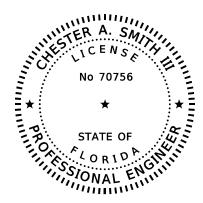
Erie Rd. and SR 62 Improvements

HDR Project No. 10151274

Miscellaneous Structures

Structural Design Notebook


For Manatee County Public Works

Book 1 of 1

Erie Rd. and SR 62 Improvements

CLIENT: Manatee County Public Works HDR Project Number: 10151274 Miscellaneous Structures

- 1.1 Standard Plans Information
- 1.2 Signal Plans
- 1.3 Mast Arm Data Table
- 1.4 Pole 1
 - 1.4.1 Geometry and Loading
 - 1.4.2 Average N-count
 - 1.4.3 Foundation Analysis
- 1.5 Pole 2
 - 1.5.1 Geometry and Loading
- 1.5.2 Average N-count
- 1.5.3 Foundation Analysis
- 1.6 Pole 3
 - 1.6.1 Geometry and Loading
 - 1.6.2 Average N-count
- 1.6.3 Foundation Analysis
- 1.7 Geotechnical Information
- 1.8 MVDS Product Data
- 1.9 Structure ID Number

THIS ITEM HAS BEEN DIGITALLY SIGNED AND SEALED BY

ON THE DATE ADJACENT TO THE SEAL

PRINTED COPIES OF THIS DOCUMENT ARE NOT CONSIDERED SIGNED AND SEALED AND THE SIGNATURE MUST BE VERIFIED ON ANY ELECTRONIC COPIES.

HDR ENGINEERING, INC. 2601 CATTLEMEN ROAD., SUITE 400 SARASOTA, FL 34232-6212 CHESTER A. SMITH III, PE NO. 70756

Calculation Cover Sheets

Client: Manatee County Public Works

Project:	Erie Rd. and SR 62 Improvements		
Project No:	850-6094060	Rev:	
Calculation No:		Page:	of
Title:	Mast Arm Signals Design		
Purpose:	This document presents the design of 3 Mast Arm signal poles a Erie Rd.	it the in	tersection of SR 62 and
Originator:	Rohit Tallur	Date:	6/2/2021
Checked by:	csmith	Date:	06/11/2021
QC Review by:		Date:	
Approved by:		Date:	
Supersedes (Calculation No:		
Superseded by (Calculation No:		

Erie Rd. and SR 62 Improvements

HDR Project Number: 10151274

Miscellaneous Structures

1.1 Standard Plans Information

For: Manatee County Public Works

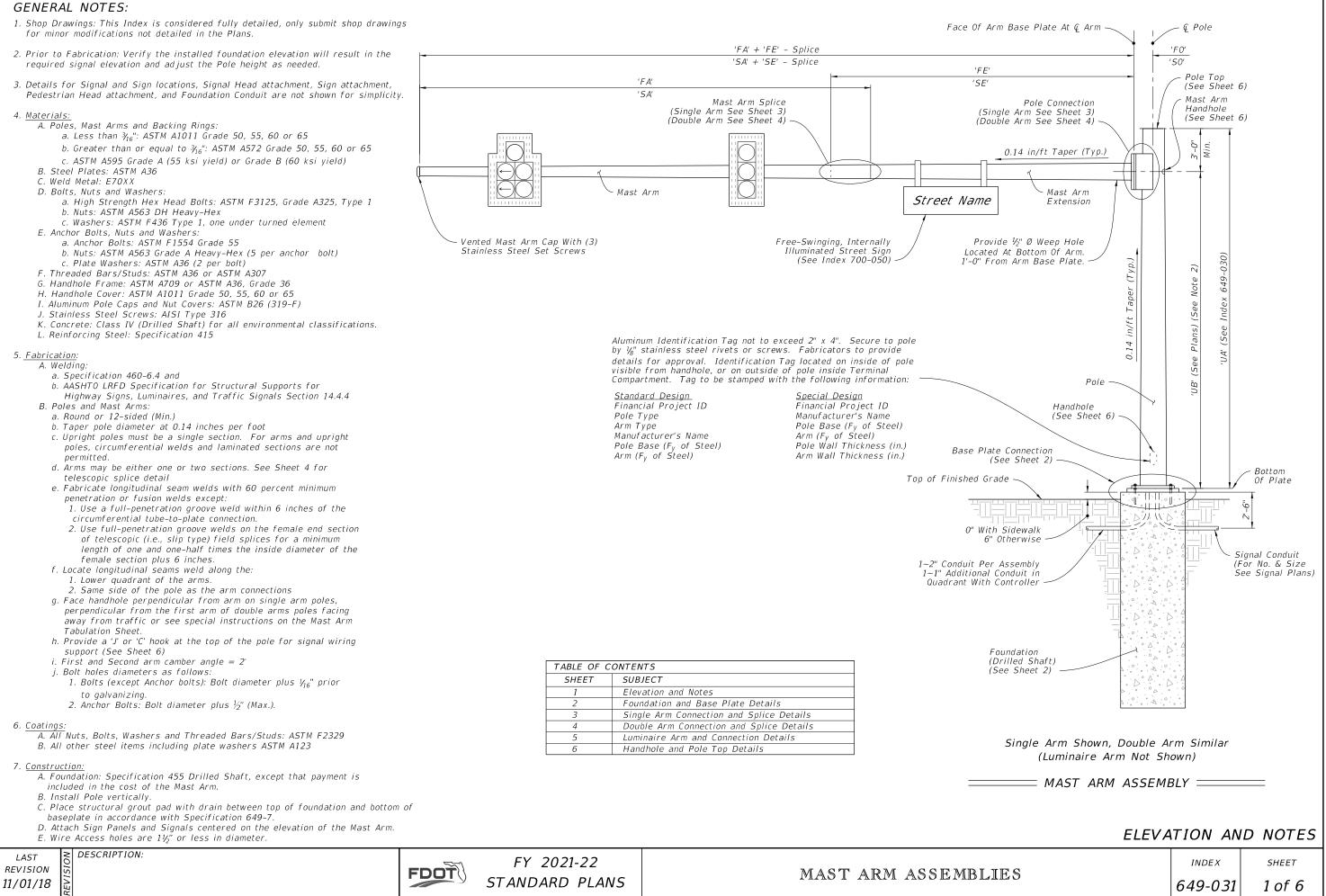
ARM AND BASE PLATE													
Arm ID Axx-ArmLength	Total		Arm		Arn	n Extens	sion	Ε	Base Pla	te			
S-SingleArm D-DoubleArm H-HeavyDuty	Arm Length (ft)	FA/SA (ft)	FC/SC (in)	FD/SD (in)	FE/SE (ft)	FG/SG (in)	FH/SH (in)	HT (in)	FJ/SJ (in)	FK/SK (in)			
A30/S		30	11	0.250				22	25				
A30/S/H	30	30	12	0.250				22	25	- 3			
A30/D		30 11 0.250				30	36	2					
A30/D/H		30	12	0.250				50	50				
A40/S		40	13	0.250				22	27				
A40/S/H	40	40	14	0.250				22	27	- 3			
A40/D		40	13	0.250				30	36				
A40/D/H		40	14	0.250				50	50				
A50/S		32.5	12	0.250	20.5	14		22	29				
A50/S/H	50	32.5	13	0.250	20.5	15	0.313	22	29	- 3			
A50/D	50	32.5	12	0.250	20.5	14		30	36	د [
A50/D/H		32.5	13	0.250	20.5	15		50	30				
A60/S		35.5	12	0.250	27.5	15							
A60/S/H	60	35.5	13	0.250	27.5	16	0.375	30	36	3			
A60/D		35.5	12	0.250	27.5	15	0.375	50	50	5			
A60/D/H		35.5	13	0.250	27.5	16							
A70/S		38	13	0.250	35	17							
A70/S/H	70	38	14	0.250	35	18	0.375	30	36	3			
A70/D		38	13	0.250	35	17	0.375	50	50				
A70/D/H		38	14	0.250	35	18							
A78/S		39	13	0.250	42	18							
A78/S/H	78	39	15	0.250	42	20	0.375	30	36	3			
A78/D		39	13	0.250	42	18	0.373	50	30	5			
A78/D/H	7	39	15	0.250	42	20							

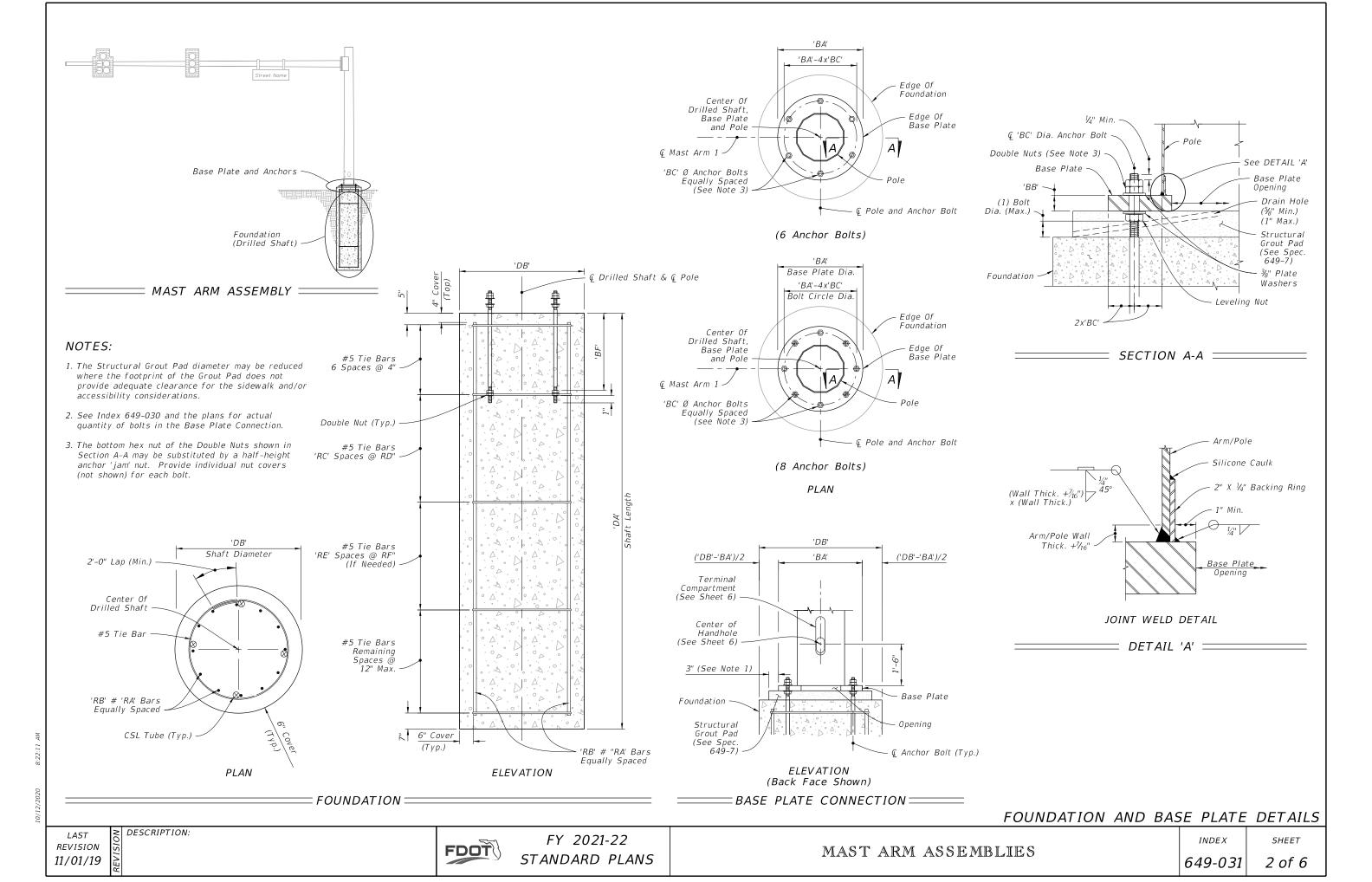
						POLE,	BASE	PLATE	AND	ARM C	ONNEC	TION						
Pole ID Px-PoleNo		Upr	ight			В	ase Pla	te					Arm-Up	right Co	nnection	-		-
S-SingleArm D-DoubleArm L-Luminaire	UA (ft)	UD (in)	UE (in)	UG (ft)	No. Bolts	BA (in)	BB (in)	BC (in)	BF (in)	HT (in)	FJ/SJ (in)	FL/SL (in)	FN/SN (in)	F0/50 (in)	FP/SP (in)	FR/SR (in)	FS/SS (in)	FT/ST (in)
P1/S	25									22	25			14		2	8.5	
P1/S/L	39	16	0.375	37.5	6	32	2.5	2	40		23	0.75	0.438	17	1.25		0.5	0.438
P1/D	25		0.57.5		Ū	52	2.0	-		30	36		01100	23	1120	2.75	12.5	01100
P1/D/L	39			37.5						50	50			25		2.7 5	12.5	
P2/S	25									22	27			15		2	8.5	
P2/S/L	39	18	0.375	37.5	6	34	2.5	2	40		27	0.75	0.438		1.25		0.5	0.438
P2/D	25	10	0.575		Ŭ	51	2.5	-	10	30	36	0.75	0.750	23	1.2.5	2.75	12.5	0.150
P2/D/L	39			37.5						50	50			23		2.7 5	12.5	
P3/S	25									22	29			16		2	8.5	
P3/S/L	39	20	0.375	37.5	6	36	2.5	2	40		23	0.75	0.438		1.25		0.5	0.438
P3/D	25		0.57.5		Ŭ	20	2.0	-		30	36	0.75	0.450	23	1123	2.75	12.5	21.20
P3/D/L	39			37.5						50	50			25		2.7 5	12.5	
P4/S	25													17				
P4/S/L	39	22	0.375	37.5	8	38	2.5	2	40	30	36	0.75	0.438	17	1.25	2.5	12.5	0.438
P4/D	25		0.575		Ū	50	2.5	-	10		50	0.75	0.750	23	1.23	2.5	12.5	0.150
P4/D/L	39			37.5										23				
P5/S	25													18				
P5/S/L	39	24	0.375	37.5	8	40	2.5	2	40	30	36	0.75	0.5		1.25	2.5	12.5	0.5
P5/D	25	27	0.575		Ŭ	40	2.5	2	40		50	0.75	0.5	23	1.2.5	2.5	12.5	0.5
P5/D/L	39			37.5										23				
P6/S	25													18				
P6/S/L	39	24	0.5	37.5	8	40	2.5	2	40	30	36	0.75	0.625	10	1.5	2.5	12	0.625
P6/D	25		0.5		Ŭ	10	2.5	-	10	50	50	0.75	0.025	23	1.5	2.5	12	0.025
P6/D/L	39			37.5										23				
P7/S	25													19				
P7/S/L	39	26	0.5	37.5	8	42	2.5	2	40	30	36	0.75	0.625		1.5	2.5	12	0.625
P7/D	25	20	0.5			72	2.5	2		50	50	0.75	0.025	23	1.5	2.5	12	0.025
P7/D/L	39			37.5										25				

