SECTION 16231 EMERGENCY GENERATOR SET

PART 1 GENERAL

1.01 SCOPE

- A. Provide and install complete and operable UL 2200 listed emergency/standby electric generating systems which contain all the devices and equipment specified herein and/or required for the service. Equipment shall be new, factory and field tested, installed, and ready for operation. Timely service and reliability after the installation is accepted are critical in the choice of equipment.
- B. The engine is to be of sufficient horsepower to drive the generator under full load conditions. It shall be 4-cycle, fueled with a diesel sub-base fuel tank and cooled with a closed looped radiator system. The generator is to be a low reactance brushless generator, with torque matched excitation and automatic voltage regulation. There is to be a set-mounted control panel with vibration insulators between it and the generator set. The generator, controls and associated cooling and exhaust systems are to be housed in a suitable weather protected enclosure which is to be permanently installed outdoors. The automatic transfer switch shall be installed in a separate NEMA <u>1</u> <u>4XSS</u> secure enclosure.
- C. Where conflict between drawings, specifications or code occurs, the Contractor shall assume and provide the more stringent of the alternatives to the County.
- D. Contractor shall secure all required building permits including the electrical, concrete and fire department reviews. Contractor to provide all required drawings and certifications required to secure these permits. If indicated below, contractor will also provide Flood Certification.

1.02 RATINGS

A. Generator set at site number 1 is to be installed at:

MISSIONARY VILLAGE LIFT STATION

____, Florida

This generator set is to be of suitable power to drive a total of 3 submersible 480 volt, 125 horsepower induction motor pumps, the current main breaker for the station is 600 ampere. This site shall be fueled by a diesel sub-base fuel tank. ATS with manual by pass switch is required at this site. This site is not in a flood zone and flood certification is not required.

PLEASE NOTE : The induction pump motors providing the loads at the above sites all have the following characteristics and the generator sets supplied with this contract are to be built and sized bearing these facts in mind:

- 1. NEMA LRA Code H
- 2. Started with full voltage bypass starters-maximum allowable voltage dip at

start is 20%-loading and will be sequential, (i.e., after each pump is brought up to speed the next one will be started)

- 3. 480 VAC
- 4. 3 Phase
- 5. 60 HZ.

ALSO: Each generator is to be built with the following characteristics/conditions:

- 1. Generator sized as a sequence load.
- 2. Standby Emergency Rating
- 3. Power Factor = .8
- 4. Site Altitude = 100 feet
- 5. Range of Site Ambient Temperatures = 20 120° F.

1.03 GENERATOR SET PERFORMANCE

- A. The voltage regulation of each set shall be \pm .5% of rated voltage for any constant load from the range of no load to full rated load.
- B. The frequency regulation of each set shall be accomplished through an isochronous electronic governor from the range of steady state no load to steady state full rated load.

1.04 SUPPLIER

A. The complete package - engine, generator and other auxiliary components shall be provided from a single manufacturer/supplier. Other required items such as the enclosure, fuel tank, and automatic transfer switching equipment manufactured by others shall all be packaged together before delivery by the manufacturer / supplier. The supplier shall be the manufacturer's authorized distributor who shall maintain a service center capable of emergency maintenance and repairs with a consistent record of a maximum of four hours response time. The supplier shall have 24 hour/365 days per year service availability and factory trained service technicians authorized and capable to perform warranty service on all warrantable products.

1.05 SUBMITTALS

- A. Prior to and a requirement of contract award, the apparent low bidder shall provide references from at least 3 local municipalities or other businesses that have at least 5 similar type emergency generators in service with response time requirements similar to this contract. The actual service responses will be verified for response time consistency and customer satisfaction.
- B. As a minimum for all equipment specified and provided submit the following in pdf format to Manatee County. No equipment is to be ordered until the submittal is approved:
 - 1. Specification and application data sheets for the entire system supplied.
 - 2. Supporting calculations and/or documentation signed and sealed by a Professional Engineer licensed in the State of Florida in support of the

proposed pump capacity, reinforced concrete pad design, concrete anchors, and 160 mph wind load calculations in support of the concrete pad design and concrete anchors.

