement and service to the building, and will commit to four quarterly monitoring events over a one year period of the two vapor monitoring points to be installed at 2 locations within five feet of the structure. In addition, and this will be conducted at a later date, the County will monitor the future pond excavation for landfill gas and to advise if wastes other than construction and demolition debris might be encountered.

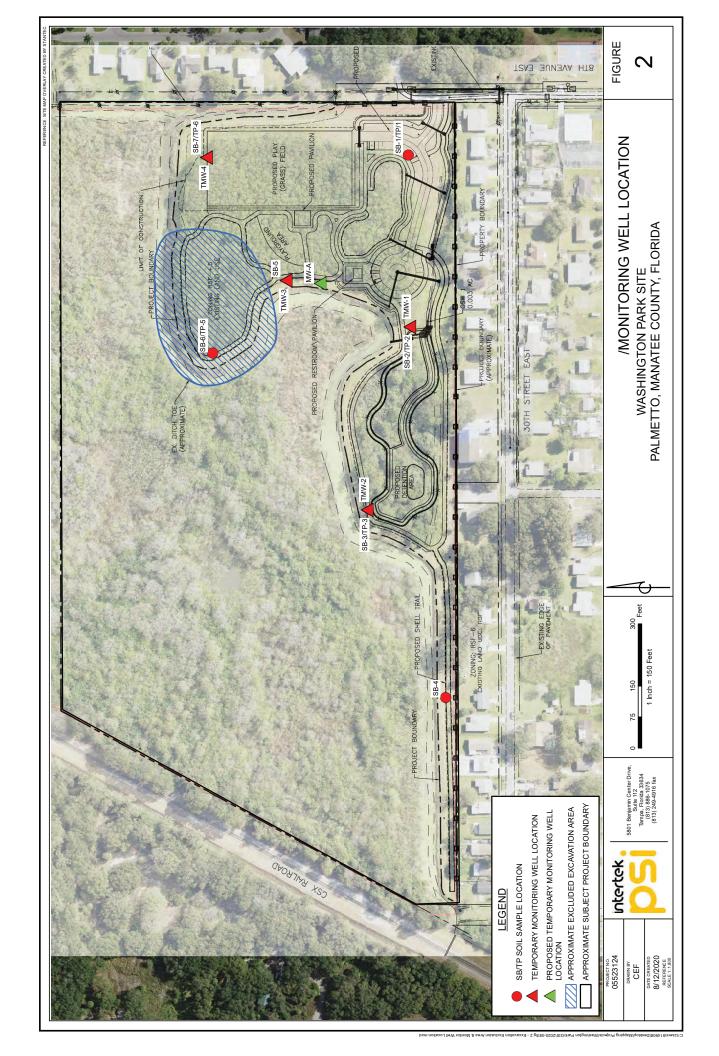
PSI Project Number: 0552-3453 Washington Park Preserve October 13, 2022 Page 2

Additional information will be provided in our scheduled response to your October 8, 2022, review but in the meantime the County has asked the attached information be submitted for your review in order to ensure the Department has no objection to the resumption of construction activities on the eastern side of the project.

Should you have any questions please feel free to contact Simona Brinkman of the County at 954.748.4501 extension 5814.

Respectfully submitted,

PROFESSIONAL SERVICE INDUSTRIES, INC.


Michael Rothenburg, P.E. Principal Consultant

Enclosures:

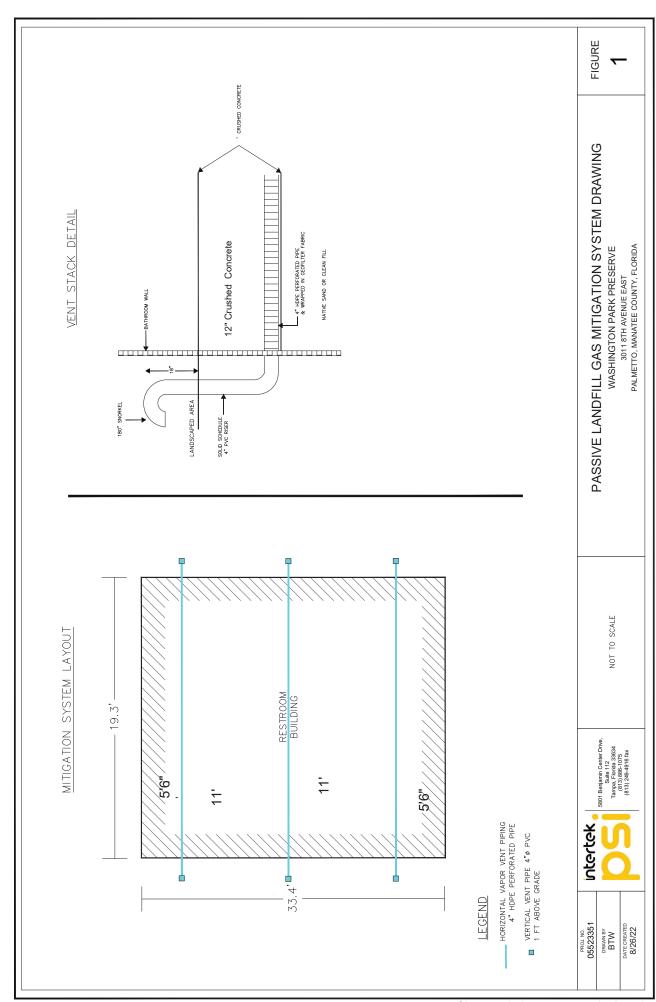
Figures

y:\552-env\05523453 - manatee cty, wpp, solid waste assessment\10-20 fdep submittal\fdep 10-20submittal.docx

VAPOR MONITORING POINT DIAGRAM

Scale: NOT TO SCALE

CONCRETE LID -


005523351 DRAWN BY DJG DATE REVISED SCALE: N.T.S.

intertek

5801 Benjamin Center Drive, Suite 112 Tampa, Florida 33634 (813) 886-1075 (813) 249-4916 fax

VAPOR MONITORING POINT DETAIL

Washingotn Park 3011 8TH AVENUE EAST PALMETTO, MANATEE COUNTY, FLORIDA **FIGURE**

_.__ 10/17/2022

Florida Department of **Environmental Protection**

Bob Martinez Center 2600 Blair Stone Road Tallahassee, Florida 32399-2400 DEP Form # 62-701.900(30)

Form Title: Monitoring Well Completion Report

Effective Date: January 6, 2010

Incorporated in Rule 62-701.510(3), F.A.C.

MONITORING WELL COMPLETION REPORT

DATE: 10/11/2022								
FACILITY NAME: Washingto	n Park Preserve							
DEP PERMIT NO.:	EP PERMIT NO.: WACS FACILITY ID NO.: #107492							
WACS MONITORING SITE NUM	MONITORING SITE NUM.:WACS WELL NO.: MW-A							
WELL TYPE: BACKGROUND	□ DETECTION ■	COMPLIANCE	COMPLIANCE □					
LATITUDE: 27 ° 32	, 29.33" LONGITUDE: 82	<u>° 33</u>	28.40					
(see back for LAT / LONG requir	rements):							
Coordinate Accuracy	Datum	Elevation Datum _						
Collection Method	Collection	Date						
Collector Name	Collector Affiliation	1						
AQUIFER MONITORED: Surfi	cial							
DRILLING METHOD: DPT		ATE INSTALLED:						
INSTALLED BY: Net Drilling	J							
BORE HOLE DIAMETER: 2"	TOTAL DEPTH: 12'	(BLS)						
CASING TYPE: PVC	CASING DIAMETER:2"	CASING LENGTH	<u>:</u> 2'					
SCREEN TYPE: slotted	screen slot size: 0.01 inch	SCREEN LENGTH	_{l:} 10'					
	SCREEN INTERVAL: 2ft							
FILTER PACK TYPE: Sand	FILTER PACK GR	AIN SIZE: 20/30						
INTERVAL COVERED: 2'	_{TO} <u>12'</u> (B	SLS)						
SEALANT TYPE: Bentonite	SEALANT INTERVAL: 0'	_{ТО} 2'	(BLS)					
	GROUT INTERVAL:							
	NGVD):GROUND SURFA							
DESCRIBE WELL DEVELOPME								
POST DEVELOPMENT WATER	LEVEL ELEVATION (NGVD):							
DATE AND TIME MEASURED: _								
REMARKS: Form completed p	oost construction with available in	formaiton						
NAME OF PERSON PREPARING	GREPORT: Michael Rothenburg,	PSI 813.917.0403						
(Name, Organization, Phone No.,	, E-mail)							

NOTE: ATTACH AS-BUILT MW CONSTRUCTION DIAGRAM AND LITHOLOGIC LOG.(NGVD) NATIONAL GEODETIC VERTICAL DATUM OF 1988 (BLS) = BELOW LAND SURFACE

Latitude must be measured in degrees, minutes and seconds, to at least two (2) decimal places.

Longitude must be measured in degrees, minutes and seconds, to at least two (2) decimal places.

Eastings and northings (State Plane Coordinates) **must** be converted to latitude and longitude.

Coordinate Accuracy: the measured, estimated degree of correctness of the measurement. An accuracy of 15 feet or 5 meters is preferred.

Datum: the horizontal reference for measuring locations on the Earth's surface. NAD83-North American Datum of 1983 is preferred.

Elevation Datum: the reference datum from which elevation measurements are made. NGVD88 (National Geodetic Vertical Datum of 1988) is preferred.

Collection Method: the method or mechanism used to derive the measurements, e.g. GPS, map, aerial photo, etc.

Collection Date: the date and time on which the measurements were taken.

Collector Name: the name of the person taking the measurement.

Collector Affiliation: the agency or company for whom the collector works.

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Tampa 6712 Benjamin Road Suite 100 Tampa, FL 33634

Tel: (813)885-7427

Laboratory Job ID: 660-115214-1 Client Project/Site: Washinton Park

For:

Professional Service Industries (PSI) 5801 Benjamin Center Drive Suite 112 Tampa, Florida 33634

Attn: Scott Jordan

Authorized for release by: 11/11/2021 1:08:36 PM

Amy Weinberg, Project Manager II (813)885-7427

amy.weinberg@Eurofinset.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

7

8

_

11

12

13

Н

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions/Glossary	5
Detection Summary	6
Client Sample Results	7
QC Sample Results	8
	9
Lab Chronicle	10
Method Summary	11
Certification Summary	12
Chain of Custody	13
Receipt Checklists	14

4

4

9

10

12

13

Sample Summary

Client: Professional Service Industries (PSI) Project/Site: Washinton Park

Job ID: 660-115214-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
660-115214-1	MW-A	Water	11/08/21 10:43	11/08/21 15:00

Case Narrative

Client: Professional Service Industries (PSI)

Project/Site: Washinton Park

Job ID: 660-115214-1

Job ID: 660-115214-1

Laboratory: Eurofins TestAmerica, Tampa

Narrative

Job Narrative 660-115214-1

Comments

No additional comments.

Receipt

The sample was received on 11/8/2021 3:00 PM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.4° C.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

- 6

4

6

_

1.0

44

12

13

Definitions/Glossary

Client: Professional Service Industries (PSI)

Project/Site: Washinton Park

Job ID: 660-115214-1

Qualifiers

M	eta	ls

Qualifier **Qualifier Description**

The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

U Indicates that the compound was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery

CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) DER

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DΙ

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) Most Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) RER

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Detection Summary

Client: Professional Service Industries (PSI)

Project/Site: Washinton Park

Client Sample ID: MW-A

Lab Sample ID: 660-115214-1

Job ID: 660-115214-1

Г									
Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.0024	I	0.010	0.0019	mg/L	1	_	6010D	Total
									Recoverable

2

4

6

8

9

11

10

Client Sample Results

Client: Professional Service Industries (PSI)

Job ID: 660-115214-1

Project/Site: Washinton Park

Client Sample ID: MW-A Lab Sample ID: 660-115214-1

Date Collected: 11/08/21 10:43

Date Received: 11/08/21 15:00

Method: 6010D - Metals (ICP)	 Total Reco 	verable							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0024	T .	0.010	0.0019	mg/L		11/10/21 08:46	11/11/21 10:12	1

1

8

10

12

13

QC Sample Results

Job ID: 660-115214-1 Client: Professional Service Industries (PSI)

Project/Site: Washinton Park

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 660-245375/1-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 245436 MB MB **Prep Type: Total Recoverable Prep Batch: 245375**

Result Qualifier PQL **MDL** Unit Prepared Analyzed Dil Fac Analyte 0.010 0.0019 mg/L 11/10/21 08:46 11/11/21 09:52 Arsenic 0.0019 U

Lab Sample ID: LCS 660-245375/2-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Recoverable Analysis Batch: 245436 Prep Batch: 245375**

Spike LCS LCS %Rec. Added Result Qualifier Unit D %Rec Limits Analyte 1.00 80 - 120 Arsenic 1.00 mg/L 100

Lab Sample ID: 660-115185-B-1-D MS **Client Sample ID: Matrix Spike Matrix: Water Prep Type: Total Recoverable Analysis Batch: 245436 Prep Batch: 245375**

Sample Sample Spike MS MS %Rec.