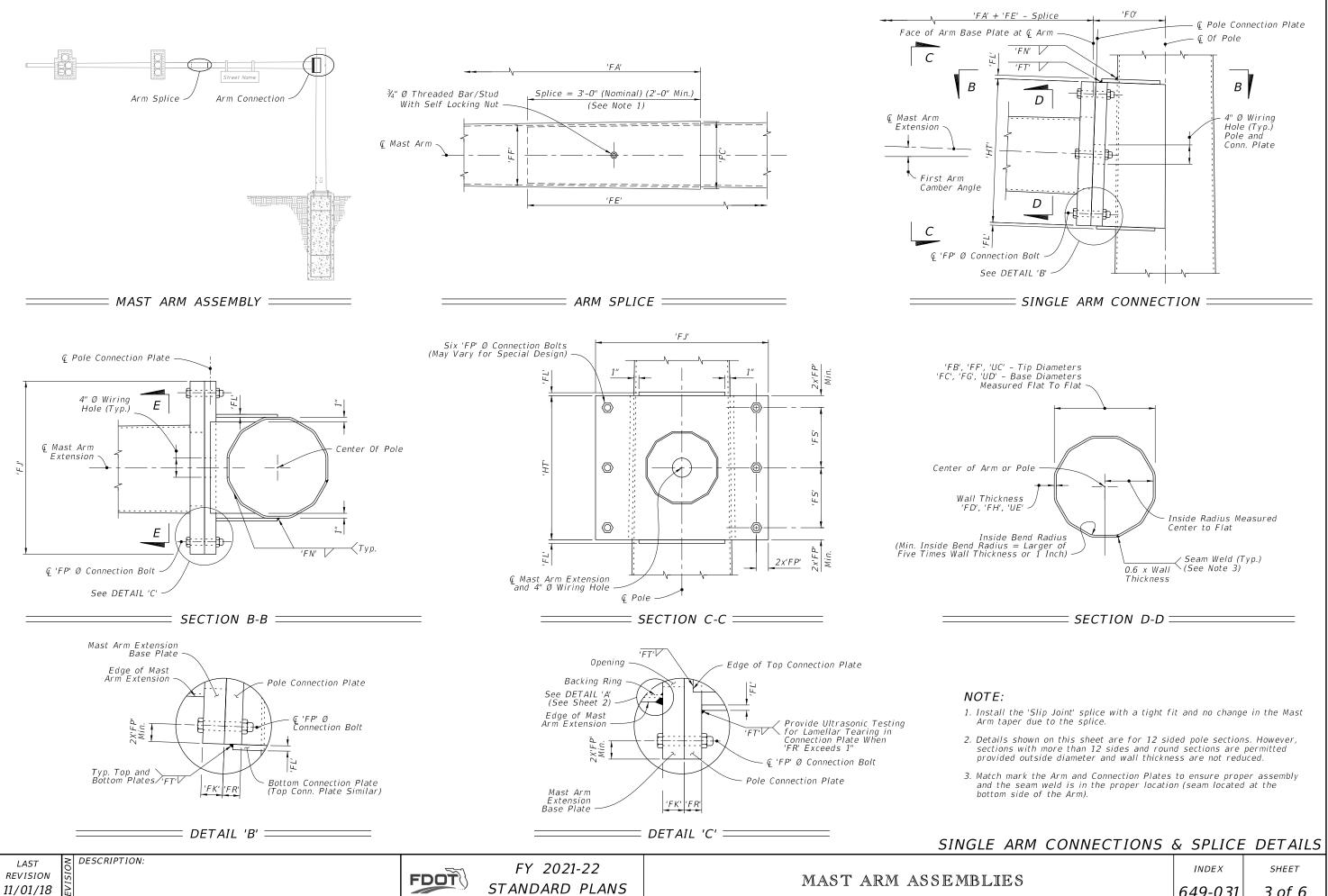
	DRILLED SHAFT														
Drilled Shaft ID	DA (ft)	DB (ft)	RA	RB	RC	RD (in)	RE	RF (in)							
DS/12/4.0	12	4.0	11	14	8	12									
DS/12/4.5	12	4.5	11	16	8	12									
DS/14/4.5	14	4.5	11	16	10	8									
DS/14/5.0	14	5.0	11	18	10	8									
DS/16/4.5	16	4.5	11	16	10	8									
DS/16/5.0	16	5.0	11	18	10	8									
DS/18/5.0	18	5.0	11	18	10	8									
DS/20/5.0	20	5.0	11	18	10	6	10	9							
DS/25/5.0	25	5.0	11	18	10	6	10	9							

	LUMINAIRE AND CONNECTION														
LA (ft)	LB (ft)	LC (in)	LD (in)	LE	LF (ft)	LG (in)	LH (in)	LJ (in)	LK (in)	LL (deg)	UG (ft)				
40	10	3	0.125	0.5	8	0.5	0.75	0.25	0.25	0	37.5				

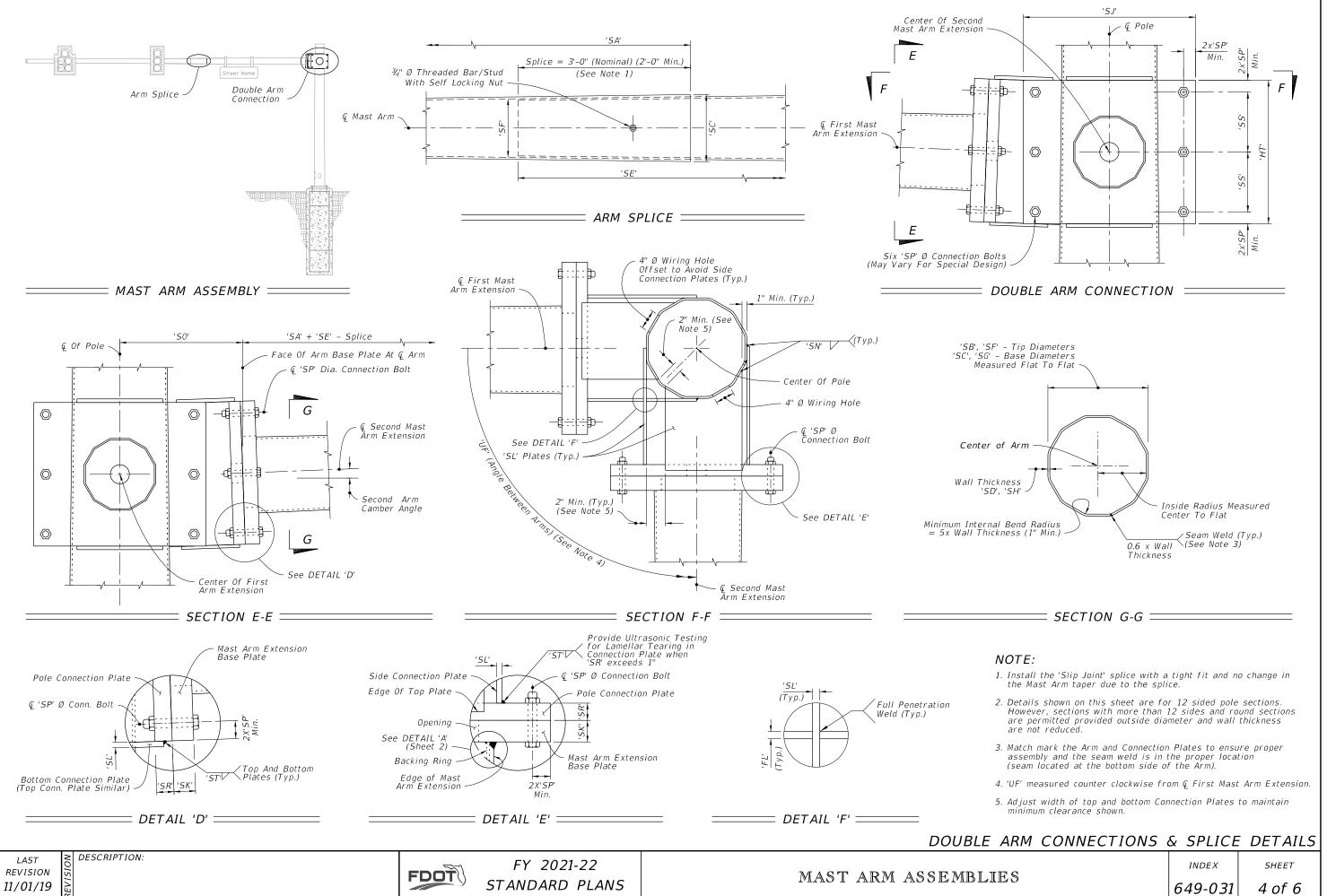
NOTE:

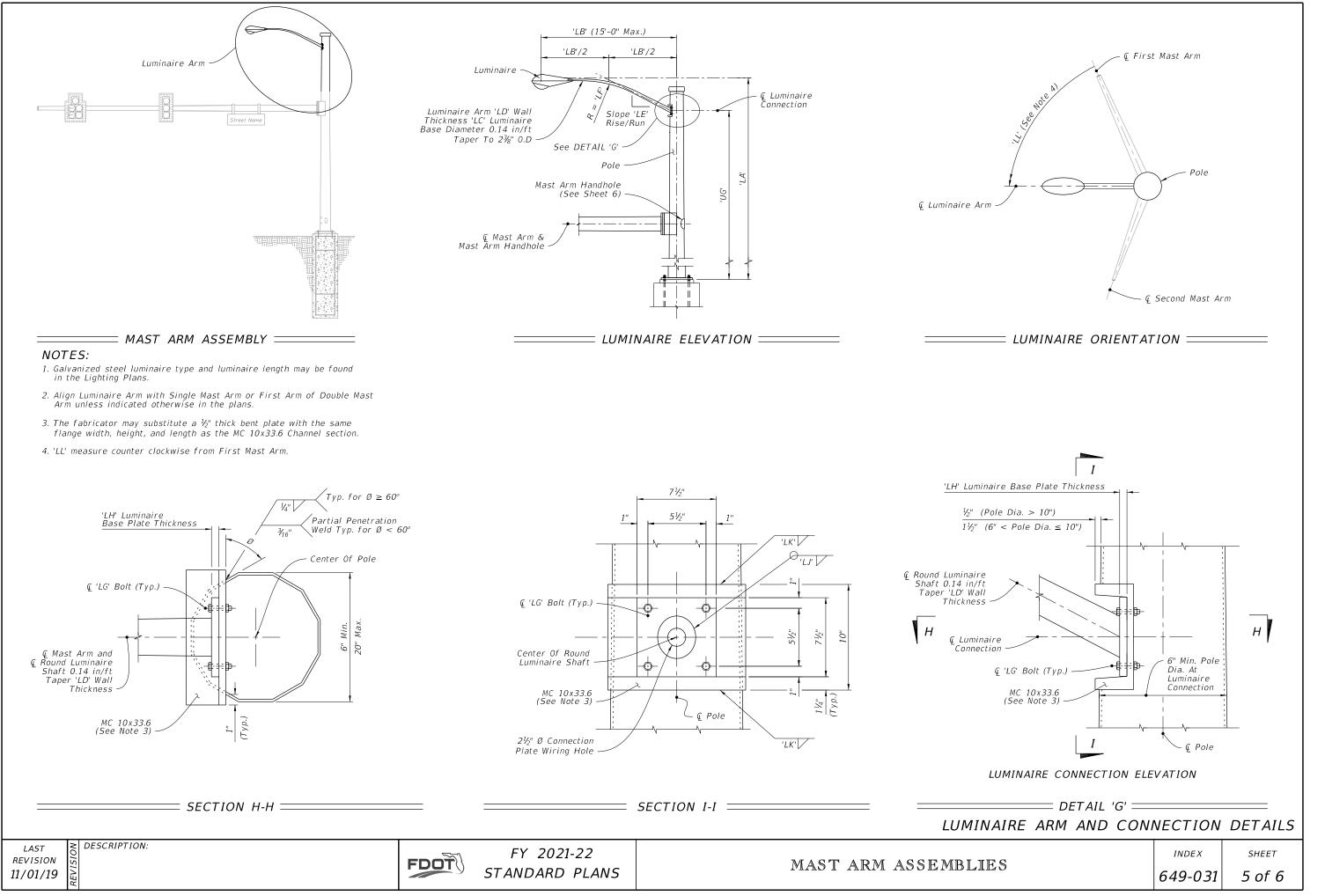

1. Work this Index with Index 649-031.

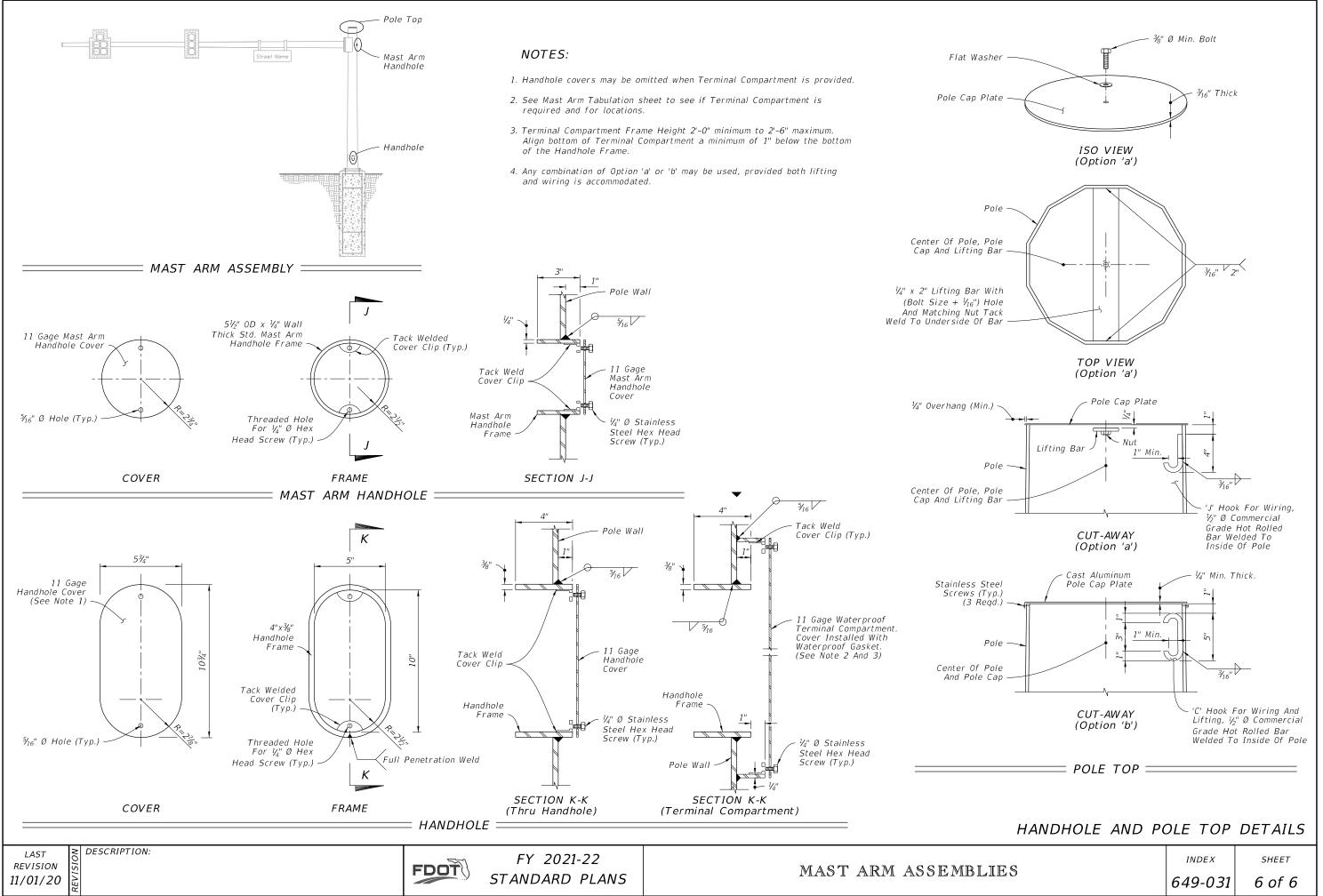

T DESCRIPTION:



STANDARD MAST ARM ASSEMB


	INDEX	SHEET
BLIES	649-030	1 of 1





M CONNECTIONS	& SPLICE	DETAILS
	INDEX	SHEET
	649-031	3 of 6

Indexes 649-030 and 649-031

Mast Arm Assemblies

Design Criteria

AASHTO LRFD Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals (LRFDLTS-1); Structures Manual (SM), Volume 3, FDOT Modifications to LRFDLTS-1; Structures Manual (SM) Introduction, I.6 References; FDOT Design Manual (FDM)

Design Assumptions and Limitations

See *FDM 232*, *FDM 261*, and *Structures Manual (SM)*, Volume 3 for additional design criteria. FDOT Signal Support Programs website provides mast arm design programs to support both "Standard" and "Special" (Custom) designs

Design all mast arm assemblies with backplates in accordance with FDM 232.