- 3. Shop drawings showing a dimensioned outline plan and elevation views of the system with certified overall and interconnection point dimensions. Indicate fabrication details, dimensions, weights, loads, required clearances, components, location and size of each field connection and method of field assembly.
- 4. Manufacturer's installation instructions.
- 5. Interconnection wiring and piping diagrams which show all external connections required. Show field wiring terminals with markings in a consistent point to point manner.
- 6. Manufacturer's certification of prototype testing which show evidence of compliance with specified requirement.
- 7. Manufacturer's applicable published warranty documents.
- 8. Shop drawings of the enclosure indicating basic layout, materials, and color. A color swatch shall be submitted for review.
- C. Prior to the County's acceptance of generator site(s), the Contractor shall submit the following for each generator site(s):
 - 1. Generator field test results showing compliance with the specifications.
 - 2. Signed and sealed final record site plan prepared by a Professional Surveyor registered in the State of Florida showing all existing and new above ground facilities / improvements, new underground conduit and fuel line locations, and property corners. A CAD file of the project survey can be requested from the County, if available.

The following information shall be provided on the final record site plans:

Location in X & Y	ATS, natural gas meter (if applicable)
Location in X, Y & Z	Engine slab, fuel tank slab (if separate from Engine slab), all new underground pipes and conduits
Location in Z (elevation)	top of fuel tank, bottom of ATS, bottom of Engine (if not on top of a fuel tank)
Call outs	Engine size in KW, conduit size, fuel tank size in gallons (if applicable)

C. A single O&M manual shall be provided that covers all parts of the generator system and controls for all installations contained in this contract. It shall be tabbed for each different size or type of equipment. The cover page shall indicate the manufacturer, date and contract number as well as listing all pump station sites it applies to.

1.06 WARRANTY

- A. A comprehensive, no deductible warranty shall be supplied for the complete electrical power system (the generator set, controls and associated switches, switchgear, automatic transfer switch and all accessories) supplied for each installation. The complete systems shall be warranted by the manufacturer against defects in materials and workmanship for a period of five years or 1500 hours of operation; whichever occurs first from the date of system startup. This warranty coverage shall include parts, labor, and travel expenses.
- B. The warranty of the coating of the enclosure and fuel tank shall be a nondeductible, unlimited warranty against rust and corrosion of any coated part of the enclosure for a period of ten years.

PART 2 PRODUCTS:

2.01 EMERGENCY GENERATOR

- A. Each generator shall be:
 - 1. Used for 60 Hz Operation, 460 <u>480</u> Volt output voltage
 - 2. 4- Pole 1800 RPM Revolving Field Synchronous Machine
 - 3. Stator Winding to be .667 Pitch
 - 4. Air Cooled by Shaft Mounted Fans
 - 5. 12 Leads for Output Connections
 - 6. Class H Insulation System
 - 7. Temperature Rise by Resistance not to Exceed 125°C at Full Load
 - 8. The stator shall have vacuum impregnated windings with fungus resistant epoxy varnish.
- B. Utilize a permanent magnet generator for excitation power to an automatic voltage regulator. The permanent magnet generator shall sustain main field excitation power for optimum motor starting and to sustain short circuit current for selective operation and coordination of system over current devices.
- C. The automatic voltage regulator shall be a temperature compensated solid state design. It shall be equipped with 3-phase RMS sensing. The regulator shall control buildup of AC generator voltage to provide a linear rise and limit overshoot. The regulator shall include an under frequency rolloff torque-matching characteristic which shall reduce output voltage in proportion to frequency below a threshold of 58 hz. The torque matching characteristic shall include differential rate of frequency change compensation to use maximum available engine torque and provide optimal transient load response. Regulators which use a fixed voltage per hz. characteristic are not acceptable.
- D. Provide a generator main circuit breaker. This breaker is to be set mounted and wired, molded case thermal-magnetic rated for proper generator set operation. The breaker shall be UL listed. Field circuit breaker shall not be acceptable for the purpose of generator overcurrent protection. The generator circuit breaker shall incorporate:

- 1. Tripping characteristic: designed specifically for generator protection.
- 2. Trip rating is to be matched to generator rating.
- 3. Shunt Trip: Connected to trip breaker when generator set is shut down by other protective devices.
- 4. Mounting Position: Adjacent to or integrated with control and monitoring panel.
- E. Provide a microprocessor-based unit that will continuously monitor current level in each phase of generator output. When signaled by the protector or other generator set protective device, a shunt-trip device in the generator disconnect switch shall open the switch to disconnect the generator from the load circuits. This microprocessor-based unit shall also:
 - 1. Initiate a generator overload alarm when the generator has operated at an overload equal to 110% of full load for 60 seconds.
 - 2. Under single or three phase fault conditions, it shall regulate the generator to 300% or rated full load current for up to 10 seconds.
 - 3. When the heating effect of overcurrent on the generator approaches the thermal damage point of the unit, the processor shall switch the excitation system off and open the generator disconnect switch to shut the generator down.
 - 4. Sense the clearing of a fault by other overcurrent devices and control the recovery of the rated voltage to avoid overshoot.
- F. Leads for water jacket heaters and space heaters shall be housed in their own separate conduit box.
- G. Provide alternator strip heater or thermostatically controlled space heater(s) per manufacturer's recommendation to keep moisture out of the windings.

2.02 INSTRUMENTATION AND CONTROL

- A. Each generator set is to be capable of being started and shutdown through an automatic transfer switch or manually.
- B. Manually, the control shall have automatic remote start capability from a panel mounted three position (Stop, Run, Remote) switch. When the control panel is selected to the "Run" position, the generator set starts and runs. When selected to the "Stop" position, a shutdown is initiated. The "Remote" position allows the set to be operated from a remote location.
- C. An emergency stop button will also be installed to shut the system down. This button should be red, a minimum of two inches in diameter, labeled "STOP" and installed in a conspicuous location on the generator set. It shall be reusable and resettable.
- D. The control shall shut down and lock out upon: failing to start (overcrank), overspeed, low engine oil pressure, high engine coolant temperature, or operation of a remote manual stop station. A panel mounted switch shall reset the engine monitor and test all the lamps. Lamp indications on the control panel shall include as a minimum:

- 1. Overcrank Shutdown Red
- 2. Overspeed Shutdown Red
- 3. High Coolant Temperature Red
- 4. Low Engine Oil Pressure Red
- 5. High Engine Coolant Temperature Prealarm Yellow
- 6. Low Engine Oil Pressure Prealarm Yellow
- 7. Low Fuel Yellow
- 8. Run Green
- E. Each generator set is to be set up by the manufacturer to indicate to a remote location through the County's RTU system:
 - 1. When generator set is in operation.
 - 2. When generator fails (no commercial or generator power).
 - 3. When low fuel level is reached in the fuel tank.

The contractor shall install four wires from the generator control panel to the RTU control panel; wire type shall be 16 AWG, 16 strand flexing type MTW or TFFN 600 volt. The County's RTU system uses discrete- type signals with N/O type contacts. County shall make the actual connections to the RTU system.

The wire coloring scheme shall be:

Brown - generator run Red - generator fail Yellow- low fuel/low pressure (natural gas) Orange- common to alarms and connected to control panel power either 24 volt DC or AC

- F. Regulation of NFPA 110 Level 2 shall apply for instrumentation, alarm and shutdown. The instrument panel shall include, but not necessarily be limited to:
 - 1. Gages for engine: with $\pm 2\%$ full scale accuracy:
 - a. Oil Pressure
 - b. Engine Coolant Temperature
 - c. Voltmeter for the DC Battery
 - 2. Gages for generator: with \pm 2% full scale accuracy:
 - a. AC Ammeter dual range
 - b. AC Volt Meter dual range
 - c. Frequency Meter range of 45-65 Hz.
 - 3. Elapsed Time Meter
 - 4. 0-3000 RPM Tachometer with <u>+</u> 2% full scale accuracy.
 - 5. A seven position phase selector switch with "OFF" position to show meter display of current and voltage of each generator phase. This selector switch may be manual or push-button.
 - 6. A power source with circuit protection 12 or 24 VDC.
 - 7. An AC interlock to prevent starter re-engagement with engine running.
 - 8. DC circuit protection.