Result Qualifier Added Result Qualifier Limits Analyte Unit %Rec Arsenic 0.0027 I 1.00 1.03 75 - 125 mg/L

Lab Sample ID: 660-115185-B-1-E MSD **Client Sample ID: Matrix Spike Duplicate Matrix: Water Prep Type: Total Recoverable**

Analysis Batch: 245436

Prep Batch: 245375 Spike MSD MSD %Rec. **RPD** Sample Sample

Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Arsenic 0.0027 I 1.00 1.02 75 - 125 mg/L 102

11/11/2021

QC Association Summary

Client: Professional Service Industries (PSI)

Project/Site: Washinton Park

Job ID: 660-115214-1

Metals

Prep Batch: 245375

Lab Sample ID 660-115214-1	Client Sample ID MW-A	Prep Type Total Recoverable	Matrix Water	Method 3005A	Prep Batch
MB 660-245375/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 660-245375/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
660-115185-B-1-D MS	Matrix Spike	Total Recoverable	Water	3005A	
660-115185-B-1-E MSD	Matrix Spike Duplicate	Total Recoverable	Water	3005A	

Analysis Batch: 245436

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
660-115214-1	MW-A	Total Recoverable	Water	6010D	245375
MB 660-245375/1-A	Method Blank	Total Recoverable	Water	6010D	245375
LCS 660-245375/2-A	Lab Control Sample	Total Recoverable	Water	6010D	245375
660-115185-B-1-D MS	Matrix Spike	Total Recoverable	Water	6010D	245375
660-115185-B-1-E MSD	Matrix Spike Duplicate	Total Recoverable	Water	6010D	245375

1

16

4

7

q

10

40

13

Lab Chronicle

Client: Professional Service Industries (PSI)

Job ID: 660-115214-1

Project/Site: Washinton Park

Client Sample ID: MW-A Lab Sample ID: 660-115214-1

Date Collected: 11/08/21 10:43 Matrix: Water

Date Received: 11/08/21 15:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			245375	11/10/21 08:46	GG	TAL TAM
Total Recoverable	Analysis	6010D		1	245436	11/11/21 10:12	GG	TAL TAM

Laboratory References:

TAL TAM = Eurofins TestAmerica, Tampa, 6712 Benjamin Road, Suite 100, Tampa, FL 33634, TEL (813)885-7427

4

6

9

10

12

13

Method Summary

Client: Professional Service Industries (PSI)

Project/Site: Washinton Park

Job ID: 660-115214-1

Method	Method Description	Protocol	Laboratory
6010D	Metals (ICP)	SW846	TAL TAM
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL TAM

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL TAM = Eurofins TestAmerica, Tampa, 6712 Benjamin Road, Suite 100, Tampa, FL 33634, TEL (813)885-7427

Л

5

6

0

9

11

10

13

Accreditation/Certification Summary

Client: Professional Service Industries (PSI)

Job ID: 660-115214-1

Project/Site: Washinton Park

Laboratory: Eurofins TestAmerica, Tampa

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Florida	NELAP	E84282	06-30-22

3

6

8

10

11

13

	Regulatory Program:		☐ DW ☐ NPDES	RCRA Other:			TAL-821	821
Client Contact	Project Manager:	Scott Ju	DE CHAN	Site Contact:	Date: /	11-8-21	COC No:	
ompany Name. PST	Tel/Email: 8/3 358	1112 Best	John Oak	Contact:	Carrier:		/ of / COCs	
ddress: 580/ Benjam Centen Dr 112	Analysis	Turnaround Time	rime				Sampler:	
ily/State/Zip TALLPA FL	CALENDAR DAYS	WORK	WORKING DAYS				For Lab Use Only:	
ie.	TAT if different f	from Below 5+4+DARD	ANDAKD	(N			Walk-in Client:	
		2 weeks	<u> </u>	/ A			Lab Sampling:	
roject Name: WAShwetow PARIC		1 week	7.6.7					
#C		2 days					Job / SDG No.:	
t D		1 day						- 1
	Sample Sample			N mno				
Sample Identification	-	(C=Comp, G=Grab)	Matrix Cont.	Perf			Sample Specific Notes:	
144-4	11-8-21 1843		6w 1	X X X				
	-							
		Loc: 660						
		115214						
990-113214 Chain of Custody								
reservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	5=NaOH; 6= Other							
ossible Hazard Identification: The any samples from a listed EPA Hazardous Waste? Pleas omments Section if the lab is to dispose of the sample.	Please List any EPA Wasto Codes for the sample in the	Codes for th	e sample in the		ee may be assess	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	longer than 1 month)	
K-Non-Hazard Flammable Skin Irritant	☐ Poison B	Unknown	U/	Return to Client	Disposal by Lab	Archive for	Months	
pecial Instructions/QC Requirements & Comments:					Þ			1
					- 1	2, 3.4		
s Intact: Yes No	Custody Seal No.:			Cooler Temp.	o. (°C): Obs'd: /	Corr'd:	Therm ID No.:	
einquished W:	Company		Date/Time: /-8-21 / 1500	Received by:	1	Company:	Date/Time:	
elinquished by:	Company:		e l	Received by:		Company:	Date/Time:	
elinquished by:	Company:		Date/Time:	Received in Laboratory by:		Company:	Date/Time:	

Environment Testing TestAmerica

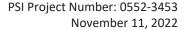
528794 Seurofins

Chain of Custody Record

Address:

Client: Professional Service Industries (PSI)

Job Number: 660-115214-1


Login Number: 115214

List Number: 1

Creator: Arevalo, Maria L

List Source: Eurofins TestAmerica, Tampa

Cleator. Alevaio, maria L		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Professional Service Industries, Inc. 5801 Benjamin Center Drive, Suite 112, Tampa, FL 33634

Phone: (813) 886-1075 Fax: (813) 249-4916

Mr. Robert Sellers
Environmental Specialist III
Permitting and Waste Cleanup
Florida Department of Environmental Protection
13051 North Telecom Parkway
Temple Terrace FL

Attention: Mr. Robert Sellers

Re: Washington Park Preserve

WACS Facility #107492 Response to Comments Dated October 25, 2022

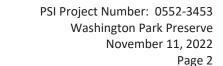
Dear Mr. Sellers:

Thank you for your response to our request to continue work on the east side of the Washington Park Preserve project being undertaken by Manatee County. Your comments/questions provided in the email dated October 25, 2022 were received and follow in bold and the following discussion is provided with our responses in italics.

1) As discussed in October 20, 2022 meeting, landfill gas monitoring should be performed on the eastern side of the site, not just on the eastern portion of the restroom building. The monitoring should be conducted for a minimum of 4 quarterly events. The results of the quarterly monitoring events will be evaluated to determine if more frequent and/or continued monitoring is needed. Additional monitoring points may also be necessary if gas is present at the site.

Response: Manatee County will conduct quarterly landfill gas monitoring as requested for one year and will report results of each event. Sampling will occur at the seven locations shown in the Figure entitled "Landfill Gas Monitoring Points." These points will be installed immediately following construction in order to minimize the possibility of damage.

2) Vapor Monitoring Point Detail:


 Please confirm that the petcock to be used in gas sampling activities has a valve to shut in the probe.

Response: The attached Vapor Monitoring Point Detail has a valve added to the petcock to indicate the ability to close off the monitoring point.

Please provide specifications for the PVC screen.

Response: That same drawing has the screen slot detail (0.010") added.

- 3) Passive Landfill Gas Mitigation System Drawing (Figure 1):
- The plans for the prefabricated restroom building indicated that the building footprint is 22'-6" x 21'-5" Figure 1 shows the dimension of 19'-3" x 33'-4". Please clarify.
- Response comments on September 8, 2022 stated that there would be 10 inches of crushed concrete beneath the restroom structure. Figure 1 shows 12 inches of crushed concrete. Please verify which is correct.
- Figure 1 shows the bathroom wall extending into the ground. The plans submitted did not include this extension. Please clarify.
- Please provide specifications for the perforations in the HDPE pipe and the geofilter fabric.
- Please provide the proposed subgrade specifications and confirm that it will be sufficient to prevent settlement related damage to the structure due to the presence of buried waste.

Response: The drawing has been revised to reflect the area of the crushed concrete foundation which will extend slightly beyond the edge of the building and the appropriate dimensions are shown. The crushed concrete has been designed to be 12 inches thick with the appropriate dimension called out on the drawing. The wall section has been revised to reflect an accurate representation of the pre-fab building.

The gas collection piping shall be constructed of 4" HDPE SDR 11with perforations 3/8" by 8" long with four slots per row spaced at 90 degree separations around the pipe. Rows shall be spaced every 16" on center with each row alternating by 45 degrees. Pre-manufactured piping, if used shall have equivalent open area.

Geotextile fabric to be used shall be Mirafi 500X or equivalent. Fabric shall be used to wrap the HDPE to prevent encroachment of crushed concrete material.

The construction plans for the pre-fabricated restroom building call for ground improvement utilizing mechanical equipment to compact the existing fill to a 95% AASHTO T-180 with 8 inches of a lime rock subbase(LBR 40 Minimum) compacted to 98% (AASHTO T-180). As noted above the crushed concrete 12" thick (LBR100) shall extend 1 ft beyond the base of the building. Pursuant to the manufacturer of the modular building this will provide for a sufficient loading capacity for the building.

Construction activities on the east side of the project have been limited to the addition of fill material where two feet of clean soils were not present in order to obtain the required two feet of clearance above buried waste. No significant areas of subsidence were noted during initial construction activities. However, Manatee County will monitor site conditions for subsidence and in the event it may occur, additional clean fill will be used to repair the affected area.

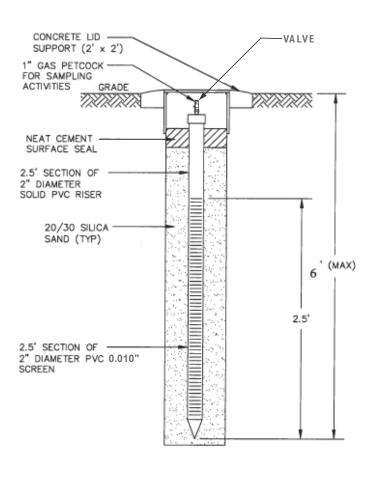
Also, you had requested ground water sampling logs for the sample collected of MW-A performed on November 8, 2021. In our response of October 7, 2022, the well was installed for information to be developed for use by Manatee County and their engineers/contractors. The sampling for arsenic was

PSI Project Number: 0552-3453 Washington Park Preserve November 11, 2022 Page 3

conducted for internal information only. We have subsequently conducted an additional search for the logs but were not able to find the requested document. PSI's standard practice is to conduct the work in substantial conformance to the FDEP SOP's and while written documentation is unavailable, we are confident that the analytical results represent actual conditions

PSI appreciates the opportunity to be of service. If you have any questions, please feel free to contact us at (813) 886-1075.

Respectfully submitted,


PROFESSIONAL SERVICE INDUSTRIES, INC.