Knowing galvanizing thickness may vary, mast arm assemblies are designed for a 3 foot splice. If actual galvanizing thicknesses are as specified, the splice length will be 3 feet and the arm length will be the design length. However, if actual galvanizing thicknesses are significantly larger than specified (not uncommon), the arm may be a foot or so longer than designed, while the splice length will still comply with AASHTO requirements.

Standard Mast Arm Assemblies:

The maximum span length of Standard Mast Arm Assemblies is 78 feet. Mast arms with an arm length greater than 78 feet require a Variation approved by the District Structures Design Engineer, in accordance with *FDM 261*. Standard Mast Arm Assemblies comply with the minimum requirements and details shown on *Index 649-031*.

Standard Mast Arm Assemblies may be single arm, single arm with luminaire, double arms, or double arms with luminaire. Standard double arms are limited to arm orientations of 90° or 270° only.

The mast arm design Excel program, located on the **Structures Design Programs Library** website, will provide design loads and arm, pole and foundation capacities which the designer can use to choose arm type(s), pole type and foundation type for Standard designs. Additionally, the mast arm Mathcad program is also provided for detailed design evaluations/validations of Standard Mast Arm Assemblies. Available arm(s) and pole combinations are shown on *Index 649-030*.

Arm mounting height UB must be between 18-22 feet.

Pole types P2 and larger require a minimum 4.5 foot diameter drilled shaft. Pole types P5 and larger require a minimum 5.0 foot diameter drilled shaft.

Standard foundation (Drilled Shaft) capacities are based on the following soil criteria:

Classification: Cohesionless (Fine Sand)

Friction Angle:	30 Degrees
Unit Weight:	50 pcf (assumed submerged)
N-blowcount:	15

When the designer considers soil types at the specific site location to be of lesser strength properties than shown above, an analysis is required. Auger borings, SPT borings, or CPT soundings may be used as needed to verify the assumed soil properties, and at sites confirmed to be uniform, a single boring or sounding may cover several foundations. Borings in the area that were performed for other purposes may be used to confirm the assumed soil properties. The Geotechnical Engineer must justify the differing soil criteria to the District Structures Design Engineer during the design phase of the project.

If Index 649-031 is used, shop drawings are not required.

Mast Arms with Luminaires

Mount luminaires on mast arms only where project constraints do not allow for placement of independent light poles. Prior to use, contact applicable construction and maintaining agencies, verify responsible parties, and include a written summary with the project documents.

Special (Custom) Mast Arm Assemblies:

Special mast arms are those with unique loadings, soil conditions, and/or geometric constraints that contain any component (arm, pole, or drill shaft) that is outside the range of those available on *Index 649-030*.

The mast arm Mathcad program, located on the **Structures Design Programs Library** website, will provide the necessary variables to be shown in the "*Special Mast Arm Assemblies Data Table*" cell from the FDOT CADD Menu.

Plan Content Requirements

The signal designer completes the "*Mast Arm Tabulation Sheets*", and the structures designer completes the "*Standard Mast Arm Assemblies Data Table*" or "*Special Mast Arm Assemblies Data Table*", as appropriate. See samples of these sheets below. These are the only plan sheets required for mast arm assemblies. The structures data table may be placed on a signal plan sheet, if space permits.

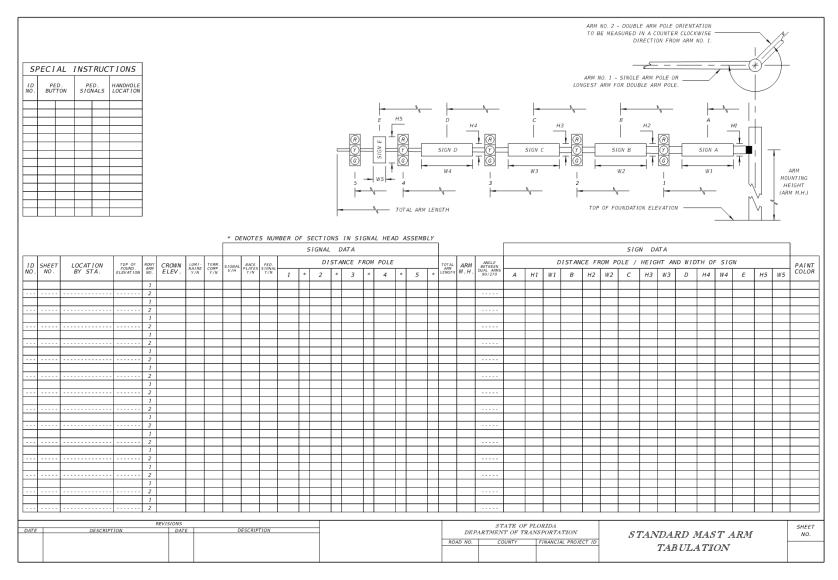
The following instructions are for use with the "Mast Arm Tabulation Sheets":

- 1. Each mast arm assembly is identified by a unique ID number.
- 2. Dimensions 1-5 are for signals and dimensions A-E are for signs. Record the horizontal distance from the face of arm baseplate to the center of the signal or sign (similar to arm length measurement, see Index 649-031).

- 3. Signals may be mounted vertically or horizontally. Indicate the mounting in the appropriate column in the table.
- 4. The entire line for arm #2 and the space for the angle between dual arms are left blank for single arm assemblies.
- 5. All arms and poles will be galvanized. If a color is required, indicate the color in the table, otherwise leave blank.
- 6. Starting at the pole, select the signals and/or signs that match the configuration you are tabulating. The spaces representing the signs or signals not used will be blank. Example 1: If no sign is located between the pole and signal 1, the spaces for Sign A would be blank. Example 2: A configuration for three signals and one sign between signal 1 and signal 2 Only the spaces for signals 1, 2, 3 and sign B would be completed; the others will be blank.
- 7. Record the number of sections in each signal head in the space following the distance to that head.
- 8. Record the height and width of each sign in the space following the distance to the sign.
- 9. When double arm poles are used for a skewed intersection, the standard design should be used whenever possible. The standard orientation for arm #2 is 90 or 270 degrees measured in a counter clockwise direction from arm #1. The normal orientation of the mast arm is perpendicular to the roadway. Adjustments in mounting hardware can compensate for a skew angle of approximately 15 degrees or more from the normal, depending upon the attachment method. The designer should verify the mounting hardware capability before specifying an arm with a skew greater than 15 degrees.
- 10. The arm mounting height should be calculated to provide a minimum vertical clearance of 17'-6" from the roadway crown elevation to the lowest sign or signal. A standard signal section is approximately 14" square. Therefore the length of a 3-section head is about 42" and a 5-section is about 70". The use of back plates will add about 6" to each side of the signal head. Additionally, approximately 3" should be added to the end of the signal head to compensate for the attachment hardware. This information may be used to determine the arm mounting height. The designer should coordinate with the maintaining agency to insure the signal assembly and all appropriate hardware has been considered in determining the vertical clearance. The maintaining agency can also provide guidance on the vertical or horizontal mounting of the signal assemblies.
- 11. The standard handhole location is 90 degrees from arm #1 facing away from traffic. Other handhole locations must be noted in the Special Instructions.
- 12. A free swinging internally illuminated street name sign may be attached to the pole by an independent bracket arm if the sign area does not exceed 18 square feet and weigh more than 144 pounds. The Structures Design Engineer must review other

signs attached to the pole or any size sign of this type attached to the signal mast arm.

- 13. The "Special Instructions" Table is used to tabulate pedestrian buttons and pedestrian signal locations and handhole locations when the handholes are not in the standard location. Tabulate the ID No. and the orientation of the pedestrian buttons and signals in degrees measured counter clockwise from arm #1. The handhole location should be left blank if the handhole is in the standard location (see note 11).
- 14. Arm #1 is the arm for a single arm assembly or the longer arm for a double arm assembly. If the arms are equal length, arm #1 is over the project roadway.
- 15. Identify assemblies that require a terminal compartment with a "yes" in the correct column. For assemblies with a "no", only handholes will be provided.


Standard Mast Arm Assemblies Data Table:

				1		DATA T.	ABLE			T	able Date 11-01-16
STRUCTURE ID	DESIGNATION	FIRST	T ARM		ID ARM	UF		POLE	POLE	UB	DRILLED SHAFT
NUMBERS		ID	FAA (ft.)	ARM ID	SAA (ft.)	(deg)	(deg)	ID	UAA (ft.)	0B (ft.)	ID
2. If an entry a and the pole	appears in column UAA, a height shortened from U,	A to UAA.				-,	ig rengen i				
and the pole 3. Work this sh that include	appears in column UAA, a height shortened from U, weet with the Signal Desig non-standard Handhole lo wdexes 649-030 and 649-0	A to UAA. ner's "Mast cation, pain				n Tabulatio	n" for spec	cial instruc			
and the pole 3. Work this sh that include	height shortened from U, weet with the Signal Desig non-standard Handhole Io	A to UAA. ner's "Mast cation, pain				n Tabulatio	n" for spec	cial instruc			
and the pole 3. Work this sh that include	height shortened from U, weet with the Signal Desig non-standard Handhole Io	A to UAA. ner's "Mast cation, pain				n Tabulatio	n" for spec	cial instruc			
and the pole 3. Work this sh that include	height shortened from U, weet with the Signal Desig non-standard Handhole Io	A to UAA. ner's "Mast cation, pain				n Tabulatio	n" for spec	cial instruc			
and the pole 3. Work this sh that include	height shortened from U, weet with the Signal Desig non-standard Handhole Io	A to UAA. ner's "Mast cation, pain				n Tabulatio	n" for spec	cial instruc			
and the pole 3. Work this sh that include	height shortened from U, weet with the Signal Desig non-standard Handhole Io	A to UAA. ner's "Mast cation, pain				n Tabulatio	n" for spec	cial instruc			
and the pole 3. Work this sh that include	height shortened from U, weet with the Signal Desig non-standard Handhole Io	A to UAA. ner's "Mast cation, pain				n Tabulatio	n" for spec	cial instruc			
and the pole 3. Work this sh that include	height shortened from U, weet with the Signal Desig non-standard Handhole Io	A to UAA. ner's "Mast cation, pain				n Tabulatio	n" for spec	cial instruc			
and the pole 3. Work this sh that include	height shortened from U, weet with the Signal Desig non-standard Handhole Io	A to UAA. ner's "Mast cation, pain				n Tabulatio	n" for spec	cial instruc			
and the pole 3. Work this sh that include	height shortened from U, weet with the Signal Desig non-standard Handhole Io	A to UAA. ner's "Mast cation, pain				n Tabulatio	n" for spec	cial instruc			

Special Mast Arm Assemblies Data Table:

								SPI	ECIAL	MAST	ARM	ASSEI	<i>MBLIE</i>	S DAT	A TA	BLE							Τ.	able Date 0	01-01-12
IUMBER OF	STRU	CTURE		FIRST	ARM		FIRS	ST ARM	EXTENS	ION		SECON	D ARM		SECO	ND ARM	1 EXTEI	VSION				POLE			
OCATIONS	NUN	1BER	FA(ft)	FB(in)	FC(in)	FD(in)	FE(ft)	FF(in)	FG(in)	FH(in)	SA(ft)	SB(in)	SC(in)	SD(in)	SE(ft)	SF(in)	SG(in)	SH(in)	UA(ft)	UB(ft)	UC(in)	UD(in)	UE(in)	UF(deg)	UG(ft)
	-																								
						<u></u>	<u></u>	AACT	4044	CCEN		DATA	740												
	-											DATA					-					01-01-12			
TRUCTURE NUMBER		IRST AR		IECTION FK			Arm Ca FO					SECC #Bolts			IECTION			nd Arm SO		Angle =	= 2 Deg 				
	# 50/15		FJ	FN	r L	r N				гэ	F1	# DUILS	<i>п</i> 1	31	3^	31	511	30	- Sr		33	31			
						1			I											1					
														<u> </u>						<u> </u>		<u> </u>			
						SPE	CIAL N	1AST	ARM A	SSEM	BLIES	DATA	TABI	LE (CO	DNT.)					I		Ta	ble Date	07-01-15	
STRUCTURE	PO	LE BASE	CONNE	CTION	(in)	SPE			ARM A	F.										IRE COM		DN N			
STRUCTURE NUMBER		LE BASE BA		CTION BC	(in) BF			HAFT AI	VD REIN	F.															NOTES [Motes Date 07-01-13]; 1. Work with Index 649-031
STRUCTURE NUMBER							S	HAFT AI	VD REIN	F.												DN N			NOTES [Motes Date 07-01-13]: 1. Work with Index 649-031. 2. Design Wind Speed = mph
STRUCTURE NUMBER							S	HAFT AI	VD REIN	F.												DN N			 Work with Index 649-031.
STRUCTURE NUMBER							S	HAFT AI	VD REIN	F.												DN N			 Work with Index 649-031. Design Wind Speed = mph
STRUCTURE NUMBER							S	HAFT AI	VD REIN	F.												DN N			 Work with Index 649-031.
STRUCTURE NUMBER							S	HAFT AI	VD REIN	F.												DN N			 Work with Index 649-031. Design Wind Speed = mph FOUNDATION NOTES [Notes Date 01-01-12]: Design based on Borings taken sealed by
STRUCTURE NUMBER							S	HAFT AI	VD REIN	F.												DN N			 Work with Index 649-031. Design Wind Speed = mph FOUNDATION NOTES [Notes Date 01-01-12]: Design based on Borings taken sealed by Assumptions and Values used in design: Soil Type
STRUCTURE NUMBER							S	HAFT AI	VD REIN	F.												DN N			 Work with Index 649-031. Design Wind Speed = mph FOUNDATION NOTES (Notes Date 01-01-12): Design based on Borings taken sealed by Assumptions and Values used in design: Soil Type Soil Layer Thickness = ft.
TRUCTURE NUMBER							S	HAFT AI	VD REIN	F.												DN N			 Work with Index 649-031. Design Wind Speed = mph FOUNDATION NOTES [Notes Date 01-01-12]: Design based on Borings taken sealed by Assumptions and Values used in design: Soil Type

Mast Arm Tabulation Sheet:

Payment

Item number	Item Description	Unit Measure
649-2A-BB	Steel Mast Arm Assembly	EA
715-5-AB	Luminaire & Bracket Arm	EA

See the *BOE* and *Specification 649 & 715* for additional information on payment, pay item use and compensation.

Note: Project Specific Pay Items are required for Special Mast Arm Assemblies with arm lengths greater than 78 feet.