- 9. A minimum of two panel lamps to illuminate instrument panel.
- G. Switches and Controls
 - 1. Rheostat for adjusting output voltage of the generator to \pm 5% of nominal voltage.
 - 2. Over voltage protection shutdown switch.
 - 3. Emergency stop switch mounted on control panel.
 - 4. Engine start switch with Run, Off, Reset, Automatic positions.
 - 5. Five minute engine cool down timer.
 - 6. Cyclic cranking switch.
- H. All electrical penetrations in any enclosure shall be properly sealed from the weather.
- I. Primary power disconnect switch on the LS control panel shall be identified with an NFPA compliant Main Disconnect label.

2.03 ENCLOSURE

- A. The generator set and all the equipment supplied in this contract, shall be operated in a stationary outdoor environment.
 - 1. Require weather protected enclosures. These enclosures shall protect the unit and all equipment and devices from the elements of the weather to include rain and winds.
 - 2. The enclosure shall meet all federal, state, and local regulations.
 - 3. All enclosures, boxes, trays, etc shall have weep holes for condensation or water intrusion drainage. Any oil containment / catchment areas shall have provision to <u>completely</u> drain off water. The enclosure shall provide adequate ventilation for cooling and operation under full load conditions.
 - 4. The enclosure shall be constructed of aluminum with a minimum 14 gauge thickness. The enclosure shall have an electrostatically applied, baked on, powder coated enamel or polyester finish a minimum of 2.5 mil thick.
 - 5. The housing shall have hinged side access doors and a rear control door that are easy to remove. The side panels shall be easy to remove to allow access to all areas of the pump. All doors shall be secured by lockable handles as provided by the manufacturer or at a minimum with padlock hasps, so the County can install a standard padlocks.
 - 6. All exterior assembly hardware, bolts and/or screws, handles, hinges, and hasps shall be 316 stainless steel. All exterior bolts and/or screws shall be tamper-proof. All tamper-proof screws shall utilize the 6 lobe pin TX or Torx® pin-head security fasteners. A neoprene washer shall be installed between all bolts/nuts/washers and the enclosure's exterior finish.
 - 7. The housing shall be factory assembled to the generator set skid base. The skid base shall be firmly fastened to a concrete foundation pad which is to be provided and installed as part of this contract. The connections shall be adequate to avoid movement from both wind and vibration loading. The skid base / framing surface protection coating shall be per the fuel tank

coating requirements. All metal surfaces coming in contact with concrete or grout shall be coated with coal tar epoxy equal to Koppers 300M or a 1/32-inch neoprene gasket between the metal surface(s) and the concrete or masonry may also be used. The neoprene gasket shall be installed along the entire perimeter, not just at the fastening hardware.

- 8. The engine and generator shall be removable from the base for maintenance purposes.
- 9. The skid is to have adequate strength and rigidity to maintain alignment of mounted components without depending on the concrete foundation. Lifting attachments shall be arranged to facilitate lifting with slings without damaging any components.
- 10. The base shall incorporate a battery tray with battery hold down clamps within the rails. Provisions for stub up of electrical conduits shall be within the footprint of the set. Vibration isolation shall be integral between the generator set and base.
- 11. Mount battery charger inside of enclosure near easy access.
- 12. The enclosure shall be a low noise or sound attenuated enclosure. The noise level at any load operating condition, in any direction from the enclosure, shall not exceed 75 dBA at a distance of <u>seven (7)</u> five (5) meters from the enclosure unless noted otherwise on the plans