Michael Rothenburg, P.E. Principal Consultant

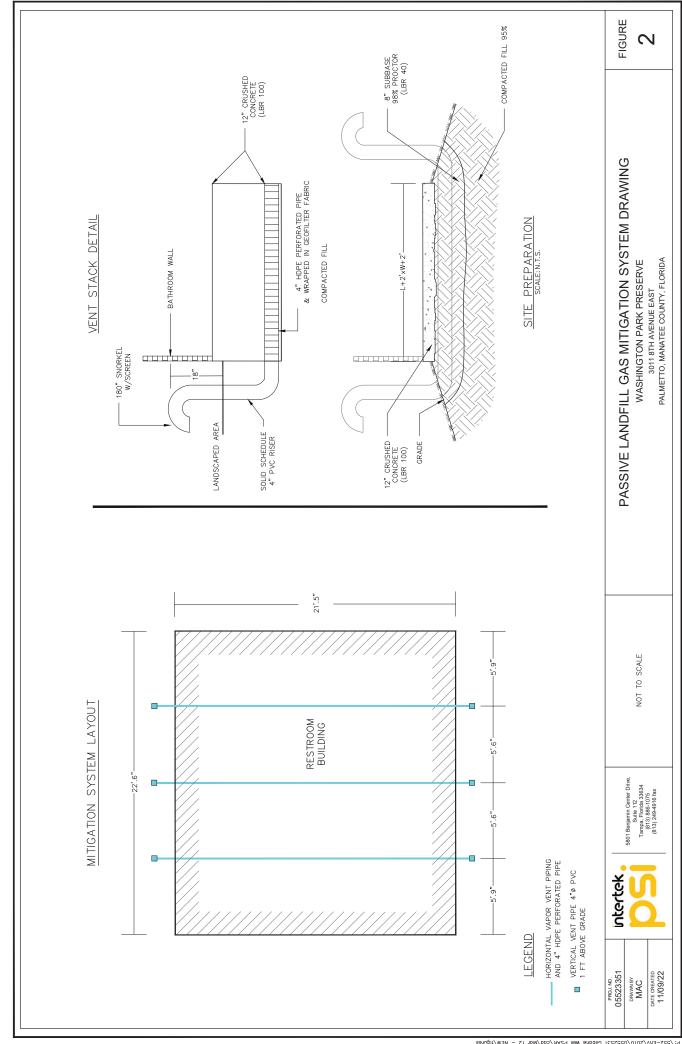
Enclosures:

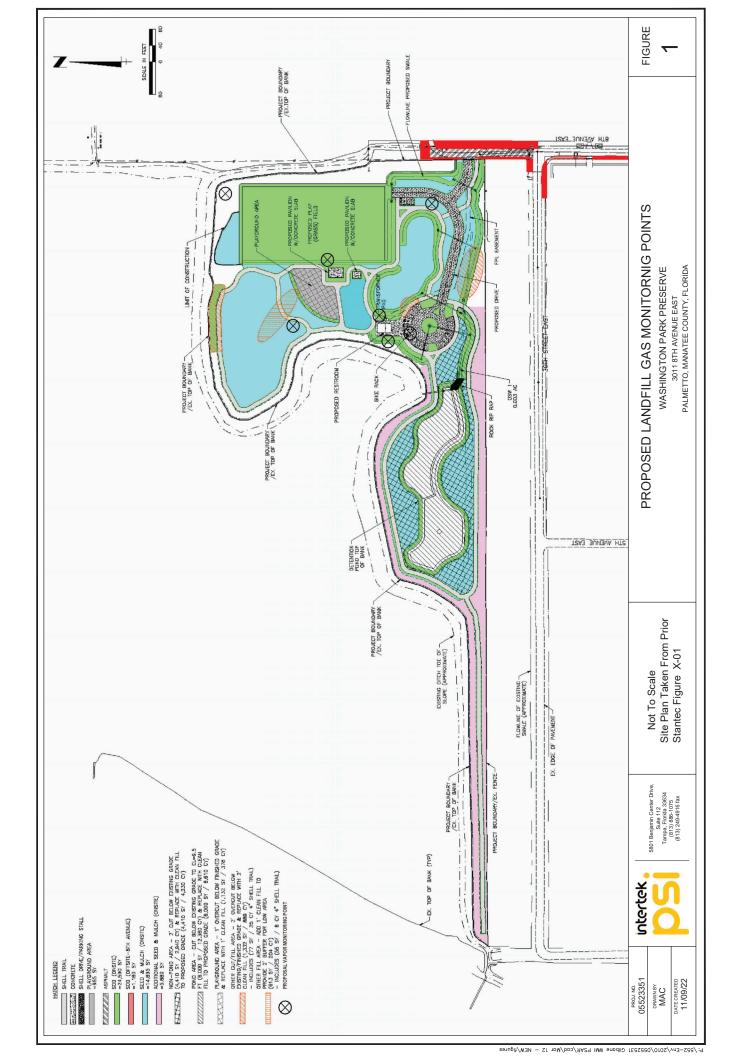
- (1) Passive Landfill Gas Mitigation System
- (2) Vapor Monitoring Point
- (3) Vapor Monitor Well Location

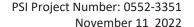
VAPOR MONITORING POINT DIAGRAM

Scale: NOT TO SCALE

DRAWN BY DJG


DATE REVISEDS


5801 Benjamin Center Drive, Suite 112 Tamps, Florida 33634 (813) 886-1075 (813) 249-4916 fax VAPOR MONITORING POINT DETAIL


Washingoth Park 3011 8TH AVENUE EAST PALMETTO, MANATEE COUNTY, FLORIDA FIGURE typ

Firtlin C1 21 lm/ 1

Acres Comp.

Professional Service Industries, Inc. 5801 Benjamin Center Drive, Suite 112, Tampa, FL 33634

Phone: (813) 886-1075 Fax: (813) 249-4916

Mr. Robert Sellers Environmental Specialist III Permitting and Waste Cleanup Florida Department of Environmental Protection 13051 North Telecom Parkway Temple Terrace FL

Attention: Mr. Robert Sellers

Re: Washington Park Preserve

WACS Facility #107492

Additional Information from October 17, 2022 Submittal

Dear Mr. Sellers:

Previously we had responded to your questions in a letter dated September 8, 2022. We had provided the needed information for all but your question No. 5 as the calculations to determine the quantities of buried c and d debris which would be encountered in the pond and other construction. That information is now available and is provided below, along with the figure entitled, "Sod, Seed and Mulch" X-01 as provided by Stantec.

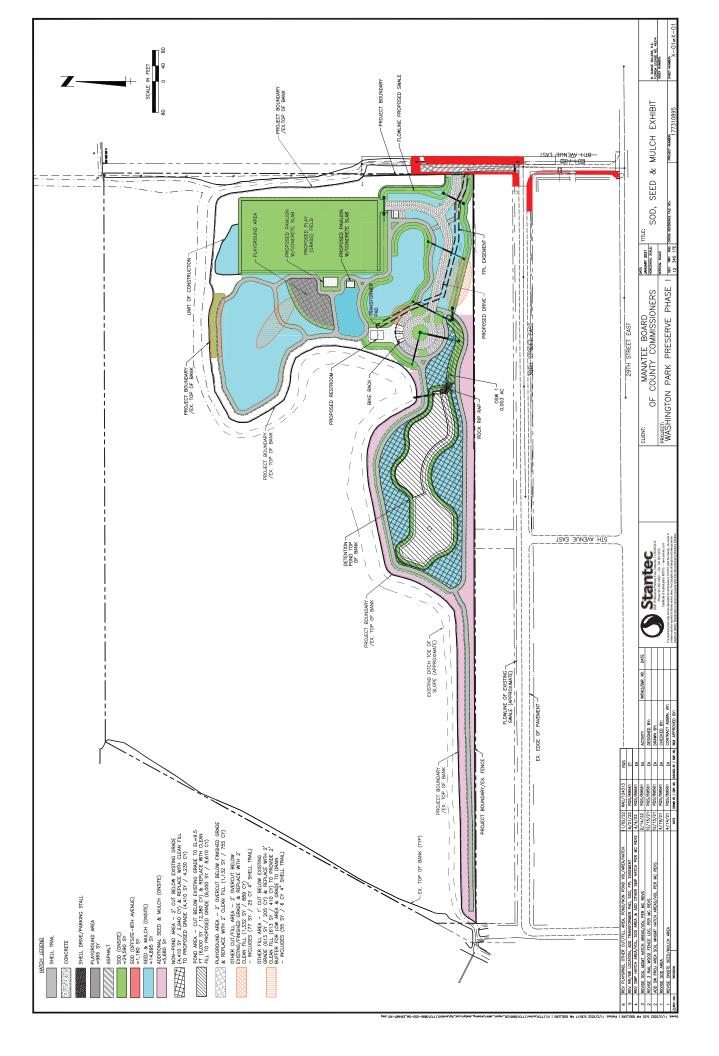
5. Please provide details regarding the offsite relocation of the excavated waste and soils including estimated volume removed and copies of waste manifests to be submitted once excavation is complete.

Response- The excavated wastes shall be hauled to the Lena Road landfill, a Class I landfill operated by Manatee County. The County has obtained the internal approval for use of that disposal site. Volume of material to be removed from the pond is estimated at 12,380 cubic yards and an additional 4,789 cubic yards will be removed from the remainder of the site. The volume of all material removed shall be documented in manifests to be submitted at project completion.

PSI Project Number: 0552-3435 Washington Park Preserve November 113, 2022 Page 2

PSI appreciates the opportunity to be of service. If you have any questions, please feel free to contact us at (813) 886-1075.

Respectfully submitted, PROFESSIONAL SERVICE INDUSTRIES, INC.


Michael Rothenburg, P.E. Senior Engineer

Enclosures:

Sod, Seed and Mulch Exhibit X-01

 $y:\552-env\05523453$ - manatee cty, wpp, solid waste assessment\nov 1 response\phase ii repsonse\nov9fdepresponse.docx

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Tampa 6712 Benjamin Road Suite 100 Tampa, FL 33634

Tel: (813)885-7427

Laboratory Job ID: 660-115213-1 Client Project/Site: Washinton Park

For:

Professional Service Industries (PSI) 5801 Benjamin Center Drive Suite 112 Tampa, Florida 33634

Attn: Scott Jordan

Any Weinlerg

Authorized for release by: 11/10/2021 3:29:50 PM

Amy Weinberg, Project Manager II (813)885-7427

amy.weinberg@Eurofinset.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

6

q

10

12

13

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions/Glossary	5
Detection Summary	6
Client Sample Results	7
QC Sample Results	9
QC Association Summary	12
Lab Chronicle	13
Method Summary	15
Certification Summary	16
Chain of Custody	17
Receipt Checklists	18

9

10

12

13

Sample Summary

Client: Professional Service Industries (PSI) Project/Site: Washinton Park

Job ID: 660-115213-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
660-115213-1	AS1	Solid	11/08/21 13:10	11/08/21 15:00
660-115213-2	AS2	Solid	11/08/21 13:16	11/08/21 15:00
660-115213-3	AS3	Solid	11/08/21 13:22	11/08/21 15:00

Case Narrative

Client: Professional Service Industries (PSI)

Project/Site: Washinton Park

Job ID: 660-115213-1

Job ID: 660-115213-1

Laboratory: Eurofins TestAmerica, Tampa

Narrative

Job Narrative 660-115213-1

Comments

No additional comments.

Receipt

The samples were received on 11/8/2021 3:00 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.4° C.

GC/MS Semi VOA

Method 8270D SIM: The following samples were diluted due to the dark and viscous nature of the sample extract: AS1 (660-115213-1), AS2 (660-115213-2) and AS3 (660-115213-3). Elevated reporting limits (RL) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4

5

6

7

8

9

1 1

12

13

Definitions/Glossary

Client: Professional Service Industries (PSI)

Project/Site: Washinton Park

Job ID: 660-115213-1

Qualifiers

GC/MS Semi VOA

Qualifier **Qualifier Description**

The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

U Indicates that the compound was analyzed for but not detected.