Examples

EXAMPLE 1

1. Select Arm and Pole Combination.

Select A40/S - P2/S from the Mast Arm Combinations Tables. Specify shorter arm, enter 36 under FAA. Leave Second Arm, UF and LL blank as there is no second arm or luminaire.

2. Determine Arm Mounting Height.

UB + 10' = 12.5' + 17.5'min. + 2' UB = 22' min. Use 22'

3. Select Drilled Shaft ID.

Select DS/12/4.5.

4. Use the **FDOT Signal Support Programs** to verify adequacy of the arm, pole, and foundation.

EXAMPLE 2

1. Select Arms and Pole Combination.

Select A60/D - A40/D - P4/D from the Mast Arm Combinations Tables. Specify shorter arms, enter 27.5 under FAA for First Arm. FAA = FA - (60' - 52') = 35.5' - 8' = 27.5'

2. Enter angle between arms.

Angle UF is measured counter-clockwise from the First Arm and must be either 90° or 270°.

3. Specify shorter Pole.

Enter 23.5 under UAA.

4. Determine Arm Mounting Height.

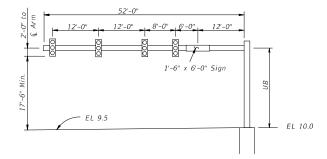
UB + 10' = 9.5' + 17.5' min. + 2' UB = 19' min. Use 20'

5. Select Drilled Shaft ID.

Select DS/16/4.5

6. Use the **FDOT Signal Support Programs** to verify adequacy of the arm, pole, and foundation.

ē


Ň

EXAMPLE 1 Single Arm Structure as shown, 130 mph Wind Speed with Signal Backplates. $36^{\circ}-0^{\circ}$ $5^{\circ}-0^{\circ}$ $5^{\circ}-0^{\circ}-0^{\circ}$ $5^{\circ}-0^{\circ}-0^{\circ}$ $5^{\circ}-0^{\circ}-0^{\circ}-0^{\circ}$ $5^{\circ}-0^{\circ}-$

EL 12.5

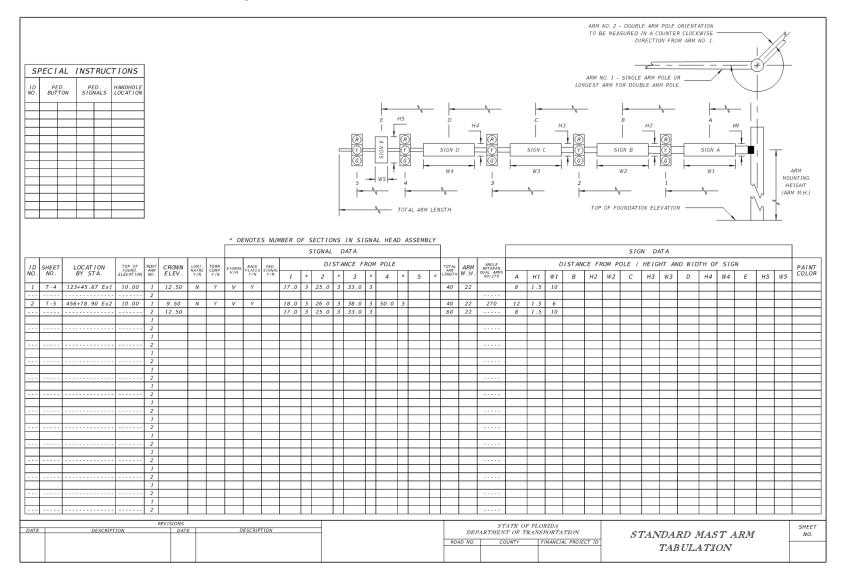
EXAMPLE 2

First Arm Structure as shown, Second Arm same as Example 1 except 150 mph Wind Speed with Signal Backplates.

STANDARD MAST ARM ASSEMBLIES DATA TABLE

L EL 10.0

Table Date 11-01-16


STRUCTURE		FIRST ARM		SECONI	D ARM	UF	LL		POLE		DRILLED	
ID NUMBERS	DESIGNATION	ARM ID	FAA (ft.)	ARM ID	SAA (ft.)	(deg)	(deg)	POLE ID	UAA (ft.)	UB (ft.)	SHAFT ID	
Example 1	A40/S - P2/S	A40/5	36					P2/5		22	DS/12/4.5	
Example 2	A60/D - A40/D - P4/D	A60/D	27.5	A40/D	36	90		P4/D	23.5	20	DS/16/4.5	

NOTES [Notes Date 11-01-16]:

- 1. If an entry appears in column FAA, a shorter arm is required. This is obtained by removing length from the arm tip and the arm length shortened from FA to FAA. SAA Similar.
- 2. If an entry appears in column UAA, a shorter pole is required. This is obtained by removing length from the pole tip and the pole height shortened from UA to UAA.
- 3. Work this sheet with the Signal Designer's "Mast Arm Tabulation". See "Mast Arm Tabulation" for special instructions that include non-standard Handhole location, paint color, terminal compartment requirement, and pedestrian features.

4. Work with Indexes 649-030 and 649-031.

Mast Arm Tabulation Sheet Example:

Design Aids

		30 Foot N	last Arm Com	binations		
Arm 1 Length	Arm 2 Length	Regular or Heavy Duty	Luminaire?		Designatio	n
		Pog	No	A30/S		P1/S
	N/A	Reg	Yes	A30/S		P1/S/L
	IN/A	HD	No	A30/S/H		P1/S
		О	Yes	A30/S/H		P1/S/L
		Reg/Reg	No	A30/D	A30/D	P2/D
30'		Rey/Rey	Yes	A30/D	A30/D	P2/D/L
30		Reg/HD	No	A30/D	A30/D/H	P2/D
	30'	Reg/HD	Yes	A30/D	A30/D/H	P2/D/L
	30		No	A30/D/H	A30/D	P2/D
		HD/Reg	Yes	A30/D/H	A30/D	P2/D/L
		HD/HD	No	A30/D/H	A30/D/H	P2/D
			Yes	A30/D/H	A30/D/H	P2/D/L
		30 foo	t Mast Arm Tot	al = 12		

40 Foot Mast Arm Combinations											
Arm 1 Length	Arm 2 Length	Regular or Heavy Duty	Luminaire?		Designatio	n					
		Dec	No	A40/S		P2/S					
	N/A	Reg	Yes	A40/S		P2/S/L					
	IN/A	HD	No	A40/S/H		P2/S					
		Ы	Yes	A40/S/H		P2/S/L					
		Pog/Pog	No	A40/D	A30/D	P2/D					
		Reg/Reg	Yes	A40/D	A30/D	P2/D/L					
			No	A40/D	A30/D/H	P2/D					
	30'	Reg/HD	Yes	A40/D	A30/D/H	P2/D/L					
	30		No	A40/D/H	A30/D	P2/D					
40'		HD/Reg	Yes	A40/D/H	A30/D	P2/D/L					
40		HD/HD	No	A40/D/H	A30/D/H	P2/D					
		חט/חט	Yes	A40/D/H	A30/D/H	P2/D/L					
		Pag/Pag	No	A40/D	A40/D	P2/D					
		Reg/Reg	Yes	A40/D	A40/D	P2/D/L					
			No	A40/D	A40/D/H	P2/D					
	40'	Reg/HD	Yes	A40/D	A40/D/H	P2/D/L					
	40		No	A40/D/H	A40/D	P2/D					
		HD/Reg	Yes	A40/D/H	A40/D	P2/D/L					
		HD/HD	No	A40/D/H	A40/D/H	P2/D					
		רט/חט	Yes	A40/D/H	A40/D/H	P2/D/L					
		40 foo	t Mast Arm Tot	al = 20							

50 Foot Mast Arm Combinations											
Arm 1 Length	Arm 2 Length	Regular or Heavy Duty	Luminaire?		Designatio	n					
		Bog	No	A50/S		P3/S					
	N/A	Reg	Yes	A50/S		P3/S/L					
	IN/A	HD	No	A50/S/H		P3/S					
		О	Yes	A50/S/H		P3/S/L					
		Pog/Pog	No	A50/D	A30/D	P3/D					
		Reg/Reg	Yes	A50/D	A30/D	P3/D/L					
			No	A50/D	A30/D/H	P3/D					
	30'	Reg/HD	Yes	A50/D	A30/D/H	P3/D/L					
	30		No	A50/D/H	A30/D	P3/D					
		HD/Reg	Yes	A50/D/H	A30/D	P3/D/L					
		HD/HD	No	A50/D/H	A30/D/H	P3/D					
		חט/חט	Yes	A50/D/H	A30/D/H	P3/D/L					
		Pag/Pag	No	A50/D	A40/D	P3/D					
50'		Reg/Reg	Yes	A50/D	A40/D	P3/D/L					
50			No	A50/D	A40/D/H	P3/D					
	40'	Reg/HD	Yes	A50/D	A40/D/H	P3/D/L					
	40	HD/Reg	No	A50/D/H	A40/D	P3/D					
		прикед	Yes	A50/D/H	A40/D	P3/D/L					
		HD/HD	No	A50/D/H	A40/D/H	P3/D					
		חט/חט	Yes	A50/D/H	A40/D/H	P3/D/L					
		Reg/Reg	No	A50/D	A50/D	P4/D					
		Rey/Rey	Yes	A50/D	A50/D	P4/D/L					
			No	A50/D	A50/D/H	P4/D					
	50'	Reg/HD	Yes	A50/D	A50/D/H	P4/D/L					
	50	HD/Reg	No	A50/D/H	A50/D	P4/D					
		пыкеу	Yes	A50/D/H	A50/D	P4/D/L					
		HD/HD	No	A50/D/H	A50/D/H	P4/D					
		טח/טוי	Yes	A50/D/H	A50/D/H	P4/D/L					
		50 foo	t Mast Arm Tot	al = 28							

		60 Foot N	last Arm Com	binations		
Arm 1 Length	Arm 2 Length	Regular or Heavy Duty	Luminaire?		Designatio	n
	_	Pog	No	A60/S		P4/S
	N/A	Reg	Yes	A60/S		P4/S/L
	IN/A		No	A60/S/H		P4/S
		HD	Yes	A60/S/H		P4/S/L
			No	A60/D	A30/D	P4/D
		Reg/Reg	Yes	A60/D	A30/D	P4/D/L
			No	A60/D	A30/D/H	P4/D
	30'	Reg/HD	Yes	A60/D	A30/D/H	P4/D/L
	30		No	A60/D/H	A30/D	P4/D
		HD/Reg	Yes	A60/D/H	A30/D	P4/D/L
			No	A60/D/H	A30/D/H	P4/D
		HD/HD	Yes	A60/D/H	A30/D/H	P4/D/L
		Deg/Deg	No	A60/D	A40/D	P4/D
		Reg/Reg	Yes	A60/D	A40/D	P4/D/L
			No	A60/D	A40/D/H	P4/D
	40'	Reg/HD	Yes	A60/D	A40/D/H	P4/D/L
	40		No	A60/D/H	A40/D	P4/D
<u>co</u> !		HD/Reg	Yes	A60/D/H	A40/D	P4/D/L
60'			No	A60/D/H	A40/D/H	P4/D
		HD/HD	Yes	A60/D/H	A40/D/H	P4/D/L
			No	A60/D	A50/D	P4/D
		Reg/Reg	Yes	A60/D	A50/D	P4/D/L
			No	A60/D	A50/D/H	P4/D
	E0'	Reg/HD	Yes	A60/D	A50/D/H	P4/D/L
	50'		No	A60/D/H	A50/D	P4/D
		HD/Reg	Yes	A60/D/H	A50/D	P4/D/L
		HD/HD	No	A60/D/H	A50/D/H	P4/D
		חח/חח	Yes	A60/D/H	A50/D/H	P4/D/L
			No	A60/D	A60/D	P5/D
		Reg/Reg	Yes	A60/D	A60/D	P5/D/L
			No	A60/D	A60/D/H	P5/D
	60'	Reg/HD	Yes	A60/D	A60/D/H	P5/D/L
	60'		No	A60/D/H	A60/D	P5/D
		HD/Reg	Yes	A60/D/H	A60/D	P5/D/L
			No	A60/D/H	A60/D/H	P5/D
		HD/HD	Yes	A60/D/H	A60/D/H	P5/D/L
		60 foo	t Mast Arm Tot	al = 36		

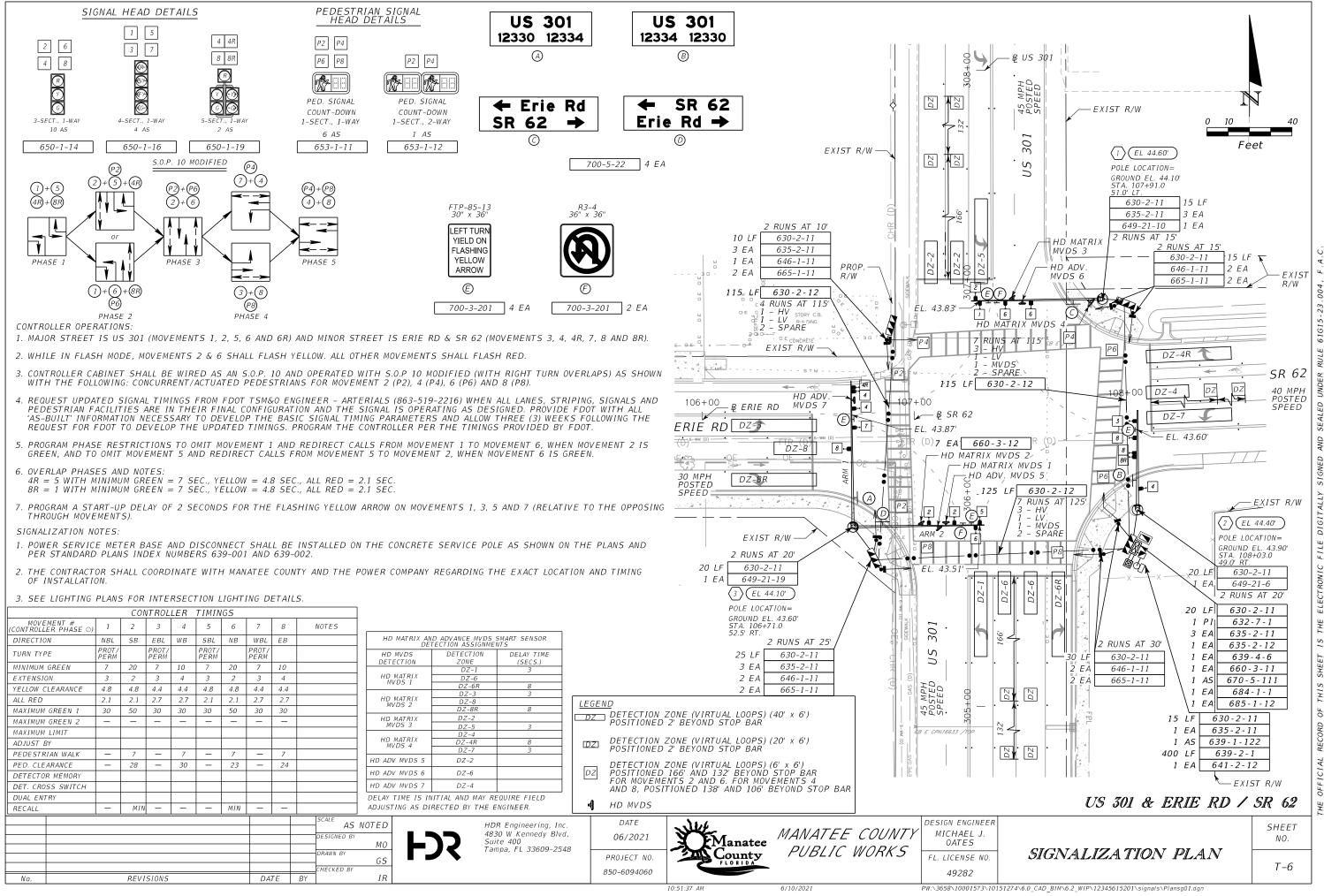
70 Foot Mast Arm Combinations									
Arm 1 Length	Arm 2 Length	Regular or Heavy Duty	Luminaire?		Designatio	n			
		Reg	No	A70/S		P5/S			
	N/A	Reg	Yes	A70/S		P5/S/L			
	IN/A	HD	No	A70/S/H		P5/S			
			Yes	A70/S/H		P5/S/L			
		Reg/Reg	No	A70/D	A30/D	P5/D			
		Regriteg	Yes	A70/D	A30/D	P5/D/L			
		Reg/HD	No	A70/D	A30/D/H	P5/D			
	30'	itteg/itb	Yes	A70/D	A30/D/H	P5/D/L			
	- 50	HD/Reg	No	A70/D/H	A30/D	P5/D			
		TID/IXeg	Yes	A70/D/H	A30/D	P5/D/L			
		HD/HD	No	A70/D/H	A30/D/H	P5/D			
			Yes	A70/D/H	A30/D/H	P5/D/L			
		Pog/Pog	No	A70/D	A40/D	P5/D			
		Reg/Reg	Yes	A70/D	A40/D	P5/D/L			
			No	A70/D	A40/D/H	P5/D			
	40'	Reg/HD	Yes	A70/D	A40/D/H	P5/D/L			
	40		No	A70/D/H	A40/D	P5/D			
70'		HD/Reg	Yes	A70/D/H	A40/D	P5/D/L			
70		HD/HD	No	A70/D/H	A40/D/H	P5/D			
		חח/חח	Yes	A70/D/H	A40/D/H	P5/D/L			
		Pog/Pog	No	A70/D	A50/D	P5/D			
		Reg/Reg	Yes	A70/D	A50/D	P5/D/L			
			No	A70/D	A50/D/H	P5/D			
	50'	Reg/HD	Yes	A70/D	A50/D/H	P5/D/L			
	50		No	A70/D/H	A50/D	P5/D			
		HD/Reg	Yes	A70/D/H	A50/D	P5/D/L			
		HD/HD	No	A70/D/H	A50/D/H	P5/D			
		חח/חם	Yes	A70/D/H	A50/D/H	P5/D/L			
		Pog/Pog	No	A70/D	A60/D	P6/D			
		Reg/Reg	Yes	A70/D	A60/D	P6/D/L			
			No	A70/D	A60/D/H	P6/D			
	60'	Reg/HD	Yes	A70/D	A60/D/H	P6/D/L			
	60'		No	A70/D/H	A60/D	P6/D			
		HD/Reg	Yes	A70/D/H	A60/D	P6/D/L			
		םח/חם	No	A70/D/H	A60/D/H	P6/D			
		HD/HD	Yes	A70/D/H	A60/D/H	P6/D/L			