2.04 ENGINE

- A. The engine shall be standby rated, 4-cycle, direct injection diesel (or carbureted natural gas) with forged steel crankshaft and connecting rods suitable for continuous operation. It shall be designed for stationary applications and shall be complete with all necessary auxiliaries needed for operation of the AC generator. The engine block shall be cast iron construction.
- B. The engine shall have an electronic governor which shall provide isochronous frequency regulation.
- C. The engine shall have an electric starter and battery(ies). See the Starting System section for further details.
- D. The engine shall have a mechanical, positive displacement, engine driven, lubrication oil pump. Provide full flow lubrication oil filters with replacement spinon canister elements. Provide a dipstick for oil level indication and an easily accessible fill location.
- E. Supply a replaceable dry element air cleaner with restriction indicator.
- F. Provide an engine mounted thermostatically controlled water jacket heater. The heater(s) wattage size shall be determined by the manufacturer. The heater voltage shall be single phase, 120V, 60HZ.
- G. Engine shall adhere to the latest Environmental Protection Agency (EPA) requirements for standby power.

2.04.1 STARTING SYSTEM - ENGINE

- A. The battery(ies) used for cranking the engine shall be the lead acid type, 12 or 24 volt, sized as recommended by the generator manufacturer. The battery(ies) shall have sufficient capacity to crank the engine for at least three cycles of 15 seconds on 15 seconds off, for a total of 75 seconds. They shall be provided as new with the entire manufacturer's warranty.
- B. The battery(ies) shall be fastened securely in its(their) own tray within the foot print of the skid. The tray shall be acid resistant.
- C. Include all interconnecting conductors and connection accessories.
- D. A battery charger of appropriate rating which is voltage regulated, shall be provided for the engine. It shall be sized for the proper current, input AC voltage and output DC voltage. The charger shall be equipped with float, taper and equalize charge settings.
- E. A meter on the charger shall provide a visual output reading of the charger.
- F. On the engine, provide a factory mounted alternator with solid state voltage regulation and 35 Amp minimum continuous rating.

2.04.2 FUEL SUPPLY SYSTEM- DIESEL ENGINE

- A. Provide a double walled fuel tank, made of heavy gauge construction that is designed for full weather exposure. The tank shall be a sub-base type. There is to be visual tank to foundation clearance. The tank is to have the following features:
 - 1. Tank shall be UL 142 listed.
 - The capacity of the fuel tank shall be sufficient to run the generator continuously for <u>48</u> 96 hours at <u>75%</u>100% load up to a maximum of <u>500</u> <u>1700 gallons</u>, unless otherwise stated on the plans.
 - 3. Equipped with a mechanical fuel gage and low fuel level alarm that may be monitored from a remote location by a RTU which uses N/O type contacts.
 - 4. Two inch NPT fuel opening with spill protection and a lockable lid that is easily accessible.
 - 5. Emergency pressure relief vent opening on the inner and outer tanks.
 - 6. Inner tank leak alarm kit and low fuel alarm that may be monitored at a remote location by an RTU.
 - 7. Basin drain.
 - 8. Overfill protection / containment.
 - 9. Provide an integral fuel pump of sufficient capacity to sufficiently charge the fuel lines under any start or run condition.
- B. The overall fuel system is to comply with all applicable NFPA regulations as well as those required by the Florida Department of Environmental Regulation. This

includes NFPA compliant labels for the fuel shut-off location and application of Diesel HAZMAT symbol stickers.

- C. Provide an anti-siphon valve in the fuel line at the output of the tank.
- D. A fuel filter shall be installed between the fuel tank and fuel inlet to the engine. It shall have a fuel water separator. The filter element shall be disposable and be easily removed and installed for maintenance purposes.
- E. Provide supply and return fuel lines of sufficient diameter for all load requirements, flexibility for maximum resistance to fatigue due to component operation and made of material which has maximum resistance to corrosion due to environment and fuel supply.
- F. The skid base for the fuel tank shall be firmly fastened to a concrete foundation which is to be provided and installed as part of this contract. The fuel tank & skid assembly shall be removable from the base. Lifting points shall be provided for the tank skid. All metal surfaces coming in contact with concrete or grout shall be coated with coal tar epoxy equal to Koppers 300M or provide a 1/32-inch neoprene gasket between the metal surface(s) and the concrete or masonry may also be used. The neoprene gasket shall be installed along the entire perimeter, not just at the fastening hardware.
- G. The exterior coating of the fuel tank and skid base shall be Sherwin Williams SherGlass FF glass flake reinforced amine epoxy (formulated for immersion service) or equal. Color shall be two coats of 12-15 mils on top of a stripe coat over all welds, crevices, edges and sharp angles, per manufacturer's recommendations.
- H. The fuel tank shall be full and topped off by the contractor when it is accepted by the County.