Metals

Qualifier **Qualifier Description**

U Indicates that the compound was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

n Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DΙ Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL Minimum Detectable Activity (Radiochemistry) MDA MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Client: Professional Service Industries (PSI) Job ID: 660-115213-1

Project/Site: Washinton Park

Client Sample ID: AS1

Lab Sample ID: 660-115213-1

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
2-Methylnaphthalene	9.1	I	62	8.6	ug/Kg	5	₩	8270D	Total/NA
Acenaphthylene	23	I	42	9.0	ug/Kg	5	₩	8270D	Total/NA
Phenanthrene	43		42	28	ug/Kg	5	₽	8270D	Total/NA
Anthracene	27	l	42	3.8	ug/Kg	5	₩	8270D	Total/NA
Fluoranthene	140		42	13	ug/Kg	5	₩	8270D	Total/NA
Pyrene	170		42	9.9	ug/Kg	5	₽	8270D	Total/NA
Benzo[a]anthracene	92		42	9.4	ug/Kg	5	⊅	8270D	Total/NA
Chrysene	130		42	9.7	ug/Kg	5	₽	8270D	Total/NA
Benzo[b]fluoranthene	190		42	10	ug/Kg	5	₩	8270D	Total/NA
Benzo[k]fluoranthene	82		42	11	ug/Kg	5	⊅	8270D	Total/NA
Benzo[a]pyrene	130		42	10	ug/Kg	5	₩	8270D	Total/NA
Benzo[g,h,i]perylene	90		42	10	ug/Kg	5	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	43		42	9.4	ug/Kg	5	₽	8270D	Total/NA
Dibenz(a,h)anthracene	21	1	42	10	ug/Kg	5	₩	8270D	Total/NA
Arsenic	5.7		1.3	0.11	mg/Kg	1	₩	6010D	Total/NA

Client Sample ID: AS2

Lab Sample ID: 660-115213-2

Analyte	Result Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthylene	12 I	43	9.5	ug/Kg	5	☼	8270D	Total/NA
Anthracene	13 I	43	4.0	ug/Kg	5	₩	8270D	Total/NA
Fluoranthene	76	43	14	ug/Kg	5	₩	8270D	Total/NA
Pyrene	91	43	10	ug/Kg	5	₩	8270D	Total/NA
Benzo[a]anthracene	45	43	9.8	ug/Kg	5	₩	8270D	Total/NA
Chrysene	62	43	10	ug/Kg	5	₩	8270D	Total/NA
Benzo[b]fluoranthene	84	43	10	ug/Kg	5	⊅	8270D	Total/NA
Benzo[k]fluoranthene	39 I	43	12	ug/Kg	5	₩	8270D	Total/NA
Benzo[a]pyrene	60	43	10	ug/Kg	5	₩	8270D	Total/NA
Benzo[g,h,i]perylene	34 I	43	11	ug/Kg	5	⊅	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	21 I	43	9.8	ug/Kg	5	₽	8270D	Total/NA
Arsenic	9.5	1.4	0.12	mg/Kg	1	₩	6010D	Total/NA

Client Sample ID: AS3

Lab Sample ID: 660-115213-3

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Anthracene	9.1	I	42	3.9	ug/Kg	5	₩	8270D	Total/NA
Fluoranthene	61		42	13	ug/Kg	5	₩	8270D	Total/NA
Pyrene	75		42	10	ug/Kg	5	₩	8270D	Total/NA
Benzo[a]anthracene	37	Ī	42	9.5	ug/Kg	5	₩	8270D	Total/NA
Chrysene	65		42	9.8	ug/Kg	5	₩	8270D	Total/NA
Benzo[b]fluoranthene	61		42	10	ug/Kg	5	₩	8270D	Total/NA
Benzo[k]fluoranthene	33	Ī	42	12	ug/Kg	5	₩	8270D	Total/NA
Benzo[a]pyrene	62		42	10	ug/Kg	5	₩	8270D	Total/NA
Benzo[g,h,i]perylene	34	1	42	10	ug/Kg	5	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	20	I	42	9.5	ug/Kg	5	⊅	8270D	Total/NA
Dibenz(a,h)anthracene	11	I	42	10	ug/Kg	5	₩	8270D	Total/NA
Arsenic	31		1.3	0.11	ma/Ka	1	₩	6010D	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Professional Service Industries (PSI) Job ID: 660-115213-1

Project/Site: Washinton Park

Analyte

Arsenic

Client Sample ID: AS1 Lab Sample ID: 660-115213-1

Date Collected: 11/08/21 13:10 **Matrix: Solid** Date Received: 11/08/21 15:00 Percent Solids: 80.2

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene		U	62	19	ug/Kg	<u></u>	11/09/21 07:55	11/09/21 13:46	
2-Methylnaphthalene	9.1	T.	62	8.6	ug/Kg	₩	11/09/21 07:55	11/09/21 13:46	5
1-Methylnaphthalene	11	U	42	11	ug/Kg	₩	11/09/21 07:55	11/09/21 13:46	5
Acenaphthylene	23	1	42	9.0	ug/Kg	₩	11/09/21 07:55	11/09/21 13:46	5
Acenaphthene	8.9	U	42	8.9	ug/Kg	₩	11/09/21 07:55	11/09/21 13:46	5
Fluorene	9.1	U	42	9.1	ug/Kg	☼	11/09/21 07:55	11/09/21 13:46	5
Phenanthrene	43		42	28	ug/Kg	₩	11/09/21 07:55	11/09/21 13:46	5
Anthracene	27	T.	42	3.8	ug/Kg	₩	11/09/21 07:55	11/09/21 13:46	5
Fluoranthene	140		42	13	ug/Kg	₩	11/09/21 07:55	11/09/21 13:46	5
Pyrene	170		42	9.9	ug/Kg	₽	11/09/21 07:55	11/09/21 13:46	Ę
Benzo[a]anthracene	92		42	9.4	ug/Kg	₩	11/09/21 07:55	11/09/21 13:46	5
Chrysene	130		42	9.7	ug/Kg	☼	11/09/21 07:55	11/09/21 13:46	5
Benzo[b]fluoranthene	190		42	10	ug/Kg	₩	11/09/21 07:55	11/09/21 13:46	5
Benzo[k]fluoranthene	82		42	11	ug/Kg	☼	11/09/21 07:55	11/09/21 13:46	5
Benzo[a]pyrene	130		42	10	ug/Kg	☼	11/09/21 07:55	11/09/21 13:46	5
Benzo[g,h,i]perylene	90		42	10	ug/Kg	₩	11/09/21 07:55	11/09/21 13:46	5
Indeno[1,2,3-cd]pyrene	43		42	9.4	ug/Kg	☼	11/09/21 07:55	11/09/21 13:46	5
Dibenz(a,h)anthracene	21	I	42	10	ug/Kg	₩	11/09/21 07:55	11/09/21 13:46	Ę
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-methylnaphthalene-d10	66		20 - 150				11/09/21 07:55	11/09/21 13:46	
Fluoranthene-d10	79		25 - 150				11/09/21 07:55	11/09/21 13:46	

Client Sample ID: AS2 Lab Sample ID: 660-115213-2 Date Collected: 11/08/21 13:16 **Matrix: Solid** Date Received: 11/08/21 15:00 Percent Solids: 76.6

PQL

1.3

MDL Unit

0.11 mg/Kg

Prepared

Analyzed

Result Qualifier

5.7

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	20	U	65	20	ug/Kg	☆	11/09/21 07:55	11/09/21 13:25	5
2-Methylnaphthalene	8.9	U	65	8.9	ug/Kg	☼	11/09/21 07:55	11/09/21 13:25	5
1-Methylnaphthalene	11	U	43	11	ug/Kg	☼	11/09/21 07:55	11/09/21 13:25	5
Acenaphthylene	12	I	43	9.5	ug/Kg	₩	11/09/21 07:55	11/09/21 13:25	5
Acenaphthene	9.3	U	43	9.3	ug/Kg	☼	11/09/21 07:55	11/09/21 13:25	5
Fluorene	9.5	U	43	9.5	ug/Kg	☼	11/09/21 07:55	11/09/21 13:25	5
Phenanthrene	29	U	43	29	ug/Kg	≎	11/09/21 07:55	11/09/21 13:25	5
Anthracene	13	I	43	4.0	ug/Kg	☼	11/09/21 07:55	11/09/21 13:25	5
Fluoranthene	76		43	14	ug/Kg	₩	11/09/21 07:55	11/09/21 13:25	5
Pyrene	91		43	10	ug/Kg	₩	11/09/21 07:55	11/09/21 13:25	5
Benzo[a]anthracene	45		43	9.8	ug/Kg	☼	11/09/21 07:55	11/09/21 13:25	5
Chrysene	62		43	10	ug/Kg	☼	11/09/21 07:55	11/09/21 13:25	5
Benzo[b]fluoranthene	84		43	10	ug/Kg	₩	11/09/21 07:55	11/09/21 13:25	5
Benzo[k]fluoranthene	39	I	43	12	ug/Kg	₩	11/09/21 07:55	11/09/21 13:25	5
Benzo[a]pyrene	60		43	10	ug/Kg	☼	11/09/21 07:55	11/09/21 13:25	5
Benzo[g,h,i]perylene	34	I	43	11	ug/Kg	₩	11/09/21 07:55	11/09/21 13:25	5
Indeno[1,2,3-cd]pyrene	21	I .	43	9.8	ug/Kg	⇔	11/09/21 07:55	11/09/21 13:25	5

Page 7 of 18

Dil Fac

Eurofins TestAmerica, Tampa

Client Sample Results

Client: Professional Service Industries (PSI)

Project/Site: Washinton Park

Client Sample ID: AS2 Lab Sample ID: 660-115213-2

Date Collected: 11/08/21 13:16 **Matrix: Solid** Date Received: 11/08/21 15:00 rcent Solids: 76.6

Date Received. 11/06/21 15.0	U					Percent Son	us. / 0.0
Method: 8270D - PAHs by G	C/MS (SIM) (Continued)						
· · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , , ,						
Analyte	Result Qualifier	PQL	MDL Unit	D	Prepared	Analyzed	Dil Fac

Dibenz(a,h)anthracene	10	U	43	10 ug/Kg	⊅	11/09/21 07:55	11/09/21 13:25	5
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
2-methylnaphthalene-d10	48		20 - 150			11/09/21 07:55	11/09/21 13:25	5
Fluoranthene-d10	52		25 - 150			11/09/21 07:55	11/09/21 13:25	5

Method: 6010D - Metals (ICP)							
Analyte	Result Qualifier	PQL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	9.5	1.4	0.12 mg/Kg	<u></u>	11/09/21 10:33	11/09/21 16:52	1

Lab Sample ID: 660-115213-3 **Client Sample ID: AS3**

Date Collected: 11/08/21 13:22 **Matrix: Solid** Date Received: 11/08/21 15:00 Percent Solids: 78.9

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	20	U	63	20	ug/Kg	☆	11/09/21 07:55	11/09/21 13:05	5
2-Methylnaphthalene	8.7	U	63	8.7	ug/Kg	₩	11/09/21 07:55	11/09/21 13:05	5
1-Methylnaphthalene	11	U	42	11	ug/Kg	☼	11/09/21 07:55	11/09/21 13:05	5
Acenaphthylene	9.2	U	42	9.2	ug/Kg	₽	11/09/21 07:55	11/09/21 13:05	5
Acenaphthene	9.0	U	42	9.0	ug/Kg	☼	11/09/21 07:55	11/09/21 13:05	5
Fluorene	9.2	U	42	9.2	ug/Kg	☼	11/09/21 07:55	11/09/21 13:05	5
Phenanthrene	29	U	42	29	ug/Kg	₩	11/09/21 07:55	11/09/21 13:05	5
Anthracene	9.1	T	42	3.9	ug/Kg	☼	11/09/21 07:55	11/09/21 13:05	5
Fluoranthene	61		42	13	ug/Kg	☼	11/09/21 07:55	11/09/21 13:05	5
Pyrene	75		42	10	ug/Kg	₩	11/09/21 07:55	11/09/21 13:05	5
Benzo[a]anthracene	37	T	42	9.5	ug/Kg	☼	11/09/21 07:55	11/09/21 13:05	5
Chrysene	65		42	9.8	ug/Kg	☼	11/09/21 07:55	11/09/21 13:05	5
Benzo[b]fluoranthene	61		42	10	ug/Kg	₩	11/09/21 07:55	11/09/21 13:05	5
Benzo[k]fluoranthene	33	T	42	12	ug/Kg	☼	11/09/21 07:55	11/09/21 13:05	5
Benzo[a]pyrene	62		42	10	ug/Kg	☼	11/09/21 07:55	11/09/21 13:05	5
Benzo[g,h,i]perylene	34	I	42	10	ug/Kg	₩	11/09/21 07:55	11/09/21 13:05	5
Indeno[1,2,3-cd]pyrene	20	T	42	9.5	ug/Kg	☼	11/09/21 07:55	11/09/21 13:05	5
Dibenz(a,h)anthracene	11	I	42	10	ug/Kg	₩	11/09/21 07:55	11/09/21 13:05	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-methylnaphthalene-d10	39		20 - 150				11/09/21 07:55	11/09/21 13:05	5
Fluoranthene-d10	47		25 - 150				11/09/21 07:55	11/09/21 13:05	5

2-methylnaphthalene-d10	39	20 - 150	11/09/21 07:55	11/09/21 13:05	5
Fluoranthene-d10	47	25 - 150	11/09/21 07:55	11/09/21 13:05	5

Method: 6010D - Metals (ICP)									
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	31		1.3	0.11	mg/Kg	<u></u>	11/09/21 10:33	11/09/21 16:55	1

Job ID: 660-115213-1

11/10/2021

Client: Professional Service Industries (PSI) Job ID: 660-115213-1

Project/Site: Washinton Park

Method: 8270D - PAHs by GC/MS (SIM)