	ength Length Heavy Duty Luminaire? Designation												
Arm 1 Length		•	Luminaire?		Designatior	ı							
		Pog/Pog	No	A70/D	A70/D	P6/D							
		Reg/Reg	Yes	A70/D	A70/D	P6/D/L							
			No	A70/D	A70/D/H	P6/D							
70'	70'	Reg/HD	Yes	A70/D	A70/D/H	P6/D/L							
10	70		No	A70/D/H	A70/D	P6/D							
		HD/Reg	Yes	A70/D/H	A70/D	P6/D/L							
		HD/HD	No	A70/D/H	A70/D/H	P6/D							
		חט/חט	Yes	A70/D/H	A70/D/H	P6/D/L							
		70 foo	t Mast Arm Tot	al = 44									

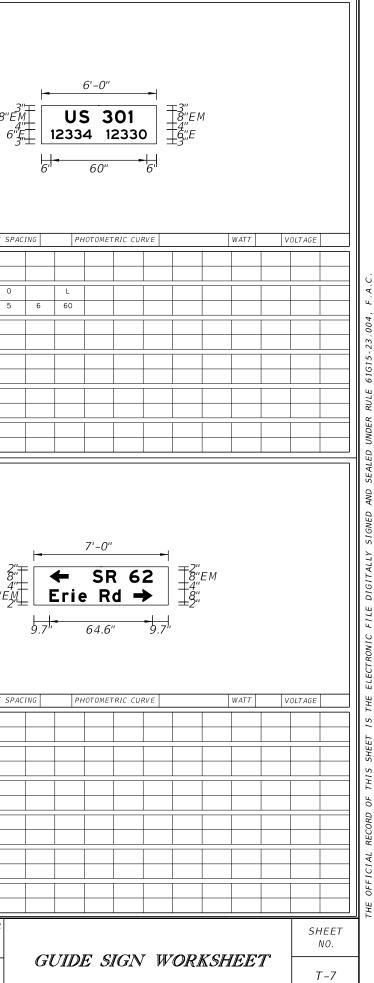
78 Foot Mast Arm Combinations												
Arm 1 Length	Arm 2 Length	Regular or Heavy Duty	Luminaire?		Designatio	n						
		Deg	No	A78/S		P6/S						
	N/A	Reg	Yes	A78/S		P6/S/L						
	IN/A	HD	No	A78/S/H		P6/S						
			Yes	A78/S/H		P6/S/L						
		Pog/Pog	No	A78/D	A30/D	P6/D						
		Reg/Reg	Yes	A78/D	A30/D	P6/D/L						
			No	A78/D	A30/D/H	P6/D						
	30'	Reg/HD	Yes	A78/D	A30/D/H	P6/D/L						
	30	HD/Reg	No	A78/D/H	A30/D	P6/D						
78'		прикед	Yes	A78/D/H	A30/D	P6/D/L						
10		HD/HD	No	A78/D/H	A30/D/H	P6/D						
		חט/חט	Yes	A78/D/H	A30/D/H	P6/D/L						
		Pag/Pag	No	A78/D	A40/D	P6/D						
		Reg/Reg	Yes	A78/D	A40/D	P6/D/L						
			No	A78/D	A40/D/H	P6/D						
	40'	Reg/HD	Yes	A78/D	A40/D/H	P6/D/L						
	40		No	A78/D/H	A40/D	P6/D						
		HD/Reg	Yes	A78/D/H	A40/D	P6/D/L						
		HD/HD	No	A78/D/H	A40/D/H	P6/D						
			Yes	A78/D/H	A40/D/H	P6/D/L						

78 Foot Mast Arm Combinations												
Arm 1 Length	Arm 2 Length	Regular or Heavy Duty	Luminaire?		Designatio	n						
		Pag/Pag	No	A78/D	A50/D	P6/D						
		Reg/Reg	Yes	A78/D	A50/D	P6/D/L						
			No	A78/D	A50/D/H	P6/D						
	50'	Reg/HD	Yes	A78/D	A50/D/H	P6/D/L						
	50'	HD/Reg	No	A78/D/H	A50/D	P6/D						
		nD/Reg	Yes	A78/D/H	A50/D	P6/D/L						
		HD/HD	No	A78/D/H	A50/D/H	P6/D						
		חט/חט	Yes	A78/D/H	A50/D/H	P6/D/L						
		Pag/Pag	No	A78/D	A60/D	P6/D						
		Reg/Reg	Yes	A78/D	A60/D	P6/D/L						
			No	A78/D	A60/D/H	P6/D						
	60'	Reg/HD	Yes	A78/D	A60/D/H	P6/D/L						
	00	HD/Reg	No	A78/D/H	A60/D	P6/D						
		пр/кед	Yes	A78/D/H	A60/D	P6/D/L						
		HD/HD	No	A78/D/H	A60/D/H	P6/D						
78'		חט/חט	Yes	A78/D/H	A60/D/H	P6/D/L						
10		Pag/Pag	No	A78/D	A70/D	P7/D						
		Reg/Reg	Yes	A78/D	A70/D	P7/D/L						
			No	A78/D	A70/D/H	P7/D						
	70'	Reg/HD	Yes	A78/D	A70/D/H	P7/D/L						
	70		No	A78/D/H	A70/D	P7/D						
		HD/Reg	Yes	A78/D/H	A70/D	P7/D/L						
		HD/HD	No	A78/D/H	A70/D/H	P7/D						
		חט/חט	Yes	A78/D/H	A70/D/H	P7/D/L						
		Pag/Pag	No	A78/D	A78/D	P7/D						
		Reg/Reg	Yes	A78/D	A78/D	P7/D/L						
			No	A78/D	A78/D/H	P7/D						
	78'	Reg/HD	Yes	A78/D	A78/D/H	P7/D/L						
	10	HD/Reg	No	A78/D/H	A78/D	P7/D						
			Yes	A78/D/H	A78/D	P7/D/L						
		HD/HD	No	A78/D/H	A78/D/H	P7/D						
			Yes	A78/D/H	A78/D/H	P7/D/L						
		78 foo	t Mast Arm Tot	al = 52								