2.04.3 COOLING SYSTEM- ENGINE

- A. The engine shall be cooled by a unit mounted closed loop radiator system rated for full load operation in 50°C ambient condition with the ambient temperature as measured at the air inlet to the radiator. Radiator shall be provided with a duct adapter flange. The cooling system shall use a 50/50 (Prestone, Xerex or equivalent coolant and water) mixture provided by the supplier.
- B. Provide drain cocks or plugs in the engine block and radiator for easy changing and flushing of the coolant. Provide coolant drain extensions where necessary for easy access to the drainage device.
- C. Protection from rotating parts (fan, fan belt) shall be provided.
- D. Install a self contained thermostat module to automatically regulate coolant flow to maintain optimum constant coolant temperature as recommended by the engine manufacturer.
- E. Provide a coolant heater which is thermostatically controlled in the jacket of the engine.

2.04.4 EXHAUST SYSTEM- ENGINE

- A. The muffler for the engine shall be the "critical grade" rating (noise reduction 25-32dBA) made from aluminized steel of thickness and design as recommended by the manufacturer. The muffler shall be housed within the generator enclosure.
- B. All exhaust piping shall be aluminized steel. Vertical discharge exhaust shall be equipped with a rain cap, appropriate condensation drains in the piping, and the outlet, and shall be designed so no external rain or moisture may enter the engine from the outside even if the rain cap fails.
- C. Rain Skirt At the point where the exhaust pipe tubing penetrates the roof or side of the enclosure, a suitable "rain skirt" and collar shall be provided by the MANUFACTURER. It shall be designed to prevent the entrance of rain and allow for expansion and vibration of the exhaust piping without chafing or stress to the exhaust system. This detail must appear on the drawings submitted for approval. Care must be exercised so there is no recirculation of exhaust gases into the intake system.
- D. The connection of the engine to the exhaust system shall be a flexible section of corrugated stainless steel pipe. The connection of the exhaust pipe to the muffler shall be a stainless steel expansion joint with liners.
- E. The exhaust emissions shall fall within the guidelines of the EPA and other state and governmental agencies.

2.05 AUTOMATIC TRANSFER SWITCH

A. Manufacturer shall be ASCO no equal.

- B. Supply an automatic transfer switch with built-in control logic monitors to sense any interruption in the utility supplied power. When the power fails, the automatic transfer switch starts the engine and transfers the load after the generator has reached proper voltage and frequency. When the utility power has been restored to the proper voltage and frequency, the automatic transfer switch will switch the load back to the utility source and after a time delay to sufficiently cool down the generator, shut down the engine. The utility power service size shall be verified by the contractor and shall be factored in when determining the size of the automatic transfer switch.
- C. The automatic transfer switch shall be housed in a separate rack wall-mounted NEMA 4X 1 SS secure double door enclosure. The enclosure shall be no more than 36" tall by 24" wide. The enclosure shall be equipped with a rain shield and shall be constructed of at least 14 gauge 304 stainless steel. Per MC Stds, the rack shall consist of 3" Sch 40 SS posts with SS supports and hardware. All ATS controls shall be secure inside the enclosure behind the front cover and not face mounted.
- D. The transfer switch shall meet or exceed the following standards for emergency standby power system automatic transfer switches:
 - 1. UL 1008

- 2. NFPA 110
- 3. NEC articles 700 thru 702
- 4. NEMA 1 CS-2-447
- D. The automatic transfer switch is to have the following features:

. Unit may or may not have a bypass switch with rating equal to the automatic transfor switch. The bypass switch shall be a manual type switch. A manual type bypass switch, that is installed on a concrete pad, is not required for existing lift station sites that have site constraints, if noted on the construction drawings to provide a non-bypass automatic transfor switch.