Lab Sample ID: MB 660-245222/1-A

Matrix: Solid

Analysis Batch: 245262

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 245222

7 min, 500 2 min 2 10202								op = atom.	
	MB	MB							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	3.1	U	9.7	3.1	ug/Kg		11/08/21 07:44	11/09/21 06:57	1
2-Methylnaphthalene	1.3	U	9.7	1.3	ug/Kg		11/08/21 07:44	11/09/21 06:57	1
1-Methylnaphthalene	1.7	U	6.5	1.7	ug/Kg		11/08/21 07:44	11/09/21 06:57	1
Acenaphthylene	1.4	U	6.5	1.4	ug/Kg		11/08/21 07:44	11/09/21 06:57	1
Acenaphthene	1.4	U	6.5	1.4	ug/Kg		11/08/21 07:44	11/09/21 06:57	1
Fluorene	1.4	U	6.5	1.4	ug/Kg		11/08/21 07:44	11/09/21 06:57	1
Phenanthrene	4.4	U	6.5	4.4	ug/Kg		11/08/21 07:44	11/09/21 06:57	1
Anthracene	0.59	U	6.5	0.59	ug/Kg		11/08/21 07:44	11/09/21 06:57	•
Fluoranthene	2.1	U	6.5	2.1	ug/Kg		11/08/21 07:44	11/09/21 06:57	1
Pyrene	1.5	U	6.5	1.5	ug/Kg		11/08/21 07:44	11/09/21 06:57	1
Benzo[a]anthracene	1.5	U	6.5	1.5	ug/Kg		11/08/21 07:44	11/09/21 06:57	1
Chrysene	1.5	U	6.5	1.5	ug/Kg		11/08/21 07:44	11/09/21 06:57	1
Benzo[b]fluoranthene	1.6	U	6.5	1.6	ug/Kg		11/08/21 07:44	11/09/21 06:57	1
Benzo[k]fluoranthene	1.8	U	6.5	1.8	ug/Kg		11/08/21 07:44	11/09/21 06:57	1
Benzo[a]pyrene	1.6	U	6.5	1.6	ug/Kg		11/08/21 07:44	11/09/21 06:57	1
Benzo[g,h,i]perylene	1.6	U	6.5	1.6	ug/Kg		11/08/21 07:44	11/09/21 06:57	
Indeno[1,2,3-cd]pyrene	1.5	U	6.5	1.5	ug/Kg		11/08/21 07:44	11/09/21 06:57	1
Dibenz(a,h)anthracene	1.6	U	6.5	1.6	ug/Kg		11/08/21 07:44	11/09/21 06:57	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-methylnaphthalene-d10	65		20 - 150	11/03/21 0: 744	11/09/21 0675:	1
Fluoranthene-d10	: 6		25 - 150	11/03/21 0: 744	11/09/21 0675:	1

Lab Sample ID: LCS 660-245222/2-A

Matrix: Solid

Analysis Batch: 245262

Cilent Sample II	J: Lab C	control	Sampie
	Prep	Type: T	otal/NA
	Duan	Deteler	045000

Analysis balch: 245262							Prep Batch: 245222
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Naphthalene	328	248		ug/Kg		76	51 - 114
2-Methylnaphthalene	328	245		ug/Kg		75	50 - 112
1-Methylnaphthalene	328	244		ug/Kg		74	50 - 113
Acenaphthylene	328	277		ug/Kg		84	55 - 115
Acenaphthene	328	273		ug/Kg		83	55 - 115
Fluorene	328	265		ug/Kg		81	58 - 118
Phenanthrene	328	260		ug/Kg		79	59 - 119
Anthracene	328	308		ug/Kg		94	58 - 118
Fluoranthene	328	278		ug/Kg		85	60 - 120
Pyrene	328	331		ug/Kg		101	62 - 127
Benzo[a]anthracene	328	280		ug/Kg		85	66 - 129
Chrysene	328	328		ug/Kg		100	66 - 127
Benzo[b]fluoranthene	328	279		ug/Kg		85	66 - 126
Benzo[k]fluoranthene	328	330		ug/Kg		101	62 - 125
Benzo[a]pyrene	328	304		ug/Kg		93	62 - 123
Benzo[g,h,i]perylene	328	282		ug/Kg		86	57 - 127
Indeno[1,2,3-cd]pyrene	328	263		ug/Kg		80	59 - 134
Dibenz(a,h)anthracene	328	273		ug/Kg		83	63 - 128

Page 9 of 18

QC Sample Results

Client: Professional Service Industries (PSI) Job ID: 660-115213-1

Project/Site: Washinton Park

Method: 8270D - PAHs by GC/MS (SIM) (Continued)

Lab Sample ID: LCS 660-245222/2-A

Matrix: Solid

Analysis Batch: 245262

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 245222

LCS LCS

%Recovery Qualifier Surrogate Limits 2-methylnaphthalene-d10 : 8 20 - 150 Fluoranthene-d10 35 25 - 150

Lab Sample ID: 660-115170-A-1-C MS **Client Sample ID: Matrix Spike**

Matrix: Solid

Analysis Batch: 245262

Prep Type: Total/NA

Prep Batch: 245222

-	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Naphthalene	3.8	U	407	307		ug/Kg	<u></u>	76	51 - 114
2-Methylnaphthalene	1.7	U	407	309		ug/Kg	☆	76	50 - 112
1-Methylnaphthalene	2.1	U	407	325		ug/Kg	₽	80	50 - 113
Acenaphthylene	1.8	U	407	337		ug/Kg	☼	83	55 - 115
Acenaphthene	1.7	U	407	333		ug/Kg	☆	82	55 - 115
Fluorene	1.8	U	407	341		ug/Kg	₩	84	58 - 118
Phenanthrene	5.5	U	407	307		ug/Kg	₩	75	59 - 119
Anthracene	0.74	U	407	366		ug/Kg	₩	90	58 - 118
Fluoranthene	2.5	U	407	337		ug/Kg	₽	83	60 - 120
Pyrene	1.9	U	407	381		ug/Kg	☼	94	62 - 127
Benzo[a]anthracene	1.8	U	407	345		ug/Kg	₩	85	66 - 129
Chrysene	1.9	U	407	394		ug/Kg	₽	97	66 - 127
Benzo[b]fluoranthene	1.9	U	407	349		ug/Kg	₩	86	66 - 126
Benzo[k]fluoranthene	2.2	U	407	397		ug/Kg	₩	98	62 - 125
Benzo[a]pyrene	2.0	U	407	369		ug/Kg	₩	91	62 - 123
Benzo[g,h,i]perylene	2.0	U	407	350		ug/Kg		86	57 - 127
Indeno[1,2,3-cd]pyrene	1.8	U	407	321		ug/Kg	₩	79	59 - 134
Dibenz(a,h)anthracene	2.0	U	407	335		ug/Kg	₩	82	63 - 128

MS MS

Surrogate %Recovery Qualifier Limits 2-methylnaphthalene-d10 20 - 150 : 4 Fluoranthene-d10 25 - 150 35

Lab Sample ID: 660-115170-A-1-D MSD

Matrix: Solid

Analysis Batch: 245262

Client Sample ID: Matrix Spike Duplic	ate
---------------------------------------	-----

Prep Type: Total/NA

Prep Batch: 245222

,, c.c = = .c=c=											
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	3.8	U	401	290		ug/Kg	☆	72	51 - 114	6	30
2-Methylnaphthalene	1.7	U	401	281		ug/Kg	≎	70	50 - 112	9	30
1-Methylnaphthalene	2.1	U	401	280		ug/Kg	☼	70	50 - 113	15	30
Acenaphthylene	1.8	U	401	310		ug/Kg	≎	77	55 - 115	8	30
Acenaphthene	1.7	U	401	304		ug/Kg	≎	76	55 - 115	9	30
Fluorene	1.8	U	401	306		ug/Kg	☼	76	58 - 118	11	30
Phenanthrene	5.5	U	401	285		ug/Kg	≎	71	59 - 119	7	30
Anthracene	0.74	U	401	338		ug/Kg	≎	84	58 - 118	8	30
Fluoranthene	2.5	U	401	329		ug/Kg	☼	82	60 - 120	3	30
Pyrene	1.9	U	401	356		ug/Kg	≎	89	62 - 127	7	30
Benzo[a]anthracene	1.8	U	401	314		ug/Kg	☼	78	66 - 129	10	30
Chrysene	1.9	U	401	364		ug/Kg	≎	91	66 - 127	8	30

Eurofins TestAmerica, Tampa

11/10/2021

Page 10 of 18

Client: Professional Service Industries (PSI) Job ID: 660-115213-1

Project/Site: Washinton Park

Method: 8270D - PAHs by GC/MS (SIM) (Continued)

Lab Sample ID: 660-115170-A-1-D MSD

Matrix: Solid

Analysis Batch: 245262

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 245222

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzo[b]fluoranthene	1.9	U	401	294		ug/Kg	<u></u>	73	66 - 126	17	30
Benzo[k]fluoranthene	2.2	U	401	394		ug/Kg	₩	98	62 - 125	1	30
Benzo[a]pyrene	2.0	U	401	337		ug/Kg	☼	84	62 - 123	9	30
Benzo[g,h,i]perylene	2.0	U	401	316		ug/Kg	₽	79	57 - 127	10	30
Indeno[1,2,3-cd]pyrene	1.8	U	401	293		ug/Kg	☼	73	59 - 134	9	30
Dibenz(a,h)anthracene	2.0	U	401	305		ug/Kg	₩	76	63 - 128	9	30

MSD MSD

Surrogate	%Recovery Qualifier	Limits
2-methylnaphthalene-d10	6:	20 - 150
Fluoranthene-d10	<i>::</i>	25 - 150

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 660-245304/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 245320 MB MB Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Matrix Spike Duplicate

75 - 125

Prep Batch: 245304

PQL Analyte Result Qualifier MDL Unit Prepared Analyzed Dil Fac 1.0 0.083 mg/Kg 11/09/21 10:33 11/09/21 14:13 Arsenic 0.083 U

Lab Sample ID: LCS 660-245304/2-A

Matrix: Solid

Analysis Batch: 245320

Prep Type: Total/NA Prep Batch: 245304

	Spike	LCS LC	3		%Rec.	
Analyte	Added	Result Qu	alifier Unit	D %Rec	Limits	
Arsenic	50.0	47.7	ma/Ka	95	80 - 120	

Lab Sample ID: 660-115149-C-1-B MS **Client Sample ID: Matrix Spike** Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 245320

Prep Batch: 245304 %Rec. Sample Sample Spike MS MS

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Arsenic 0.092 U 59.9 56.8 mg/Kg 95 75 - 125

50.1

Lab Sample ID: 660-115149-C-1-C MSD

0.092 U

Matrix: Solid

Arsenic

Prep Type: Total/NA **Analysis Batch: 245320** Prep Batch: 245304 Spike MSD MSD %Rec. **RPD** Sample Sample Analyte Result Qualifier Added Limits Result Qualifier Unit %Rec RPD Limit

47.3

mg/Kg

Eurofins TestAmerica, Tampa

11/10/2021

QC Association Summary

Client: Professional Service Industries (PSI)

Project/Site: Washinton Park

Job ID: 660-115213-1

GC/MS Semi VOA

Prep Batch: 245222

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
660-115213-1	AS1	Total/NA	Solid	3546	
660-115213-2	AS2	Total/NA	Solid	3546	
660-115213-3	AS3	Total/NA	Solid	3546	
MB 660-245222/1-A	Method Blank	Total/NA	Solid	3546	
LCS 660-245222/2-A	Lab Control Sample	Total/NA	Solid	3546	
660-115170-A-1-C MS	Matrix Spike	Total/NA	Solid	3546	
660-115170-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	3546	

Analysis Batch: 245262

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
660-115213-1	AS1	Total/NA	Solid	8270D	245222
660-115213-2	AS2	Total/NA	Solid	8270D	245222
660-115213-3	AS3	Total/NA	Solid	8270D	245222
MB 660-245222/1-A	Method Blank	Total/NA	Solid	8270D	245222
LCS 660-245222/2-A	Lab Control Sample	Total/NA	Solid	8270D	245222
660-115170-A-1-C MS	Matrix Spike	Total/NA	Solid	8270D	245222
660-115170-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8270D	245222

Metals

Prep Batch: 245304

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
660-115213-1	AS1	Total/NA	Solid	3050B	
660-115213-2	AS2	Total/NA	Solid	3050B	
660-115213-3	AS3	Total/NA	Solid	3050B	
MB 660-245304/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 660-245304/2-A	Lab Control Sample	Total/NA	Solid	3050B	
660-115149-C-1-B MS	Matrix Spike	Total/NA	Solid	3050B	
660-115149-C-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	3050B	