Erie Rd. and SR 62 Improvements


HDR Project Number: 10151274

Miscellaneous Structures


1.2 Signal Plans

For: Manatee County Public Works

SIGN NAME A QTY / SIGN NO. ST	TION(S)			SIGN NAME B OTY / SIGN STATION	5)
PANEL BORDER				PANEL BORDER	
WIDTH 6'-0" WIDTH 0"				WIDTH 6'-0" WIDTH 0"	
HEIGHT 2'-0" RADII 0"				HEIGHT 2'-0" RADII 0"	
LEGEND White COLOR Green				LEGEND White COLOR Green	
COLOR Green		L 	<u>6'-0''</u>		
SYMBOL(S) ANGLE X Y WIL	HT	T 3"エ		SYMBOL(S) ANGLE X Y WID H	-11
			US 301 330 12334		$- \frac{\tilde{o}}{\tilde{c}} = \frac{8''E}{\tilde{c}}$
			330 12334 ±¢;; <i>E</i>		-
	<u> </u>				
SIGN NO. OF EDGE OF COLUMN SIZE	AVERAGE LENGTH	6"	<u> </u>	SIGN NO. OF EDGE OF COLUMN SIZE AVERAC NO. POSTS CLANE LANE LANE LANE	
SIGN NO. OF EDGE OF COLUMN SIZE NO. POSTS CLEARANCE	LENGTH	-		SIGN NO. OF EDGE OF COLUMN SIZE AVERAC NO. POSTS CLEARANCE LENGT	·
					_
					—
	NO. OF LIGHT FI	TXTURES FIXTURE SPACING	PHOTOMETRIC CURVE WATT VOLT		NO. OF LIGHT FIXTURES FIXTURE SF
COPY U S	0 1	L		COPY U S 3	1 L
SPACE ¹⁵ 8.5 6.5 8 8	1 8.5 2.4 15	41.9		SPACE 15 8.5 6.5 8 8.1 8	5 2.4 15 41.9
COPY 1 2 3	0 1	2 3 3 4		COPY 1 2 3 3	1 2 3 3 0
SPACE 6 3 5.7 5.7 5	9 5 9.1 3	5.7 5.7 5.5 5.6 6	60		6 9.1 3 5.7 5.7 5.9 5
SPACE					
SPACE				SPACE SPACE	
СОРҮ				COPY	
SPACE SPACE				SPACE SPACE	
СОРҮ				COPY	
SPACE				SPACE SPACE	
GLON NAME OTY SIGN ST	TIONICO			CLON NAME - OTV SIGN STATION	
SIGN NAME C QTY / SIGN ST	(TION(S)			SIGN NAME D OTY / SIGN STATION	
PANEL BORDER WIDTH 7'-0" WIDTH				PANEL BORDER	_
WIDTH 7'-0" WIDTH 0" HEIGHT 2'-0" RADII 0"				WIDTH 7'-0" WIDTH 0" HEIGHT 2'-0" RADII 0"	_
LEGEND White COLOR Green				LEGEND White COLOR Green	
COLOR Green				COLOR Green	_
SYMBOL(S) ANGLE X Y WIL	HT	-	<u>−7'−0''</u>	SYMBOL(S) ANGLE X Y WID H	·]
AR_Type D 90 9.7 14 8	12		Eria Dd T ^{2"} _{EM}	AR_Type D 90 9.7 14 8 12	
AR_Type D 270 62.3 2 8	12		• Erie Rd \mathbb{R} 62 $\xrightarrow{-}$	AR_Type D 270 62.3 2 8 12	
		∿ <u>↓</u> 8″E <u>M</u> ⊥ ⊃ I	R 62 • <u>1</u> <u>2</u> "		$\sim \pm \frac{8}{2}$
		├_┼ ━	. []		
SIGN NO. OF EDGE OF COLUMN SIZE NO. POSTS CLEARANCE	AVERAGE LENGTH	9.7"	64.6" 9.7"	SIGN NO. OF EDGE OF COLUMN SIZE AVERAC NO. POSTS CLEARANCE LENGT	Ē
			· · · · · · · · · · · · · · · · · · ·		
	NO. OF LIGHT FI	IXTURES FIXTURE SPACING	PHOTOMETRIC CURVE WATT VOLT	TAGE	NO. OF LIGHT FIXTURES FIXTURE SF
	NO. OF LIGHT FI	IXTURES FIXTURE SPACING	PHOTOMETRIC CURVE WATT VOLT		NO. OF LIGHT FIXTURES FIXTURE SF
	R d		PHOTOMETRIC CURVE WATT VOLT	COPY S R 6	
SPACE 29.7 8.1 5.9 4.1 5	R d 3 8 7.9 5.3		PHOTOMETRIC CURVE WATT VOLT	COPY S R 6 SPACE 36.7 8.5 6.5 8 8.2 6	2 L .5 9.7 37.6
SPACE 29.7 8.1 5.9 4.1 5 COPY S R	R d 3 8 7.9 5.3 4 2 L		PHOTOMETRIC CURVE WATT VOLT	COPY S R 6 SPACE 36.7 8.5 6.5 8 8.2 6 COPY E r i e 6 6 6	2 L
SPACE 29.7 8.1 5.9 4.1 5 COPY S R SPACE 9.7 8.5 6.5 8 8	R d 3 8 7.9 5.3		PHOTOMETRIC CURVE WATT VOLT Image:	COPY S R 6 SPACE 36.7 8.5 6.5 8 8.2 6 COPY E r i e 5 5 5 8 5 6 6 SPACE 36.7 8.5 6.5 8 8.2 6 COPY E r i e 5 5 5 8 5 6 5 7 6	2 L .5 9.7 37.6
SPACE 29.7 8.1 5.9 4.1 5 COPY S R SPACE 9.7 8.5 6.5 8 8 COPY	R d 3 8 7.9 5.3 4 2 L		PHOTOMETRIC CURVE WATT VOLT Image:	COPY S R 6 SPACE 36.7 8.5 6.5 8 8.2 6 COPY E r i e 5 5 8 8.2 6 COPY E r i e 5 5 5 5 5 5 5 5 6 5 6 5 6 5 7 6 <td>2 L </td>	2 L
SPACE 29.7 8.1 5.9 4.1 5 COPY S R SPACE 9.7 8.5 6.5 8 8	R d 3 8 7.9 5.3 4 2 L		PHOTOMETRIC CURVE WATT VOLT	COPY S R 6 SPACE 36.7 8.5 6.5 8 8.2 6 COPY E r i e 5 5 5 8 5 6 6 COPY E r i e 5 5 5 5 5 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 7 6 7	2 L
SPACE 29.7 8.1 5.9 4.1 5 COPY S R 5 <t< td=""><td>R d 3 8 7.9 5.3 4 2 L</td><td></td><td>PHOTOMETRIC CURVE WATT VOLT</td><td>COPY S R 6 SPACE 36.7 8.5 6.5 8 8.2 6 COPY E r i e 5 5 8 8.2 6 COPY E r i e 5 5 5 5 5 5 5 5 6 5 6 5 6 5 7 6</td></t<> <td>2 L </td>	R d 3 8 7.9 5.3 4 2 L		PHOTOMETRIC CURVE WATT VOLT	COPY S R 6 SPACE 36.7 8.5 6.5 8 8.2 6 COPY E r i e 5 5 8 8.2 6 COPY E r i e 5 5 5 5 5 5 5 5 6 5 6 5 6 5 7 6	2 L
SPACE 29.7 8.1 5.9 4.1 5 COPY S R S S R S SPACE 9.7 8.5 6.5 8 8 S COPY S R S R S R S SPACE 9.7 8.5 6.5 8 8 S COPY S R S S R S S R S R S R S S R S S R S <td>R d 3 8 7.9 5.3 4 2 L</td> <td></td> <td>PHOTOMETRIC CURVE WATT VOLT Image: I</td> <td>COPY S R 6 SPACE 36.7 8.5 6.5 8 8.2 6 COPY E r i e 5 5.9 4.1 5.3 6 COPY E r i e 5 5 5 5 6 5 7 6</td> <td>2 L </td>	R d 3 8 7.9 5.3 4 2 L		PHOTOMETRIC CURVE WATT VOLT Image: I	COPY S R 6 SPACE 36.7 8.5 6.5 8 8.2 6 COPY E r i e 5 5.9 4.1 5.3 6 COPY E r i e 5 5 5 5 6 5 7 6	2 L
SPACE 29.7 8.1 5.9 4.1 5 COPY S R 5 <t< td=""><td>R d 3 8 7.9 5.3 4 2 L</td><td></td><td>PHOTOMETRIC CURVE WATT VOLT Image: State of the sta</td><td>COPY S R 6 SPACE 36.7 8.5 6.5 8 8.2 6 COPY E r i e 5 5 8 8.2 6 COPY E r i e 5 5 8 8.2 6 COPY E r i e 5 5 5 8 8 2 6 COPY E r i e 5 5 5 5 5 5 5 5 8 8.2 6 COPY E r i 5 3 5 5 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 5 3 5 5 3 5 5 3 5</td><td>2 L </td></t<>	R d 3 8 7.9 5.3 4 2 L		PHOTOMETRIC CURVE WATT VOLT Image: State of the sta	COPY S R 6 SPACE 36.7 8.5 6.5 8 8.2 6 COPY E r i e 5 5 8 8.2 6 COPY E r i e 5 5 8 8.2 6 COPY E r i e 5 5 5 8 8 2 6 COPY E r i e 5 5 5 5 5 5 5 5 8 8.2 6 COPY E r i 5 3 5 5 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 5 3 5 5 3 5 5 3 5	2 L
SPACE 29.7 8.1 5.9 4.1 5 COPY S R 5 <t< td=""><td>R d 3 8 7.9 5.3 4 2 L</td><td></td><td>PHOTOMETRIC CURVE WATT VOLT Image: State St</td><td>COPY S R 6 SPACE 36.7 8.5 6.5 8 8.2 6 COPY E r i e 5 5 8 8.2 6 COPY E r i e 5 5 8 8.2 6 COPY E r i e 5 5 8 8 6 COPY E r i e 5 5 8 8 6 COPY E r i e 5 3 6</td><td>2 L </td></t<>	R d 3 8 7.9 5.3 4 2 L		PHOTOMETRIC CURVE WATT VOLT Image: State St	COPY S R 6 SPACE 36.7 8.5 6.5 8 8.2 6 COPY E r i e 5 5 8 8.2 6 COPY E r i e 5 5 8 8.2 6 COPY E r i e 5 5 8 8 6 COPY E r i e 5 5 8 8 6 COPY E r i e 5 3 6	2 L
SPACE 29.7 8.1 5.9 4.1 5 COPY S R	R d 3 8 7.9 5.3 4 2 L		PHOTOMETRIC CURVE WATT VOLT Image: State St	COPY S R 6 SPACE 36.7 8.5 6.5 8 8.2 6 COPY E r i e 5.9 4.1 5.3 5.3 COPY E r i e 5.9 4.1 5.3 5.3 COPY E r i e 5.9 4.1 5.3 5.3 COPY E I	2 L
SPACE 29.7 8.1 5.9 4.1 5 COPY S R 5 SPACE 9.7 8.5 6.5 8 8 <td< td=""><td>R d 3 8 7.9 5.3 4 2 L</td><td></td><td>PHOTOMETRIC CURVE WATT VOLT Image: State St</td><td>COPY S R 6 SPACE 36.7 8.5 6.5 8 8.2 6 COPY E r i e 5.9 4.1 5.3 6 COPY E r i e 5.9 4.1 5.3 6 COPY E r i e 1 5.3 1 COPY E r i e 1 5.3 1 COPY E I I I 5.3 1 1 5.3 1 COPY I</td><td>2 L </td></td<>	R d 3 8 7.9 5.3 4 2 L		PHOTOMETRIC CURVE WATT VOLT Image: State St	COPY S R 6 SPACE 36.7 8.5 6.5 8 8.2 6 COPY E r i e 5.9 4.1 5.3 6 COPY E r i e 5.9 4.1 5.3 6 COPY E r i e 1 5.3 1 COPY E r i e 1 5.3 1 COPY E I I I 5.3 1 1 5.3 1 COPY I	2 L
SPACE 29.7 8.1 5.9 4.1 5 COPY S R	R d 3 8 7.9 5.3 4 2 L			COPY S R 6 SPACE 36.7 8.5 6.5 8 8.2 6 COPY E r i e 6 SPACE 9.7 8.1 5.9 4.1 5.3 COPY E I I I SPACE I I I COPY I I I SPACE I I I	2 L I I 5 9.7 37.6 I R d L I 3 7.9 5.3 29.7 44.6 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
SPACE 29.7 8.1 5.9 4.1 5 COPY S R S S R S SPACE 9.7 8.5 6.5 8 S COPY S R S <td< td=""><td>R d 3 8 7.9 5.3 4 2 L</td><td>L I I 9.7 44.6 I I I I</td><td>I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I<td>COPY S R 6 SPACE 36.7 8.5 6.5 8 8.2 6 COPY E r i e 1 SPACE 9.7 8.1 5.9 4.1 5.3 COPY E I I I SPACE 9.7 8.1 5.9 4.1 5.3 COPY I I I I SPACE I I I I COPY I I I I SPACE I I I I COPY I I I I SPACE I I I I COPY I I I I SPACE I I I I COPY I I I I SPACE I I I I COPY I I I I SPACE I I I I COPY I I I I SPACE I I I I DATE DATE I I I<td>2 L L .5 9.7 37.6 R d L 3 7.9 5.3 29.7 44.6 1 1<!--</td--></td></td></td></td<>	R d 3 8 7.9 5.3 4 2 L	L I I 9.7 44.6 I I I I	I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I <td>COPY S R 6 SPACE 36.7 8.5 6.5 8 8.2 6 COPY E r i e 1 SPACE 9.7 8.1 5.9 4.1 5.3 COPY E I I I SPACE 9.7 8.1 5.9 4.1 5.3 COPY I I I I SPACE I I I I COPY I I I I SPACE I I I I COPY I I I I SPACE I I I I COPY I I I I SPACE I I I I COPY I I I I SPACE I I I I COPY I I I I SPACE I I I I COPY I I I I SPACE I I I I DATE DATE I I I<td>2 L L .5 9.7 37.6 R d L 3 7.9 5.3 29.7 44.6 1 1<!--</td--></td></td>	COPY S R 6 SPACE 36.7 8.5 6.5 8 8.2 6 COPY E r i e 1 SPACE 9.7 8.1 5.9 4.1 5.3 COPY E I I I SPACE 9.7 8.1 5.9 4.1 5.3 COPY I I I I SPACE I I I I COPY I I I I SPACE I I I I COPY I I I I SPACE I I I I COPY I I I I SPACE I I I I COPY I I I I SPACE I I I I COPY I I I I SPACE I I I I COPY I I I I SPACE I I I I DATE DATE I I I <td>2 L L .5 9.7 37.6 R d L 3 7.9 5.3 29.7 44.6 1 1<!--</td--></td>	2 L L .5 9.7 37.6 R d L 3 7.9 5.3 29.7 44.6 1 1 </td
SPACE 29.7 8.1 5.9 4.1 5 COPY S R S S R S SPACE 9.7 8.5 6.5 8 S COPY S R S <td< td=""><td>R d 3 8 7.9 5.3 4 2 L</td><td>L I 9.7 44.6 I I <td< td=""><td>Image: Second second</td><td>COPY S R 6 COPY 8.5 6.5 8 8.2 6 COPY E r i e 1 COPY E r i e 1 SPACE 9.7 8.1 5.9 4.1 5.3 COPY E I I I I SPACE 9.7 8.1 5.9 4.1 5.3 COPY I I I I I SPACE I I I I I COPY I I I I I SPACE I I I I I SPACE I I I I I SPACE I I I I I COPY I I I I I SPACE I I I I I COPY I I I I I SPACE I</td><td>2 L </td></td<></td></td<>	R d 3 8 7.9 5.3 4 2 L	L I 9.7 44.6 I I <td< td=""><td>Image: Second second</td><td>COPY S R 6 COPY 8.5 6.5 8 8.2 6 COPY E r i e 1 COPY E r i e 1 SPACE 9.7 8.1 5.9 4.1 5.3 COPY E I I I I SPACE 9.7 8.1 5.9 4.1 5.3 COPY I I I I I SPACE I I I I I COPY I I I I I SPACE I I I I I SPACE I I I I I SPACE I I I I I COPY I I I I I SPACE I I I I I COPY I I I I I SPACE I</td><td>2 L </td></td<>	Image: Second	COPY S R 6 COPY 8.5 6.5 8 8.2 6 COPY E r i e 1 COPY E r i e 1 SPACE 9.7 8.1 5.9 4.1 5.3 COPY E I I I I SPACE 9.7 8.1 5.9 4.1 5.3 COPY I I I I I SPACE I I I I I COPY I I I I I SPACE I I I I I SPACE I I I I I SPACE I I I I I COPY I I I I I SPACE I I I I I COPY I I I I I SPACE I	2 L
SPACE 29.7 8.1 5.9 4.1 5 COPY S R S S R S SPACE 9.7 8.5 6.5 8 S COPY S R S <td< td=""><td>R d 3 8 7.9 5.3 4 2 L</td><td>L I 9.7 44.6 I I <td< td=""><td>HDR Engineering, Inc. HDR Engineering, Inc.</td><td>COPY S R 6 COPY 8.5 6.5 8 8.2 6 COPY E r i e 1 COPY E r i e 1 SPACE 9.7 8.1 5.9 4.1 5.3 COPY E I I I I SPACE 9.7 8.1 5.9 4.1 5.3 COPY I I I I I SPACE I I I I I COPY I I I I I SPACE I I I I I SPACE I I I I I SPACE I I I I I COPY I I I I I SPACE I I I I I COPY I I I I I SPACE I</td><td>2 L I 5 9.7 37.6 R d J J 3 7.9 5.3 29.7 44.6</td></td<></td></td<>	R d 3 8 7.9 5.3 4 2 L	L I 9.7 44.6 I I <td< td=""><td>HDR Engineering, Inc. HDR Engineering, Inc.</td><td>COPY S R 6 COPY 8.5 6.5 8 8.2 6 COPY E r i e 1 COPY E r i e 1 SPACE 9.7 8.1 5.9 4.1 5.3 COPY E I I I I SPACE 9.7 8.1 5.9 4.1 5.3 COPY I I I I I SPACE I I I I I COPY I I I I I SPACE I I I I I SPACE I I I I I SPACE I I I I I COPY I I I I I SPACE I I I I I COPY I I I I I SPACE I</td><td>2 L I 5 9.7 37.6 R d J J 3 7.9 5.3 29.7 44.6</td></td<>	HDR Engineering, Inc.	COPY S R 6 COPY 8.5 6.5 8 8.2 6 COPY E r i e 1 COPY E r i e 1 SPACE 9.7 8.1 5.9 4.1 5.3 COPY E I I I I SPACE 9.7 8.1 5.9 4.1 5.3 COPY I I I I I SPACE I I I I I COPY I I I I I SPACE I I I I I SPACE I I I I I SPACE I I I I I COPY I I I I I SPACE I I I I I COPY I I I I I SPACE I	2 L I 5 9.7 37.6 R d J J 3 7.9 5.3 29.7 44.6
SPACE 29.7 8.1 5.9 4.1 5 COPY S R S SPACE 9.7 8.5 6.5 8 COPY S S S SPACE S S S	R d 3 8 7.9 5.3 2 L L 2 6.5 36.7 37.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L L L 9.7 44.6 L L 1 L L L 1 L L L 1 L L L 1 L L L 1 L L L 1 L L L 1 L L L 1 L L L 1 L L L 1 L L L 1 L L L 1 L L L 1 L L L 1 L L L 1 L L L	Horizontal Horizontal <td>COPY S R 6 SPACE 36.7 8.5 6.5 8 8.2 6 COPY E r i e 5.3 7 1 5.3 7 COPY E r i e 7 8.1 5.9 4.1 5.3 7 COPY SPACE 9.7 8.1 5.9 4.1 5.3 7 SPACE 9.7 8.1 5.9 4.1 5.3 7 COPY SPACE 1 1 1 1 1 1 COPY SPACE 1</td> <td>2 L I 5 9.7 37.6 R d J J 3 7.9 5.3 29.7 44.6 I</td>	COPY S R 6 SPACE 36.7 8.5 6.5 8 8.2 6 COPY E r i e 5.3 7 1 5.3 7 COPY E r i e 7 8.1 5.9 4.1 5.3 7 COPY SPACE 9.7 8.1 5.9 4.1 5.3 7 SPACE 9.7 8.1 5.9 4.1 5.3 7 COPY SPACE 1 1 1 1 1 1 COPY SPACE 1	2 L I 5 9.7 37.6 R d J J 3 7.9 5.3 29.7 44.6 I
SPACE 29.7 8.1 5.9 4.1 5 COPY S R S S R S SPACE 9.7 8.5 6.5 8 S COPY S R S <td< td=""><td>R d 3 8 7.9 5.3 2 L L 2 6.5 36.7 37.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>L I I 9.7 44.6 I 9.7 44.6 I I I I</td><td>Horizontal Horizontal Horizontal<td>COPY S R 6 COPY 8.5 6.5 8 8.2 6 COPY E r i e 1 COPY E r i e 1 SPACE 9.7 8.1 5.9 4.1 5.3 COPY E I I I I SPACE 9.7 8.1 5.9 4.1 5.3 COPY I I I I I SPACE I I I I I COPY I I I I I SPACE I I I I I SPACE I I I I I SPACE I I I I I COPY I I I I I SPACE I I I I I COPY I I I I I SPACE I</td><td>2 L I 25 9.7 37.6 R d L 3 7.9 5.3 29.7 44.6 I I I I</td></td></td<>	R d 3 8 7.9 5.3 2 L L 2 6.5 36.7 37.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L I I 9.7 44.6 I 9.7 44.6 I I I I	Horizontal Horizontal <td>COPY S R 6 COPY 8.5 6.5 8 8.2 6 COPY E r i e 1 COPY E r i e 1 SPACE 9.7 8.1 5.9 4.1 5.3 COPY E I I I I SPACE 9.7 8.1 5.9 4.1 5.3 COPY I I I I I SPACE I I I I I COPY I I I I I SPACE I I I I I SPACE I I I I I SPACE I I I I I COPY I I I I I SPACE I I I I I COPY I I I I I SPACE I</td> <td>2 L I 25 9.7 37.6 R d L 3 7.9 5.3 29.7 44.6 I I I I</td>	COPY S R 6 COPY 8.5 6.5 8 8.2 6 COPY E r i e 1 COPY E r i e 1 SPACE 9.7 8.1 5.9 4.1 5.3 COPY E I I I I SPACE 9.7 8.1 5.9 4.1 5.3 COPY I I I I I SPACE I I I I I COPY I I I I I SPACE I I I I I SPACE I I I I I SPACE I I I I I COPY I I I I I SPACE I I I I I COPY I I I I I SPACE I	2 L I 25 9.7 37.6 R d L 3 7.9 5.3 29.7 44.6 I I I I