- 2. Suitable for emergency and standby applications on all classes of load.
- 3. Adjustable normal source voltage sensing for pickup and dropout. The voltage is to be monitored line to line for all three phases of the switch.
- 4. The normal source voltage sensing is to be adjustable from a minimum of 70%-90% of nominal voltage for drop out and a minimum of 75%-100% for pickup.
- 5. There shall be a single phase sensing of the emergency source. It shall have an adjustable pickup setting of a minimum of 70% to 100% of nominal voltage.
- E. There shall be time delays activated in the automatic transfer switch as follows:
 - 1. Provide an adjustable time delay to override momentary normal source outages. If the utility provided power does not correct itself to a nominal range of values for voltage and frequency before the time on the relay expires, then all applicable transfer and engine starting signals will be activated. If the power goes back into specification, then no transfer will take place.
 - a. Upon loosing commercial power:
 - 30 seconds for time delay start
 - 2 minutes to neutral transfer
 - 1 minute from neutral to emergency power
 - b. After commercial power is restored:
 - 10 minutes to neutral transfer
 - 1 minute from neutral to utility
 - 2. Provide an adjustable time delay for transferring the load to emergency power.
 - 3. Provide an adjustable time delay for retransferring back to the utility power from emergency power.
 - 4. Provide a non-adjustable (five minute minimum) unloaded running time for cool down of the generator after the power has switched back to the utility supply mode.
 - 5. Provide a time delay to absorb momentary voltage and frequency spikes or dips during initial genset loading.
- F. The automatic transfer switch shall be a 3-pole switch.
- G. The automatic transfer switch is to have a disconnect switch which will prevent

transfer.

- H. The automatic transfer switch shall have in phase transfer control logic which will initiate an in phase transfer of motor loads between line sources. This logic shall help prevent nuisance tripping of distribution circuit breakers and damage to mechanical loads resulting from out of phase power transfer.
- I. The automatic transfer switch is to be designed to be completely front accessible.
- J. The automatic transfer switch is to have true double throw operation.
- K. The automatic transfer switch shall have a solid neutral connection with full rated terminal lugs for normal, emergency and load.
- L. The automatic transfer switch shall be equipped with a ground stud for the installation of customer provided ground terminations.
- M. The automatic transfer switch shall have, as a minimum, the following equipment for the control panel.
 - 1. Microprocessor based electrical controls with circuitry protected against EMI, voltage transients, ESD, shock vibration, and other hostile environments.
 - 2. Analog or digital kilowatt meter, frequency meter, AC voltmeter and ammeter.
 - 3. Reset switch.
 - 4. LCD display, touch key pad, and LED indicators for user access to system information and settings. Provide a green light for when normal source is in operation and red light when generator is operating.
 - 5. Generator set exerciser control.
 - 6. Test pushbutton to simulate a normal power source failure.
 - 7. Provision for optional interface with a P.C.
- N. The automatic transfer switch shall have a surge suppressor which provides protection from transient voltage surges produced by lightning and other sources. The surge suppressors are to be composed of an array of matched metal oxide varistors with sufficient capacity to protect the transfer switch. It is to be connected to the normal power source terminals and installed at the factory.

2.06 HOUSE KEEPING SLAB FOUNDATION

- A. The reinforced concrete slab(s) for the generator and fuel tank are to be suitable to fully support the complete load under all load conditions with a reasonable safety factor. The top of the slab shall be a minimum of two inches above the surrounding grade and extend a minimum of six inches past the footprint of the generator set.
- B. The Manatee County Building Department will require the contractor to submit a plan for each poured-in-place concrete slab being installed. The Building Department will accept a slab designed by the manufacturer for their respective generator, provided the back-up information accompanies each plan. If the manufacturer does not provide a slab design, then the contractor shall submit a slab design that is signed and sealed by a Professional Engineer and meets the

Florida Building Code.