Analysis Batch: 245320

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
660-115213-1	AS1	Total/NA	Solid	6010D	245304
660-115213-2	AS2	Total/NA	Solid	6010D	245304
660-115213-3	AS3	Total/NA	Solid	6010D	245304
MB 660-245304/1-A	Method Blank	Total/NA	Solid	6010D	245304
LCS 660-245304/2-A	Lab Control Sample	Total/NA	Solid	6010D	245304
660-115149-C-1-B MS	Matrix Spike	Total/NA	Solid	6010D	245304
660-115149-C-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	6010D	245304

General Chemistry

Analysis Batch: 245276

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Pre	p Batch
660-115213-1	AS1	Total/NA	Solid	Moisture	
660-115213-2	AS2	Total/NA	Solid	Moisture	
660-115213-3	AS3	Total/NA	Solid	Moisture	
660-115213-2 DU	AS2	Total/NA	Solid	Moisture	

Page 12 of 18

Project/Site: Washinton Park

Client: Professional Service Industries (PSI)

Client Sample ID: AS1 Lab Sample ID: 660-115213-1 Date Collected: 11/08/21 13:10

Matrix: Solid

Date Received: 11/08/21 15:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	245276	11/09/21 05:39	AJG	TAL TAM

Client Sample ID: AS1 Lab Sample ID: 660-115213-1

Matrix: Solid

Date Collected: 11/08/21 13:10 Date Received: 11/08/21 15:00 Percent Solids: 80.2

Prep Type Total/NA	Batch Type Prep	Batch Method 3546	Run	Dilution Factor	Batch Number	Prepared or Analyzed 11/09/21 07:55	Analyst	Lab TAL TAM
Total/NA	Analysis	8270D		5	245222	11/09/21 13:46		TAL TAM
Total/NA Total/NA	Prep Analysis	3050B 6010D		1	245304 245320	11/09/21 10:33 11/09/21 15:50		TAL TAM TAL TAM

Client Sample ID: AS2 Lab Sample ID: 660-115213-2

Date Collected: 11/08/21 13:16 Matrix: Solid

Date Received: 11/08/21 15:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	245276	11/09/21 05:24	AJG	TAL TAM

Lab Sample ID: 660-115213-2 Client Sample ID: AS2

Date Collected: 11/08/21 13:16 **Matrix: Solid** Date Received: 11/08/21 15:00 Percent Solids: 76.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			245222	11/09/21 07:55	MT	TAL TAM
Total/NA	Analysis	8270D		5	245262	11/09/21 13:25	MWJ	TAL TAM
Total/NA	Prep	3050B			245304	11/09/21 10:33	GG	TAL TAM
Total/NA	Analysis	6010D		1	245320	11/09/21 16:52	GG	TAL TAM

Client Sample ID: AS3 Lab Sample ID: 660-115213-3

Date Collected: 11/08/21 13:22 **Matrix: Solid** Date Received: 11/08/21 15:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	245276	11/09/21 05:34	AJG	TAL TAM

Client Sample ID: AS3 Lab Sample ID: 660-115213-3

Date Collected: 11/08/21 13:22 **Matrix: Solid** Date Received: 11/08/21 15:00 Percent Solids: 78.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			245222	11/09/21 07:55	MT	TAL TAM
Total/NA	Analysis	8270D		5	245262	11/09/21 13:05	MWJ	TAL TAM
Total/NA	Prep	3050B			245304	11/09/21 10:33	GG	TAL TAM
Total/NA	Analysis	6010D		1	245320	11/09/21 16:55	GG	TAL TAM

Lab Chronicle

Client: Professional Service Industries (PSI)

Project/Site: Washinton Park

Job ID: 660-115213-1

Laboratory References:

TAL TAM = Eurofins TestAmerica, Tampa, 6712 Benjamin Road, Suite 100, Tampa, FL 33634, TEL (813)885-7427

3

4

6

o

9

10

11

40

Method Summary

Client: Professional Service Industries (PSI)

Project/Site: Washinton Park

Job ID: 660-115213-1

Method	Method Description	Protocol	Laboratory
8270D	PAHs by GC/MS (SIM)	SW846	TAL TAM
6010D	Metals (ICP)	SW846	TAL TAM
Moisture	Percent Moisture	EPA	TAL TAM
3050B	Preparation, Metals	SW846	TAL TAM
3546	Microwave Extraction	SW846	TAL TAM

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL TAM = Eurofins TestAmerica, Tampa, 6712 Benjamin Road, Suite 100, Tampa, FL 33634, TEL (813)885-7427

3

4

5

7

8

9

11

12

Accreditation/Certification Summary

Client: Professional Service Industries (PSI)

Project/Site: Washinton Park

Job ID: 660-115213-1

Laboratory: Eurofins TestAmerica, Tampa

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pro	ogram	Identification Number	Expiration Date
Florida	NE	LAP	E84282	06-30-22
The following analyte:	are included in this reno	rt but the laboratory is r	not certified by the governing authority.	This list may include analytee for wh
the agency does not	•	it, but the laboratory is i	lot certified by the governing authority.	This list may include analytes for wil
• ,	•	Matrix	Analyte	This list may include analytes for wi
the agency does not o	offer certification.	,		This list may include analytes for wh

💸 eurofins

528795

Chain of Custody Record

	Regulatory Program:		Md [NPDES	RCRA	Other:				7	TAL-821
Client Contact	Project Manager:	Hox	Solla	Sis	Site Contact:		Date:		200	No:	
Company Name: PS /	Tel/Email: Scoff,	100 de	ainte	to A. La	Lab Contact:		Carrier:			of COCs	l
Address (80) Bridgen Cath Dr	Analysis	Analysis Turnaround Time	Time						Sampler:		
and the 3	CALENDAR DAYS	ow [WORKING DAYS						For	For Lab Use Only.	
Phone: 818-1112	TAT if different	from Below							Walk	Walk-in Client:	
		2 weeks		(N	/人	-			Lab	Lab Sampling:	
Mas		1 week		/ ,)							
00 000 335 I	X □	2 days 1 day		əldu					gor	JOD / SUG NO.:	
		Sample		162 b						11 4	1,
Sample Identification	Sample Sample Date Time	Type (C=Comp, G=Grab)	Matrix	Con of Piltered	Perform				7	Sample Specific Notes	7
A-5 1	1/8/21 1310	7	Ś		×						
167	-	7	S	~	X						
AS 3	13	J	S	_	×						
									+		
									Loc	Loc: 660	
_ 0										115617	
									1		
						660-11521	660-115213 Chain of Custody	ópc	-		
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3;	5=NaOH; 6= Other		I	I							
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample.	se List any EPA Wast	e Codes for	the samp	e In the	Sample Di	sposal (A fee I	nay be assess	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	etained long	ger than 1 month)	
Non-Hazard Flammable Skin Irritant	Poison B	Unknown	nwo		Return	Return to Client	Disposal by Lab	ab Archive for	ve for	Months	
Special Instructions/QC Requirements & Comments:											
							K	8	>		
Custody Seals Intact: Yes No	Custody Seal No.:					Cooler Temp. ('C): Obs'd		Corr'd:	, Therr	Therm ID No.:	
Seeinguished by:	Company		Date/Time:	.е. 22	Received	by: Mark		Company:	Date //	Date/Time: 1570	
Relinquished by:	Company:		Date/Time:	le:	Regelved by)		Company:	Date	Date/Time:	
Relinquished by:	Company:		Date/Time:	.e.	Received in	Received in Laboratory by:		Company:	Date	Date/Time:	
									-		

Client: Professional Service Industries (PSI)

Login Number: 115213 List Source: Eurofins TestAmerica, Tampa

List Number: 1

Creator: Arevalo, Maria L

Cleator. Alevaio, maria L		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

ANALYTICAL REPORT

Eurofins TestAmerica, Tampa 6712 Benjamin Road Suite 100 Tampa, FL 33634


Tel: (813)885-7427

Laboratory Job ID: 660-115213-2 Client Project/Site: Washinton Park

For:

Professional Service Industries (PSI) 5801 Benjamin Center Drive Suite 112 Tampa, Florida 33634

Attn: Scott Jordan

Authorized for release by: 11/15/2021 4:25:25 PM

Amy Weinberg, Project Manager II (813)885-7427

amy.weinberg@Eurofinset.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

7

10

11

12

Table of Contents

Sample Summary

Client: Professional Service Industries (PSI) Project/Site: Washinton Park

Job ID: 660-115213-2

JUD	ID.	000-	11,	JZ 1	J-Z	

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
660-115213-1	AS1	Solid	11/08/21 13:10	11/08/21 15:00
660-115213-2	AS2	Solid	11/08/21 13:16	11/08/21 15:00
660-115213-3	AS3	Solid	11/08/21 13:22	11/08/21 15:00

Case Narrative

Client: Professional Service Industries (PSI)

Project/Site: Washinton Park

Job ID: 660-115214-2

Job ID: 660-115213-2

Laboratory: Eurofins TestAmerica, Tampa

Narrative

Job Narrative 660-115213-2

Comments

No additional comments.

Receipt

The samples were received on 11/8/2021~4:00~P3. Mnless otherwise noted below the samples arrived in , ood condition and where reguired Uproperlq preserved and on ice. The temperature of the cooler at receipt was $4.y^{\circ}$ C.

Metals

No analytical or guality issues were notedUother than those described in the Definitions/Glossary pa, e.

. . .

3

5

6

44

12

Definitions/Glossary

Client: Professional Service Industries (PSI)

Project/Site: Washinton Park

Job ID: 660-115213-2

Qualifiers

R A	-4-	
IVI	OT 2	118
	CLU	

Qualifier **Qualifier Description**

Indicates that the cop wound y as analoged for but not detected.

Glossary

DzOg, Og NOF

Abbreviation	These commonly used abbreviations may or may not be present in this report.
U	zisted under the ¤D¤colup n to desiLnate that the result is reworted on a drmy eiLht basis
" g	Percent g ecoverm
C%z	Contains %ee ziRuid
C%T	Colonm%orp inL Tnit
CF%	Contains Fo %ree ziRuid
DNg	Duwlicate Nrror g atio (norp aliqed absolute difference)
Dil %ac	Dilution %actor
Dz	Detection zip it (DoD/DEN)

Indicates a DilutionOg e-analmsisOg e-eAtractionOor additional Initial p etals/anion analmsis of the sap we

DzC	Decision zevel Concentration (g adiochep istrm)
NDz	Nstip ated Detection zip it (DioAin)

NDZ	NStip ated Detection Zip it (DioAin)
zED	zip it of Detection (DoD/DEN)
zEx	zip it of x uantitation (DoD/DEN)
00-	ND recen a anded makin up Cor

QCz	NP, recop p ended ¤QaAip up Contap inant zevel¤
QD,	Qinip up Detectable, ctivitm(g adiochep istrn)
QDC	Qinip up Detectable Concentration (g adiochep istrn)
~ -	0 " 15 " " " "

QDz	Qethod Detection zip it
Qz	Qinip up zevel (DioAin)
QPF	Qost Probable Fup ber
Qx z	Qethod x uantitation zip it

FC Fot Calculated

FD Fot Detected at the rewortinL lip it (or QDz or NDz if shoy n)

 $\mathsf{F}\,\mathsf{NM}$ FeLative / , bsent PES Positive / Present

Px z Practical x uantitation zip it

Pg NS Presup wtive x ualitmControl x C

g Ng g elative Nrror g atio (g adiochep istrm)

g ewortinL zip it or g eRuested zip it (g adiochep istrm) gΖ

g PD g elative Percent DifferenceOa p easure of the relative difference bety een ty o woints

GN% GoAicitmNRuivalent %actor (DioAin) **GN**x GoAicitmNRuivalent x uotient (DioAin)

GF GC Goo Fup erous Go Count

Detection Summary

Client: Professional Service Industries (PSI)

Project/Site: Washinton Park

Client Sample ID: AS1

Lab Sample ID: 660-115213-1

Analyte	Result Qualifier	PQL	MDL Unit	Dil Fac D	Method	Prep Type
Arsenic	0.011	0.010	0.0019 mg/L		6010D	SPLP East

Analyte	Result Qualifier	PQL	MDL Unit	Dil Fac D Method	Prep Type
Arsenic	0.16	0.010	0.0019 mg/L	1	SPLP East

Client Sample ID: AS3	Lab Sample ID: 660-115213-3
enone cample is: Acc	Lab Campio IB: CCC 110210

_					
Analyte	Result Qualifier	PQL	MDL Unit	Dil Fac D Me	thod Prep Type
Arsenic	0.076	0.010	0.0019 mg/L	<u> </u>	IOD SPLP East