PW:\3658\10001573\10151274\6.0_CAD_BIM\6.2_WIP\12345615201\signals\GSWKSG01.DGN

SPECIAL NOTES: A. EACH POLE AND MAST ARM SHALL BE IDENTIFIED WITH A PERMANENT ONE INCH (1") HIGH ENGRAVED OR IMPRESSED MARK WHICH BEARS THE POLE IDENTIFICATION NUMBER SHOWN ON THE PLANS. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO ARM # 2- DOUBLE ARM POLE ORIENTATION -TO BE MEASURED IN A COUNTER CLOCKWISE DIRECTION FROM ARM 1. FIELD VERIFY ALL ELEVATIONS PRIOR TO POLE MANUFACTURING. CONTRACTOR SHALL ALSO INSURE THAT TOP OF POLE FOUNDATION B. ANCHOR BOLT COVERS (ORNAMENTAL, NON-ORNAMENTAL, AND/OR PAINTED) SHALL BE GALVANIZED STEEL OR CAST ALUMINUM AND SHALL BE SECURED BY A MINIMUM OF TWO (2) THREADED FASTENERS. THE BOLT COVERS SHALL BE OF SUFFICIENT SIZE SO THAT THERE IS NO GAP BETWEEN ITSELF AND THE POLE SHAFT. WILL NOT BE INSTALLED BELOW NATURAL GROUND LEVEL. INFORMATION BELOW IS FOR DESIGN PURPOSES ONLY. FIELD ADJUSTMENTS MAY BE REQUIRED. C. MAST ARMS SHALL BE GALVANIZED, NON-PAINTED. SEE APPROPRIATE PLAN SHEET FOR PROPOSED SIGNAL HEAD ALIGNMENTS AND SIGN CONFIGURATION/LOCATION. INTERNALLY ILLUMINATED SIGN "A" RIDGED MOUNTED ON MAST ARM MICROWAVE RADAR D DETECTION O R W3 \bigotimes SIGN C CRITICAL ROAD ELEVATION – (HIGHEST POINT OF ROADWAY UNDER SIGNALS) SIGN TOP OF FOUNDATION -G G G ELEVATION. WIRE SCREEN НЗ W4 -5

- TOTAL ARM LENGTH

<u>NOTE</u>

							* DE	NOTES	5 NUM	IBER	UF .	SECT	ION.	5 11	1 510	SNAL	HEAD AS	SEMBL	r																						
** DENC	DTES I	OUNDA	TION IS DESIG	NED AS 0.5	' ABOVE (GRADE						SIGN	AL	DAT	Ā															SIG	N D	DATA								MV D D I ST A)S
STRUCT .	POLE	SHEET	LOCATION	TOP OF	CRITICAL	RDWY	SIGNAL	BACK PLATES	PED.				DIS	TANC	E FF	ROM	POLE		TO	TAL	ARM	ANGLE BETWEEN		L	DIST	ANCI	E FR	ЮМ	POL	E /	HE I O	GHT	AND	WIL	отн о)F SI	IGN		F	ROM F	POLE
ID NO.	D NO.	NO.	BY STA.	FOUNDATION ELEV.	ROAD ELEV.	ARM NO .	V/H	PLATES Y/N	SIGNAL Y/N	1	*	2	*	3	* 4	ı *	5 *	6	* LEN	RM IGTH Í	ARM M.H.	DUAL ARMS 90/270	Α	H1	W 1	В	H2	W2	С	Н3	W3	D	H4	W4	Е	H5	W5 ¹	LUMINAIR ANGLE	E 1	2	?
13M178	1	T - 6	107+91.0	**44.60'	43.83'	1	V	Y	N	32	3	44	3	56	4 58	.0 3			6	0		NA	12	2	7	48	3	3	52	3	2.5								5	36	6
13M178	2	T - 6	108+03.0	**44.40'	43.60'	1	V	Y	Ν	8	3	24	5	32	3 40	0 4			4	15		NA	12	2	6	36	3	2.5													
																																	\bot								
13M178	3	T - 6	106+71.0	**44.10'	43.87'	1	V	Y	N	35	3	45	4	54	3 6.	35			6	57		270	12	2	6	49	3	2.5					\square'						58		
					43.51'	2	V	Y	Ν	34	3	46	3	56	3 58	8 4			6	0			12	2	7	50	3	3	54	3	2.5	\square	<u> </u>						31	38	8
																						NA											└── ′							\perp	\perp
	FUTU	RE SCE	NARIO																													\square	<u> </u>							\perp	
13M178	1	T-6	107+91.0	**44.60'	43.83'	1	V	Y	N	25	5	44	3	56	4 58	.0 3			6	i0		NA	12	2	7	31	3	3	48	3	3	52	3	2.5					5	36	6
						_																										\square	└──'							\square	_
13M178	2	T - 6	108+03.0	**44.40'	43.60'	1	V	Y	N	8	3	24	5	32	3 40	0 4			4	15		NA	12	2	6	36	3	2.5	43	3	3	\square	└──'							\perp	
																_																\vdash	└──'		\vdash					<u> </u>	
13M178	3	T - 6	106+71.0	**44.10'	43.87'	1	V	Y	N	35				51		3 5				57		270	12			49	3					\square	└──'		\vdash				58	-	_
					43.51'	2	V	Y	N	34	3	46	3	56	3 58	8 4			6	0			12	2	7	27	3	3	50	3	3	54	3	2.5	\vdash				31	38	8
						_										_						NA										\vdash	└──'		\square					<u> </u>	
																																	<u> </u>								

* DENOTES NUMBED OF SECTIONS IN SIGNAL HEAD ASSEMBLY

DATE

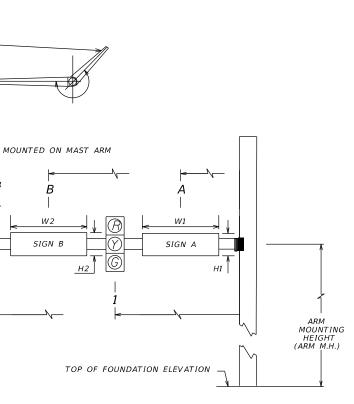
BY

REVISIONS

No.

GS

IR


10:17:56 AM

850-6094060

FLORI

6/10/2021

49282

-IN SIGN DATA TABLE, SIGN DESIGNATION (A, B, C, D, E) IS FOR POSITION REFERENCE ONLY. PLAN SHEETS AND SIGN DETAILS SHOULD BE REFERENCED FOR THE EXACT SIGNS TO BE INSTALLED ON MAST ARMS.

MAST ARM TABULATION

PW:\3658\10001573\10151274\6.0_CAD_BIM\6.2_WIP\12345615201\signals\MSSGSG01.DGN

Erie Rd. and SR 62 Improvements

HDR Project Number: 10151274

Miscellaneous Structures

1.3 Mast Arm Data Table

For: Manatee County Public Works

			FIRST	ARM	SECON	D ARM				POLE		DRILLED
STRUCTURE ID NUMBERS	POLE ID NUMBERS	DESIGNATION	ARM ID	FAA (ft.)	ARM ID	SAA (ft.)	UF (deg)	LL (deg)	POLE ID	UAA (ft.)	UB (ft.)	SHAFT ID
	POLE 1	A70/S/H-P5/S	A70/S/H	28					P5/S	22.75	19.75	**
13M178	POLE 2	A50/S/H-P3/S	A50/S/H	27.5					P3/5	22.75	19.75	**
-	POLE 3	A70/D-A70/D-P6/D	A70/D	35	A70/D	28	270		P6/D	23.25	20.25	**

NOTES:

- 1. If an entry appears in column FAA, a shorter arm is required. This is obtained by removing length from the arm tip and the arm length shortened from FA to FAA. SAA Similar.
- 2. If an entry appears in column UAA, a shorter pole is required. This is obtained by removing length from the pole tip and the pole height shortened from UA to UAA.
- 3. Work this sheet with the Signal Designer's "Mast Arm Tabulation". See "Mast Arm Tabulation" for special instructions that include non-standard Handhole location, paint color, terminal compartment requirement, and pedestrian features.
- 4. Work with Index 649-030 and 649-031.
- 5. Due to the proposed loading for Pole 1 Arm 1 the A70/S/H arm is specified to be used for satisfying design requirements with FAA = 28 ft. resulting in 60 ft. arm length. Similarly Pole 3 - Arm 2 is specified as A70/D arm with SAA = 28 ft. to satisfy design requirements.

POLE ID

NUMBERS

POLE 1

POLE 2

POLE 3

FOUNDATION NOTE:

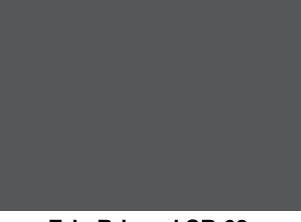
	FOUNDATIC	ON DESIGI	V PARAM	ETERS	
POLE ID NUMBERS	SOIL LAYER THICKNESS (ft.)	SOIL FRICTION ANGLE (deg)	SOIL WEIGHT (pcf) (1)	SOIL TYPE (2)	WEIGHTED AVERAGE N-VALUE (3)
POLE 1	30	28	43	SAND	9
POLE 2	30	29	43	SAND	6
POLE 3	30	29	43	SAND	12

(1) Design water table is 0 ft. below surface

No.	REVISIONS	DATE	DESIGNED BY DRAWN BY CHECKED BY	OTED RT KE CAS	FCS	HDR Engineering, Inc. 2601 Cattlemen Road Suite 400 Sarasota, FL 34232-6233	850-6094060	Manatee County	MANATEE COUNTY PUBLIC WORKS	FL. LICENSE NO. 70756	STANDARD MA DATA TA
							8:08:12 AM	6/11/2021	PW:\3658\10001573\10151274\6.0_CA	D_BIM\6.2_WIP\1234	15615201\struct\MiscStrMastArm01.dgn

SHAFT AND REINFORCEMENT											
DA (ft.)	DB (ft.)	RA	RB	RC	RD (in.)	RE	RF (in.)				
22	5	11	18	10	8	-	-				
22	4.5	11	16	10	8	-	-				
22	5	11	18	10	8	-	-				

**** SPECIAL FOUNDATION DATA TABLE**


Assumptions and Values used in design:

(2) Soil type is sand (cohesionless) or clay (cohesive) (3) This value is determined over the length of the drilled shaft 'DA'

STANDARD MAST ARM DATA TABLES

SHEET NO.

T-9

Erie Rd. and SR 62 Improvements

HDR Project Number: 10151274

Miscellaneous Structures

1.4 Pole 1

For: Manatee County Public Works

Erie Rd. and SR 62 Improvements

HDR Project Number: 10151274

Miscellaneous Structures

1.4 Pole 1

1.4.1 Geometry and Loading

For: Manatee County Public Works

FJS

Project:	Erie Rd. and SR 62 Improvements	Computed:	RT	Date:	5/26/2021
Subject:	ject: Misc. Structures			Date:	
Task:	Pole 1	Page:	1	of:	1
Job#:	850-6094060	No:			

General Input

eneral input		
Pole No.	1	
Station	107+91.00	
Offset	51.0 LT	
County	Manatee	
Wind speed	150	mph
Luminaire Orientation	N	
Signal Orientation (V or H)	V	
Arm 2 Orientation	N	
Backplates (Y or N)	Y	
Elevation below Arm 1 tip	43.83	ft
Elevation below Arm 2 tip	N	
Elevation at top of foundation	44.60	ft
Arm center to signal / sign bottom	2.83	ft
Arm connection height (min)	19.34	_ft
Arm connection height	19.75	ft
Arm connection height (max)	20.84	ft
Arm 1 length	60	ft
Arm 2 length	N	
Soil type	1	
Effective soil weight	43	pcf
Phi	28	deg.
N-blowcount	9	
Foundation offset	0.5	ft

Choose "County" from drop-down list
Basic wind speed for Manatee County is 150 per FDOT SDG, Jan. 2018, Table 2.4.1-1
Enter N for no luminaire, otherwise enter angle measured CCW from arm 1 (0, 45, 90)
V for vertical, H for horizontal
Enter N for no arm 2, otherwise enter angle between dual arms
Used in determining arm con. ht. (FDM 232 req. the use of backplates on Mast Arms)
Enter N for no arm 2
Tabulated based on input for Arm 1 Signals and Signs
Based on 17.5 ft clearance
Dimension 'UB'; Use 0.25 ft increments
Based on 19.0 ft clearance
Arm 1 is the longer arm.
Enter N for no arm 2.

0 for clay (cohesive soil), 1 for sand (cohesionless soil)

Enter initial value from 'Average N-count V2.0.xls' or as directed by geotech Distance from finish ground to top of shaft

Arm 1 Signals and Signs - Vertical Geometry Check

Signal Head	1/2 Signal	Height of	Width of	Sign	Sign	Sign Area	Sign Location	1/2 Sign
Туре	Height (ft.)	Sign Dim. (ft.)	Sign Dim. (ft).	Attachment	Location	Check	Check	Height (ft.)
5-Doghouse	2.25	2.00	7.00	n/a	outside roadway	n/a	n/a	0
4	2.83	3.00	3.00	n/a	over roadway	n/a	n/a	1.5
3	2.25	3.00	2.50	n/a	over roadway	n/a	n/a	1.5
n/a	0.00	0.00	0.00	n/a	n/a	n/a	n/a	0
n/a	0.00	0.00	0.00	n/a	n/a	n/a	n/a	0

Arm 2 Signals and Signs - Vertical Geometry Check

	Signal Head	1/2 Signal	Height of	Width of	Sign	Sign	Sign Area	Sign Location	1/2 Sign
	Туре	Height (ft.)	Sign Dim. (ft.)	Sign Dim. (ft).	Attachment	Location	Check	Check	Height (ft.)
[n/a	0.00	0.00	0.00	n/a	n/a	n/a	n/a	0
	n/a	0.00	0.00	0.00	n/a	n/a	n/a	n/a	0
[n/a	0.00	0.00	0.00	n/a	n/a	n/a	n/a	0
	n/a	0.00	0.00	0.00	n/a	n/a	n/a	n/a	0
[n/a	0.00	0.00	0.00	n/a	n/a	n/a	n/a	0

Due to proposed loading the arm and pole size are increased to meet the fatigue stress range for galloping based on Mathcad Analysis. Information for Standard Mast Arm Assemblies Data Table

Analysis Requirement				formation for St	andard Mast Arr	n Assemblies Data	
Mathcad Analysis Required =	Yes			Arm 1 Type =	Heavy Duty	Arm 2 Type =	n/a
The following criteria are not satisfied:	1 Effective soil w	eight < 50 pcf		Designation	A60/S/H - P4/S	A70/S/H-P5/S	
	2 Friction angle <	30 deg		Arm 1 ID	A60/S/H	A70/S/H	
	3 N-value < 15			FAA (ft)	28		
				Arm 2 ID		Leave blank in data	a table
				SAA (ft)		Leave blank in data	a table
				UF (deg)		Leave blank in data	a table
				LL (deg)		Leave blank in data	a table
				Pole ID	P4/S	P5/S	
Pay Item Number				UAA (ft)	22.75		
649-2A-BB Steel Mast Arm Assembly	у			UB (ft)	19.75		
Operation =	(Furnish & Install)	Choose correct "O	peration" from dr	op-down list		
AA =	1		_				
Arm 1 =	60	Arm length use	ed to determine Pay	ltem Number, Se	e SPI for Arm Co	mbinations	
Arm 2 =	Single	If Arm 2 = N or	Arm 2 Orientation =	N, then 'Single'	will be displayed		
BB =	10						
Pay Item Number is	649-21-10	Provide to Sigr	nal Designer for veri	ication	Arm 1 remains	at 60' length-No ch	ange to pay Item.