PART 3 EXECUTION:

3.01 INSTALLATION

- A. The contractor shall furnish and install the entire product to include all necessary site preparation, concrete foundation(s), electrical connections, and all devices described in this contract so that it is fully functional and operable as intended, including breakers and other modifications to the existing control panel for heaters, battery chargers, etc. The installation of the devices shall be per the manufacturer's instructions provided in item 1.05. The contractor shall connect the existing system equipment to the equipment he is providing and insure compatibility between the system he is providing and the existing system. The contractor shall complete the installation of the equipment he provides to the existing site equipment to the degree that it shall not be necessary for the County to make further modifications or connections in order to have a fully functional system.
 - B. The contractor shall install the generator, automatic transfer switch, and conduit as shown on the approved site plan he has prepared drawings.

County to provide existing site plan.

- Contractor and Lift Station Superintendent shall met on site and determine the exact location for the generator, fuel tank and transfer switch.
- C. All wiring shall be installed in Schedule 80 PVC conduit sized according to the National Electrical Code for the number and size of conductors contained within. All trenches for underground installation of conduit shall be hand dug. Any electrical wiring that is installed between the lift station's wet well and the valve vault shall be installed in a carrier pipe that is strapped to the wet well or valve vault.
- Install the electrical components per Manatee County Standards (see typical wiring layouts in the latest Manatee County Public Works Utility Standards details US 23 & US 24).

3.02 FIELD QUALITY CONTROL

A. Upon completion of item 3.01, a factory authorized service representative of the product supplied is to inspect all field assembled and installed components and make any necessary corrections to insure proper equipment operation.

3.03 TESTING

- A. All test instruments used to perform the testing are to have been calibrated within the past 12 months. The calibration shall be performed in accordance with the standards of the National Institute for Standards and Technology.
- B. Perform the following on-site tests after items 3.01 and 3.02 have been completed:
 - 1. All necessary tests recommended by the manufacturer
 - 2. All NFPA 110 tests that are in addition to:
 - System Integrity Test: Verify proper installation, connection, and integrity of each of the components of the diesel generator system before and during

operation.

- Noise level test: Measure and calculate the A-weighted (DbA) levels emanating from the product assembly at <u>seven (7) meters</u> (5) meters for at least six equally spaced points around the enclosure while the machine is under load. Include such points as the exhaust discharge, and cooling air intake and discharge. The noise level test is to be taken at the site after installation and shall adhere to the conditions described in section 2.03A item 9. Also refer to the test method as defined by ISO 3744.
- Load Bank test: Run a two hour minimum test with all applicable field load (See section 1.02 for the ratings of the pump loads at each respective site). The automatic transfer switch is to be engaged and fully tested for all phases of operation during this test. The load bank may be either resistive or inductive. For purposes of the load test, the NEMA LRKVA/HP Code of the pump motors is H
- C. Compare all measured quantities with required values of testing. Correct all deficiencies identified by tests and repeat test and correction procedure until specified test requirements are met. All problems and shortcomings in the product provided shall be remedied and corrected with no cost to the County.
- D. The County shall have the option of whether or not to witness all testing that is performed. Report all test results in writing to the County.

3.04 TRAINING AND DEMONSTRATION

A. A factory representative of the product is to provide the County's maintenance personnel with a thorough period of instruction and hands-on session regarding the operation, trouble shooting and maintenance of all components of the product. Typical training period: one hour.

3.05 DELIVERY

A. The product described in these specifications shall be fully installed and fully operational, tested and demonstrated within the agreed upon number of days after the award of the bid has been made.

3.06 NOTICE OF DELIVERY, TESTING, TRAINING AND DEMONSTRATION

A. At least seven business days of notice is to be given by the contractor to the County for delivery, installation, testing, training and demonstration of the product.

END OF SECTION