Job ID: 660-115213-2

3

4

6

7

8

9

7 7

12

Client Sample Results

Client: Professional Service Industries (PSI)

Job ID: 660-115213-2

Project/Site: Washinton Park

Client Sample ID: AS1 Lab Sample ID: 660-115213-1

Date Collected: 11/08/21 13:10 East Sample 15: 666-1762-16-17

Date Received: 11/08/21 15:00

Method: 6010D - Metals (ICP) - SPLP East

 Analyte
 Result Arsenic
 Qualifier Qualifier
 PQL 0.010
 MDL Unit MDL mg/L
 D mg/L
 Prepared 11/12/21 08:50
 Analyzed Analyzed 11/15/21 12:49
 D mg/L

Client Sample ID: AS2 Lab Sample ID: 660-115213-2

Date Collected: 11/08/21 13:16

Date Received: 11/08/21 15:00

Method: 6010D - Metals (ICP) - SPLP East

 Analyte
 Result Arsenic
 Qualifier
 PQL 0.010
 MDL Unit 0.0019
 D mg/L
 Prepared 11/12/21 08:50
 Analyzed 11/15/21 13:01
 D 11/15/21 13:01
 Tale 11/12/21 08:50
 Tale 11/15/21 13:01
 Client Sample ID: AS3 Lab Sample ID: 660-115213-3

Date Collected: 11/08/21 13:22

Date Received: 11/08/21 15:00

Method: 6010D - Metals (ICP) - SPLP East

3

A

5

7

Matrix: Solid

Matrix: Solid

8

9

10

12

QC Sample Results

Client: Professional Service Industries (PSI) Job ID: 660-115214-2

Project/Site: Washinton Park

Method: 6010D - Metals (ICP)

Lab Sample ID: LCS 660-245513/2-A Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 245613

LB LB

Prep Type: Total/NA Prep Batch: 245513

Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits Analyte D Arsenic 1.00 0.9U5 mg/L 99 U0 - 120

Lab Sample ID: LB 660-245488/1-B Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 245613

Prep Type: SPLP East

Prep Batch: 245513

Client Sample ID: AS1

Analyte Result Qualifier PQL **MDL** Unit D **Prepared** Analyzed Dil Fac 0.010 0.0019 mg/L 11/12/21 0U:50 11/15/21 12:70 Arsenic 0.0019 8

Lab Sample ID: 660-115213-1 MS **Client Sample ID: AS1 Matrix: Solid Prep Type: SPLP East Prep Batch: 245513**

Analysis Batch: 245613 Sample Sample Spike MS MS %Rec.

Result Qualifier Added Result Qualifier Limits **Analyte** Unit %Rec Arsenic 0.011 1.00 1.01 35 - 125 mg/L

Lab Sample ID: 660-115213-1 MSD

Matrix: Solid Prep Type: SPLP East Analysis Batch: 245613 Prep Batch: 245513

Spike MSD MSD %Rec. **RPD** Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Arsenic 0.011 1.00 1.01 35 - 125 mg/L 100

11/15/2021

QC Association Summary

Client: Professional Service Industries (PSI)

Project/Site: Washinton Park

Job ID: 660-115213-2

Metals

Leach Batch: 245488

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
660-115213-1	AS1	SPLP East	Solid	1312	
660-115213-2	AS2	SPLP East	Solid	1312	
660-115213-3	AS3	SPLP East	Solid	1312	
LB 660-245488/1-B	Method Blank	SPLP East	Solid	1312	
660-115213-1 MS	AS1	SPLP East	Solid	1312	
660-115213-1 MSD	AS1	SPLP East	Solid	1312	

Prep Batch: 245513

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
660-115213-1	AS1	SPLP East	Solid	3010A	245488
660-115213-2	AS2	SPLP East	Solid	3010A	245488
660-115213-3	AS3	SPLP East	Solid	3010A	245488
LB 660-245488/1-B	Method Blank	SPLP East	Solid	3010A	245488
LCS 660-245513/2-A	Lab Control Sample	Total/NA	Solid	3010A	
660-115213-1 MS	AS1	SPLP East	Solid	3010A	245488
660-115213-1 MSD	AS1	SPLP East	Solid	3010A	245488

Analysis Batch: 245613

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
660-115213-1	AS1	SPLP East	Solid	6010D	245513
660-115213-2	AS2	SPLP East	Solid	6010D	245513
660-115213-3	AS3	SPLP East	Solid	6010D	245513
LB 660-245488/1-B	Method Blank	SPLP East	Solid	6010D	245513
LCS 660-245513/2-A	Lab Control Sample	Total/NA	Solid	6010D	245513
660-115213-1 MS	AS1	SPLP East	Solid	6010D	245513
660-115213-1 MSD	AS1	SPLP East	Solid	6010D	245513

4

5

7

8

9

11

12

Lab Chronicle

Client: Professional Service Industries (PSI)

Analysis

6010D

Project/Site: Washinton Park

Client Sample ID: AS1 Lab Sample ID: 660-115213-1

Date Collected: 11/08/21 13:10

Matrix: Solid

Date Received: 11/08/21 15:00

Batch Batch Dilution Batch **Prepared** Method or Analyzed **Prep Type** Type Run **Factor** Number Analyst Lab SPLP East 1312 245488 11/11/21 15:45 AA TAL TAM Leach SPLP East 3010A 245513 11/12/21 08:50 GG TAL TAM Prep

Client Sample ID: AS2

Date Collected: 11/08/21 13:16

Lab Sample ID: 660-115213-2

Matrix: Solid

245613 11/15/21 12:49 GG

1

Date Received: 11/08/21 15:00

SPLP East

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Leach	1312			245488	11/11/21 15:45	AA	TAL TAM
SPLP East	Prep	3010A			245513	11/12/21 08:50	GG	TAL TAM
SPLP East	Analysis	6010D		1	245613	11/15/21 13:01	GG	TAL TAM

Client Sample ID: AS3 Lab Sample ID: 660-115213-3

Date Collected: 11/08/21 13:22 Matrix: Solid

Date Received: 11/08/21 15:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Leach	1312			245488	11/11/21 15:45	AA	TAL TAM
SPLP East	Prep	3010A			245513	11/12/21 08:50	GG	TAL TAM
SPLP East	Analysis	6010D		1	245613	11/15/21 13:04	GG	TAL TAM

Laboratory References:

TAL TAM = Eurofins TestAmerica, Tampa, 6712 Benjamin Road, Suite 100, Tampa, FL 33634, TEL (813)885-7427

Job ID: 660-115213-2

TAL TAM

3

4

5

7

9

10

12

1:

Method Summary

Client: Professional Service Industries (PSI)

Project/Site: Washinton Park

Laboratory Method **Method Description** Protocol 6010D Metals (ICP) SW846 TAL TAM SPLP Extraction SW846 TAL TAM 1312 3010A Preparation, Total Metals SW846 TAL TAM

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL TAM = Eurofins TestAmerica, Tampa, 6712 Benjamin Road, Suite 100, Tampa, FL 33634, TEL (813)885-7427

2

Job ID: 660-115213-2

3

4

5

6

9

10

11

12

Accreditation/Certification Summary

Client: Professional Service Industries (PSI)

Job ID: 660-115214-2

Project/Site: Washinton Park

Laboratory: Eurofins TestAmerica, Tampa

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Florida	NELAP	E83282	06-40-22

3

4

_

Q

9

11

12

Client: Professional Service Industries (PSI)

Job Number: 660-115213-2

Login Number: 115213 List Source: Eurofins TestAmerica, Tampa

List Number: 1

Creator: Arevalo, Maria L

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Benzo(a)pyrene Conversion Table

For Direct Exposure Soil Cleanup Target Levels

Facility/Site Name:	Washington Park Preserve
Location:	Palmetto, Florida
Facility/Site ID No.:	
Soil Sample No.	AS1
Sample Date	11/8/2021
Location:	Spoils Pile
Depth (ft):	

<u>INSTRUCTIONS</u>: Calculate Total Benzo(a)pyrene Equivalents <u>if at least one of the carcinogenic PAHs is detected in the sample</u> at a concentration equal to or higher than the Method Detection Limit (MDL), whether quantified with certainty (the concentration reported has no qualifier) or estimated (the concentration reported has a "J", "T" or "I" qualifier). Enter the contaminant concentrations (in mg/kg) for all seven carcinogenic PAHs in the yellow boxes using the following criteria (and see table below):

- 1. If quantified with certainty, or estimated and has the "J" qualifier, enter the reported value;
- 2. If not detected at the MDL (the concentration reported is the MDL followed by the "U" qualifier) enter 1/2 of the reported value;
- 3. If detected at a concentration lower than the MDL and the concentration is estimated (has the "T" qualifier) enter the estimated value;
- 4. If detected at a concentration equal to or higher than the MDL but lower than the Practical Quantitation Limit (PQL) and the concentration is estimated (has the "I" qualifier) enter the estimated value;
- 5. If detected at a concentration equal to or higher than the MDL but lower than the PQL and it is not estimated (the concentration reported is the PQL followed by the "M" qualifier) enter 1/2 of the reported value.

Contaminant Concentration (mg/kg)		Toxic Equivalency Factor	Benzo(a)pyrene Equivalents	
Benzo(a)pyrene	0.130	1.0	0.1300	
Benzo(a)anthracene	0.092	0.1	0.0092	
Benzo(b)fluoranthene	0.190	0.1	0.0190	
Benzo(k)fluoranthene	0.082	0.01	0.0008	
Chrysene	0.130	0.001	0.0001	
Dibenz(a,h)anthracene	0.021	1.0	0.0210	
Indeno(1,2,3-cd)pyrene	0.043	0.1	0.0043	

DE Residential = 0.1 mg/kg; DE Industrial = 0.7 mg/kg

Total Benzo(a)pyrene Equivalents = 0.2

The concentration shown EXCEEDS the Residential Direct Exposure SCTL of 0.1 mg/kg.

The concentration shown does not exceed the Industrial Direct Exposure SCTL of 0.7 mg/kg.

Summary Criteria for Table Entries			
Detection Concentration Reported Data Qualifier Enter			
Various	Quantified with certainty	None	reported value
Various	Estimated	J	reported (estimated) value
ND at MDL	MDL	U	1/2 reported value
< MDL	Estimated	Т	reported (estimated) value
≥ MDL but < PQL	Estimated	I	reported (estimated) value
≥ MDL but < PQL	PQL	M	1/2 reported value

Benzo(a)pyrene Conversion Table

For Direct Exposure Soil Cleanup Target Levels

Facility/Site Name:	Washington Park Preserve
Location:	Palmetto, Florida
Facility/Site ID No.:	
Soil Sample No.	AS2
Sample Date	11/8/2021
Location:	Spoils Pile
Depth (ft):	

<u>INSTRUCTIONS</u>: Calculate Total Benzo(a)pyrene Equivalents <u>if at least one of the carcinogenic PAHs is detected in the sample</u> at a concentration equal to or higher than the Method Detection Limit (MDL), whether quantified with certainty (the concentration reported has no qualifier) or estimated (the concentration reported has a "J", "T" or "I" qualifier). Enter the contaminant concentrations (in mg/kg) for all seven carcinogenic PAHs in the yellow boxes using the following criteria (and see table below):

- 1. If quantified with certainty, or estimated and has the "J" qualifier, enter the reported value;
- 2. If not detected at the MDL (the concentration reported is the MDL followed by the "U" qualifier) enter 1/2 of the reported value;
- 3. If detected at a concentration lower than the MDL and the concentration is estimated (has the "T" qualifier) enter the estimated value;
- 4. If detected at a concentration equal to or higher than the MDL but lower than the Practical Quantitation Limit (PQL) and the concentration is estimated (has the "I" qualifier) enter the estimated value;
- 5. If detected at a concentration equal to or higher than the MDL but lower than the PQL and it is not estimated (the concentration reported is the PQL followed by the "M" qualifier) enter 1/2 of the reported value.

Contaminant	ntaminant Concentration (mg/kg)		Benzo(a)pyrene Equivalents	
Benzo(a)pyrene	0.060	1.0	0.0600	
Benzo(a)anthracene	0.045	0.1	0.0045	
Benzo(b)fluoranthene	0.084	0.1	0.0084	
Benzo(k)fluoranthene	0.039	0.01	0.0004	
Chrysene	0.062	0.001	0.0001	
Dibenz(a,h)anthracene	0.005	1.0	0.0050	
Indeno(1,2,3-cd)pyrene	0.021	0.1	0.0021	

DE Residential = 0.1 mg/kg; DE Industrial = 0.7 mg/kg

Total Benzo(a)pyrene Equivalents = 0.1

The concentration shown does not exceed the Residential Direct Exposure SCTL of 0.1 mg/kg.

The concentration shown does not exceed the Industrial Direct Exposure SCTL of 0.7 mg/kg.

Summary Criteria for Table Entries			
Detection Concentration Reported Data Qualifier Enter			
Various	Quantified with certainty	None	reported value
Various	Estimated	J	reported (estimated) value
ND at MDL	MDL	U	1/2 reported value
< MDL	Estimated	Т	reported (estimated) value
≥ MDL but < PQL	Estimated	I	reported (estimated) value
≥ MDL but < PQL	PQL	M	1/2 reported value

Benzo(a)pyrene Conversion Table

For Direct Exposure Soil Cleanup Target Levels

Facility/Site Name:	Washington Park Preserve
Location:	Palmetto, Florida
Facility/Site ID No.:	
Soil Sample No.	AS3
Sample Date	11/8/2021
Location:	Spoils Pile
Depth (ft):	

<u>INSTRUCTIONS</u>: Calculate Total Benzo(a)pyrene Equivalents <u>if at least one of the carcinogenic PAHs is detected in the sample</u> at a concentration equal to or higher than the Method Detection Limit (MDL), whether quantified with certainty (the concentration reported has no qualifier) or estimated (the concentration reported has a "J", "T" or "I" qualifier). Enter the contaminant concentrations (in mg/kg) for all seven carcinogenic PAHs in the yellow boxes using the following criteria (and see table below):

- 1. If quantified with certainty, or estimated and has the "J" qualifier, enter the reported value;
- 2. If not detected at the MDL (the concentration reported is the MDL followed by the "U" qualifier) enter 1/2 of the reported value;
- 3. If detected at a concentration lower than the MDL and the concentration is estimated (has the "T" qualifier) enter the estimated value;
- 4. If detected at a concentration equal to or higher than the MDL but lower than the Practical Quantitation Limit (PQL) and the concentration is estimated (has the "I" qualifier) enter the estimated value;
- 5. If detected at a concentration equal to or higher than the MDL but lower than the PQL and it is not estimated (the concentration reported is the PQL followed by the "M" qualifier) enter 1/2 of the reported value.

Contaminant Concentration (mg/kg)		Toxic Equivalency Factor	Benzo(a)pyrene Equivalents	
Benzo(a)pyrene	0.062	1.0	0.0620	
Benzo(a)anthracene	0.037	0.1	0.0037	
Benzo(b)fluoranthene	0.061	0.1	0.0061	
Benzo(k)fluoranthene	0.033	0.01	0.0003	
Chrysene	0.065	0.001	0.0001	
Dibenz(a,h)anthracene	0.011	1.0	0.0110	
Indeno(1,2,3-cd)pyrene	0.020	0.1	0.0020	

DE Residential = 0.1 mg/kg; DE Industrial = 0.7 mg/kg

Total Benzo(a)pyrene Equivalents = 0.1

The concentration shown does not exceed the Residential Direct Exposure SCTL of 0.1 mg/kg.

The concentration shown does not exceed the Industrial Direct Exposure SCTL of 0.7 mg/kg.

Summary Criteria for Table Entries			
Detection Concentration Reported Data Qualifier Enter			
Various	Quantified with certainty	None	reported value
Various	Estimated	J	reported (estimated) value
ND at MDL	MDL	U	1/2 reported value
< MDL	Estimated	Т	reported (estimated) value
≥ MDL but < PQL	Estimated	I	reported (estimated) value
≥ MDL but < PQL	PQL	M	1/2 reported value

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Tampa 6712 Benjamin Road Suite 100 Tampa, FL 33634

Tel: (813)885-7427

Laboratory Job ID: 660-115214-1 Client Project/Site: Washinton Park

For:

Professional Service Industries (PSI) 5801 Benjamin Center Drive Suite 112 Tampa, Florida 33634

Attn: Scott Jordan

Authorized for release by: 11/11/2021 1:08:36 PM

Amy Weinberg, Project Manager II (813)885-7427

amy.weinberg@Eurofinset.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

7

ŏ

4.0

13

1 /

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions/Glossary	5
Detection Summary	6
Client Sample Results	7
QC Sample Results	8
QC Association Summary	9
Lab Chronicle	10
Method Summary	11
Certification Summary	12
Chain of Custody	13
Receipt Checklists	14

4

9

10

12

13

Sample Summary

Client: Professional Service Industries (PSI) Project/Site: Washinton Park

Job ID: 660-115214-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
660-115214-1	MW-A	Water	11/08/21 10:43	11/08/21 15:00

Case Narrative

Client: Professional Service Industries (PSI)

Project/Site: Washinton Park

Job ID: 660-115214-1

Job ID: 660-115214-1

Laboratory: Eurofins TestAmerica, Tampa

Narrative

Job Narrative 660-115214-1

Comments

No additional comments.

Receipt

The sample was received on 11/8/2021 3:00 PM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.4° C.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

- 6

4

6

_

1.0

44

12

13

Definitions/Glossary

Client: Professional Service Industries (PSI)

Project/Site: Washinton Park

Job ID: 660-115214-1

Qualifiers

M	eta	ls

Qualifier **Qualifier Description**

The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

U Indicates that the compound was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery

CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) DER

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DΙ

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) Most Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) RER

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Detection Summary

Client: Professional Service Industries (PSI)

Project/Site: Washinton Park

Client Sample ID: MW-A

Lab Sample ID: 660-115214-1

Job ID: 660-115214-1

Г									
Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.0024	I	0.010	0.0019	mg/L	1		6010D	Total
									Recoverable

2

4

6

8

9

11

10

Client Sample Results

Client: Professional Service Industries (PSI)

Job ID: 660-115214-1

Project/Site: Washinton Park

Client Sample ID: MW-A Lab Sample ID: 660-115214-1

Date Collected: 11/08/21 10:43

Date Received: 11/08/21 15:00

Method: 6010D - Metals (ICP)	 Total Reco 	verable							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0024	T.	0.010	0.0019	mg/L		11/10/21 08:46	11/11/21 10:12	1

1

8

10

12

13

QC Sample Results

Job ID: 660-115214-1 Client: Professional Service Industries (PSI)

Project/Site: Washinton Park

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 660-245375/1-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 245436 MB MB **Prep Type: Total Recoverable Prep Batch: 245375**

Result Qualifier PQL **MDL** Unit Prepared Analyzed Dil Fac Analyte 0.010 0.0019 mg/L 11/10/21 08:46 11/11/21 09:52 Arsenic 0.0019 U

Lab Sample ID: LCS 660-245375/2-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Recoverable Analysis Batch: 245436 Prep Batch: 245375**

Spike LCS LCS %Rec. Added Result Qualifier Unit D %Rec Limits Analyte 1.00 80 - 120 Arsenic 1.00 mg/L 100

Lab Sample ID: 660-115185-B-1-D MS **Client Sample ID: Matrix Spike Matrix: Water Prep Type: Total Recoverable Analysis Batch: 245436 Prep Batch: 245375**

Sample Sample Spike MS MS %Rec.

Result Qualifier Added Result Qualifier Limits Analyte Unit %Rec Arsenic 0.0027 I 1.00 1.03 75 - 125 mg/L

Lab Sample ID: 660-115185-B-1-E MSD **Client Sample ID: Matrix Spike Duplicate Matrix: Water Prep Type: Total Recoverable**

Analysis Batch: 245436

Prep Batch: 245375 Spike MSD MSD %Rec. **RPD** Sample Sample

Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Arsenic 0.0027 I 1.00 1.02 75 - 125 mg/L 102

11/11/2021

QC Association Summary

Client: Professional Service Industries (PSI)

Project/Site: Washinton Park

Job ID: 660-115214-1

Metals

Prep Batch: 245375

Lab Sample ID 660-115214-1	Client Sample ID MW-A	Prep Type Total Recoverable	Matrix Water	Method 3005A	Prep Batch
MB 660-245375/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 660-245375/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
660-115185-B-1-D MS	Matrix Spike	Total Recoverable	Water	3005A	
660-115185-B-1-E MSD	Matrix Spike Duplicate	Total Recoverable	Water	3005A	

Analysis Batch: 245436

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
660-115214-1	MW-A	Total Recoverable	Water	6010D	245375
MB 660-245375/1-A	Method Blank	Total Recoverable	Water	6010D	245375
LCS 660-245375/2-A	Lab Control Sample	Total Recoverable	Water	6010D	245375
660-115185-B-1-D MS	Matrix Spike	Total Recoverable	Water	6010D	245375
660-115185-B-1-E MSD	Matrix Spike Duplicate	Total Recoverable	Water	6010D	245375

1

16

4

7

q

10

40

13

Lab Chronicle

Client: Professional Service Industries (PSI)

Job ID: 660-115214-1

Project/Site: Washinton Park

Client Sample ID: MW-A Lab Sample ID: 660-115214-1

Date Collected: 11/08/21 10:43 Matrix: Water

Date Received: 11/08/21 15:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			245375	11/10/21 08:46	GG	TAL TAM
Total Recoverable	Analysis	6010D		1	245436	11/11/21 10:12	GG	TAL TAM

Laboratory References:

TAL TAM = Eurofins TestAmerica, Tampa, 6712 Benjamin Road, Suite 100, Tampa, FL 33634, TEL (813)885-7427

4

6

9

10

12

13

Method Summary

Client: Professional Service Industries (PSI)

Project/Site: Washinton Park

Job ID: 660-115214-1

Method	Method Description	Protocol	Laboratory
6010D	Metals (ICP)	SW846	TAL TAM
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL TAM

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL TAM = Eurofins TestAmerica, Tampa, 6712 Benjamin Road, Suite 100, Tampa, FL 33634, TEL (813)885-7427

Л

5

6

0

9

11

10

13

Accreditation/Certification Summary

Client: Professional Service Industries (PSI)

Job ID: 660-115214-1

Project/Site: Washinton Park

Laboratory: Eurofins TestAmerica, Tampa

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Florida	NELAP	E84282	06-30-22

3

6

R

9

11

13

	Regulatory Program:		□ DW □ NPDES	RCRA Other:			TAL-821	821
Client Contact	Project Manager:	Sc of J.	DE CHAN	Site Contact:	Date: /	11-8-21	COC No:	
ompany Name. PST	Tel/Email: 8/3 358	1112 Best	John Oak	Contact:	Carrier:		/ of / COCs	
ddress: 580/ Benjam Centen Dr 112	Analysis	Turnaround Time	rime				Sampler:	
ily/State/Zip TALLPA FL	CALENDAR DAYS	WORK	WORKING DAYS				For Lab Use Only:	
ie.	TAT if different f	from Below 5+4+DARD	ANDAKD	(N			Walk-in Client:	
		2 weeks	<u> </u>	/A			Lab Sampling:	
roject Name: WAShwetow PARIC		1 week	7.6.7					
#C		2 days					Job / SDG No.:	
t D		1 day						- 1
	Sample Sample			M mno				
Sample Identification	-	(C=Comp, G=Grab)	Matrix Cont.	Perf			Sample Specific Notes:	
144-4	11-8-21 1843		6w 1	7 7 7 7				
	-							
		Loc: 660						
		115214						
990-113214 Chain of Custody								
reservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	5=NaOH; 6= Other							
ossible Hazard Identification: The any samples from a listed EPA Hazardous Waste? Pleasomments Section if the lab is to dispose of the sample.	Please List any EPA Wasto Codes for the sample in the	Codes for th	e sample in the	Sample Disposal (A fo	ee may be assess	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	longer than 1 month)	
K-Non-Hazard Flammable Skin Irritant	Poison B	Unknown	U/	Return to Client	Disposal by Lab	Archive for	Months	
pecial Instructions/QC Requirements & Comments:					Þ			1
						2, 3.0		-
s Intact: Tes No	Custody Seal No.:			Cooler Temp.	o. (°C): Obs'd: /	Corr'd:	Therm ID No.:	
einquished W:	Company		Date/Time: /-8-21 / 1500	Received by:	1	Company:	Date/Time:	
elinquished by:	Company:		e l	Regeived by:		Company:	Date/Time:	
elinquished by:	Company:		Date/Time:	Received in Laboratory by:		Company:	Date/Time:	

Environment Testing TestAmerica

528794 Seurofins

Chain of Custody Record

Address:

Client: Professional Service Industries (PSI) Job Number: 660-115214-1

Login Number: 115214 List Source: Eurofins TestAmerica, Tampa

List Number: 1

Creator: Arevalo, Maria L

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	