Project	Erie Rd. and SR 62 Improvements	Computed: RT	Date: 05/26/2021
Subject	t: Misc. Structures - Pole 1	Checked:	Date:
Task:	Design Approach	Page:	of:
Job #:	850-6094060	No:	

Signal Inputs:

The design accounts for MVDS devices as a 14" X 14" sign.

FDOT's 'mastarm-index-649-030-v1-4.xlsx' program limits the total number of signal / sign inputs to 10, and does not have an option for 1-section signal head; so the devices are accounted for by using a 14" X 14" sign.

FDOT's 'MastArmV1.2.xmcd' limits the number of sign inputs to 5, and does not have an option for 1-section signal head; so the the devices are accounted for by using a 14" X 14" sign.

Based on the inputs being limited to 5 signs in FDOT's 'MastArmV1.2.xmcd', the MVDS at some locations are combined with other signs or other MVDS and entered as a single location using the centroid as the offset distance from the pole upright. The following changes are made:

1. Sign A; Area=14sf; Distance=12ft is combined with MVDS Location 1 Area=1.4 sf; Distance=5ft. The combined sign Area = 15.4sf; Distance = 12ft (Weighted Average rounded up).

2. MVDS Location 2; Area=1.4sf; Distance=36ft is combined with MVDS Location 3 Area=1.4 sf; Distance=40ft. The combined sign Area = 2.8sf; Distance = 38ft (Weighted Average).

Analysis:

1. FDOT's 'MastArmV1.2.xmcd' is used only to perform the foundation analysis. Other design sections are collapsed as individual components of the Mast Arm do not require detailed design based on the results from FDOT's 'mastarm-index-649-030-v1-4.xlsx'.

2. The signal and sign configuration for "Future Scenario" is chosen for foundation design due to higher moment demand as indicated by FDOT's 'mastarm-index-649-030-v1-4.xlsx'.

	Design Aid for FDOT Standard Mast Arm Assemblies (Standard Plans Index 649-030)								J	
Mast Arm Assembly Information				Arm 1 L	ength, Signal/	Sign Location	and Size			
Wind Speed	Signal\Sign	Signal\Sign	Signal\Sign	Signal\Sign	Signal\Sign	Signal\Sign	Signal\Sign	Signal\Sign	Signal\Sign	Signal\Sig
○ 130 mph ● 150 mph ○ 170 mph	#10	#9	#8	#7	#6	#5	#4	#3	#2	#1
Dist from Pole (ft.)			52	48	38	12	58	56	44	32
Signal Orientation	None	None	None	None	None	None	None	None	None	None
Vertical 30	B Head	B Head	🕞 Head	B Head	B Head	🕞 Head	🕞 Head	→ Head	Head	💽 Head
Horizontal 40	4 Head	Head	🗍 Head	4 Head	4 Head	🗍 Head	4 Head	()4 Head	Head	4 Head
50 Back Plates? 60	→ Head	→ Head	Head	∭ Head	€ Head	5 Head	∭ Head	∫ b Head	→ Head	 ∭ Head
() Yes 70	 Sign		€ €ign	Sign	Sign	 €_\$ign	Sign	 €ign	Sign	Sign
		bigit	Jigh	July	C	O rigit	Congri		<u> </u>	O sign
Luminaire? Sign Width (in.)			30	36	20	84				
Sign Height (in.)			36	36	20	26				
		0.0	7.5	9.0	2.8	15.4	9.8	12.3	9.8	9.8
Area (SF)	0.0	0.0	7.5	9.0	2.0	15.4	9.8	12.5	5.0	5.0
Area (SF) M _{wl} . (kip*ft)	0.0	0	26	29	7	12	38	46	29	21
	0	0	26		7	12	38	-		
M _{wl} . (kip*ft)	0	0	26 45 5ign 10 Sigr	29	7 30 Signal/Sign 8	12 25 Signal/Sign 7	38 38 20 Signal/Sig	46		
M _{wl} . (kip*ft)	0	0	26 45 5ign 10 Sigr	29	7 30 Signal/Sign 8	12 25 Signal/Sign 7	38 38 20 Signal/Sig	46		
M _{wl} . (kip*ft)	0 60 5 Signal/Sign	0	26 45 Sign 10 Sigr	29	7 30 Signal/Sign 8	12 25 Signal/Sign 7	38 38 20 Signal/Sig	46		21
80 75 70 65	0 	0	26 45 Sign 10 Sigr Sign 4 Sigr Arm 1	29 40 35 hal/Sign 9 hal/Sign 3	7 30 Signal/Sign 8 Signal/Sign 2	12 25 Signal/Sign 7 Signal/Sign 1	38 38 20 Signal/Sig	46 +- 10 m 6 Mast Arr	29	21
Arm 1 Length (ft)	0 60 Signal/Sign 60	O Signal/S Signal/S	26 3 3 4 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	29 29 40 35 hal/Sign 9 hal/Sign 3 Loads	7 Signal/Sign 8 Signal/Sign 2 Regular 62	12 25 Signal/Sign 7 Signal/Sign 1 Heavy Duty	38 38 20 Signal/Sig	46 +- 10 +- 	29 	21
Image: Standard Index 17743	0 60 60 60 60 60 60 60 60 8 8 8 8 8 8 8 8 8 8 8 8 8	0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	26 3ign 10 Sigr 5ign 4 Sigr Arm 1 1.1*Ar Arm	29 29 40 35 hal/Sign 9 hal/Sign 3 Loads rm M _{dl} (kip*ft)	7 Signal/Sign 8 Signal/Sign 2 Regular 62 64	12 25 Signal/Sign 7 Signal/Sign 1 Heavy Duty 68	38 38 20 Signal/Sig	46 +- 10 +- 	29 J	21
Image: Note (er.) Mwi. (kip*ft) Mwi. (kip*ft) 80 75 70 65 Arm 1 Length (ft) Design Standard Index 17743 Dia. at Arm Base (in)	0 	0 Signal/S 5 Signal/S Heavy Duty 16	26	29 29 40 35 hal/Sign 9 1 Loads rm M _{dl} (kip*ft) m M _{wl} (kip*ft)	7 Signal/Sign 8 Signal/Sign 2 Regular 62 64	12 25 Signal/Sign 7 Signal/Sign 1 Heavy Duty 68 71	38 38 20 Signal/Sig Pole	46 46 10 10 10 10 46 Mast Arr 9 A6	29 J	21

Notes:

Run the FDOT Mast Arm Mathcad Program for more accurate results.

For new designs, always design with backplates.

Mast Arm Assembly ID consists of three parts for a single arm and 4 parts for a double Arm. Each part is separated by "-".

Part 1 is Arm 1: Axx/y/z, where xx is the arm length, y is "S" for single arm or "D" for double arms and z is "H" for heavy duty arm or blank for regular arm.

Part 2 is Arm 2 and has the same nomenclature as the 1st arm. For single arm assemblies, Part 2 is omitted.

Part 3 is the Pole: Px/y/z where x is the pole ID, y is "S" for single arm or "D" for double arms and z is "L" for luminaire or blank for no luminaire.

Part 4 is the Drilled Shaft: DS/xx/y where xx is the shaft length and y is the shaft diameter.

Arm to pole connection is at 22 ft.

No foundation offset is considered. If the top of drilled shaft > 2 feet above ground, run the Mathcad Mast Arm Program.

Design Aid for FDOT Standard Mast Arm Assemblies (Standard Plans Index 649-030)										
FUTURE SCENARIO										
Mast Arm Assembly Information Arm 1 Length, Signal/Sign Location and Size										
Wind Speed 130 mph () 170 mph	Signal\Sign #10	Signal\Sign #9	Signal\Sign #8	Signal\Sign #7	Signal\Sign #6	Signal\Sign #5	Signal\Sign #4	Signal\Sign #3	Signal\Sign #2	Signal\Sigr #1
Dist from Pole (ft.)		52	48	38	31	12	58	56	44	25
Signal Orientation Overtical Horizontal Back Plates? Ores No	None Head Head Head Gign	None Head Head Head Sign	None Head Head Head Sign	None Head Head Head Sign	None Head Head Head Gign	None Head Head Head ign	None Head Head Head Jign	None Head Head Head S Head Sign	None) Head Head) Head) Head) Jign	None Head Head Head
Luminaire? Sign Width (in.)		30	36	20	36	84				
Sign Height (in.)		36	36	20	36	26				
Area (SF)	0.0	7.5	9.0	2.8	9.0	15.4	9.8	12.3	9.8	14.8
M _{wl} . (kip*ft)	0	26	29	7	19	12	38	46	29	25
80 75 70 65	60 5	5	45	40 35		25	20 15	+ 10	 5 (-5
Arm Signal/Sign 10 Signal/Sign 9 Signal/Sign 8 Signal/Sign 7 Signal/Sign 6 Signal/Sign 5 Signal/Sign 4 Signal/Sign 3 Signal/Sign 2 Signal/Sign 1 Pole										
Arm 1 Length (ft)	60			. Loads	Regular	Heavy Duty		Mast Arr	n Assembly D	esignation
Design Standard Index 17743	<u> </u>	Heavy Duty		m M _{dl} (kip*ft)		68)ne Arm Assem l	
Dia. at Arm Base (in)	15	16		m M _{wl} (kip*ft)		71		A60,	/S/H-P4/S-DS/1	6/4.5
Wall Thickness (in)	0.3750	0.3750	1.1*Sign/Sig	gnal M _{dl} (kip*ft)	1	.8				

Analysis requires A70/S/H-P5/S

Notes:

Run the FDOT Mast Arm Mathcad Program for more accurate results.

300

For new designs, always design with backplates.

Resistance $(M_r = \phi M_n)$ (kip*ft)

Mast Arm Assembly ID consists of three parts for a single arm and 4 parts for a double Arm. Each part is separated by "-".

Part 1 is Arm 1: Axx/y/z, where xx is the arm length, y is "S" for single arm or "D" for double arms and z is "H" for heavy duty arm or blank for regular arm.

Sign/Signal M_{wl} (kip*ft)

Total Moment (Mextreme

Part 2 is Arm 2 and has the same nomenclature as the 1st arm. For single arm assemblies, Part 2 is omitted.

340

Part 3 is the Pole: Px/y/z where x is the pole ID, y is "S" for single arm or "D" for double arms and z is "L" for luminaire or blank for no luminaire.

Part 4 is the Drilled Shaft: DS/xx/y where xx is the shaft length and y is the shaft diameter.

Arm to pole connection is at 22 ft.

No foundation offset is considered. If the top of drilled shaft > 2 feet above ground, run the Mathcad Mast Arm Program.

231

314

305

Erie Rd. and SR 62 Improvements

HDR Project Number: 10151274

Miscellaneous Structures

1.4 Pole 1

1.4.2 Average N-count

For: Manatee County Public Works

Project: Erie Rd and SR-62 Improvement	Computed:	RT	Date: 5/26/2021
Subject: Misc. Structures	Checked:		Date:
Task: Average N Count	Page:	1	of: 1
Job #: 850-6094060			

Boring Details							
Dept	N-count						
Total	Step	N-COUIII					
2	2	7					
4	2	3					
6	2	2					
8	2	4					
10	2	3					
12.5	2.5	4					
15	2.5	11					
17.5	2.5	14					
20	2.5	18					
22.5	2.5	13					
25	2.5	28					
27.5	2.5	3					
30	2.5	5					
Average	N-count	9.27					
Initial De	sign N _{AVG}	11.00					

Pole #	Pole 1		
Boring #	B-2		
Station	107+91.00/51.0 LT		
N-multiplier	1.2		
*Automatic Hammer Used; therefore N-multiplier = 1.24			

Notes: (Calculate N-value for drilled shaft)

(Mathcad First Output)

1- Automatic hammer N value multiplier and Boring details (soil layers thicknesses and number of counts) should be entered as inputs.

2- Initial design N value from "Boring Details" table is used to determine drilled shaft lengths in Mathcad.

3- Drilled shaft length output from the Mathcad file should be entered in the table below.

4- Final design N value for each shaft based on the average of layers where drilled shaft is surrounded with will be calculated in the "Drilled Shaft Details" table.

5- If New N value is smaller than original value, Mathcad file should be updated with new N value to calculate final drilled shaft length.

Drilled Shaft Length After Initial Analysis	s
19.5	

Drilled Shaft Details Depth (ft) N-count Total Step 2 2 7 4 2 3 6 2 2 8 2 4 10 2 3 12.5 2.5 4 15 2.5 11 17.5 2.5 14 20 2.5 18 ---------_ _ -Average N-count 7.78 Final Design N_{AVG} 9.00 Update N_{AVG}? (Y/N) YES

Final Drilled Shaft Length	
22	(Mathcad Final Output)

Erie Rd. and SR 62 Improvements

HDR Project Number: 10151274

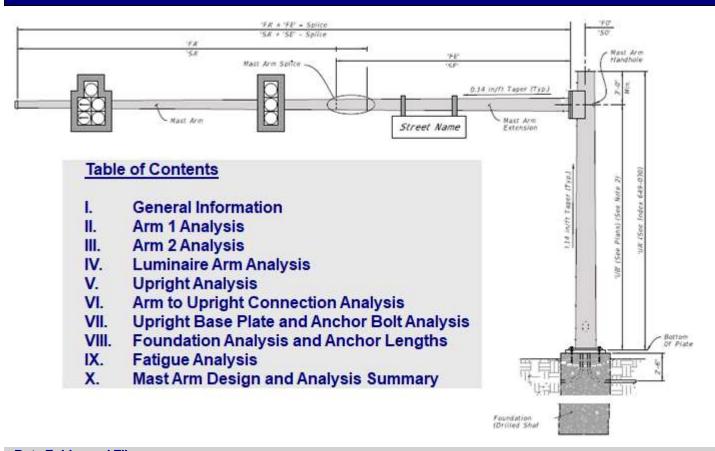
Miscellaneous Structures

1.4 Pole 1

1.4.3 Foundation Analysis

For: Manatee County Public Works

FDOT Mast Arm Traffic Signal Support Analysis Program V1.2


This program works in conjunction with FDOT Mast Arm Standard Plans 649-030 & 649-031.

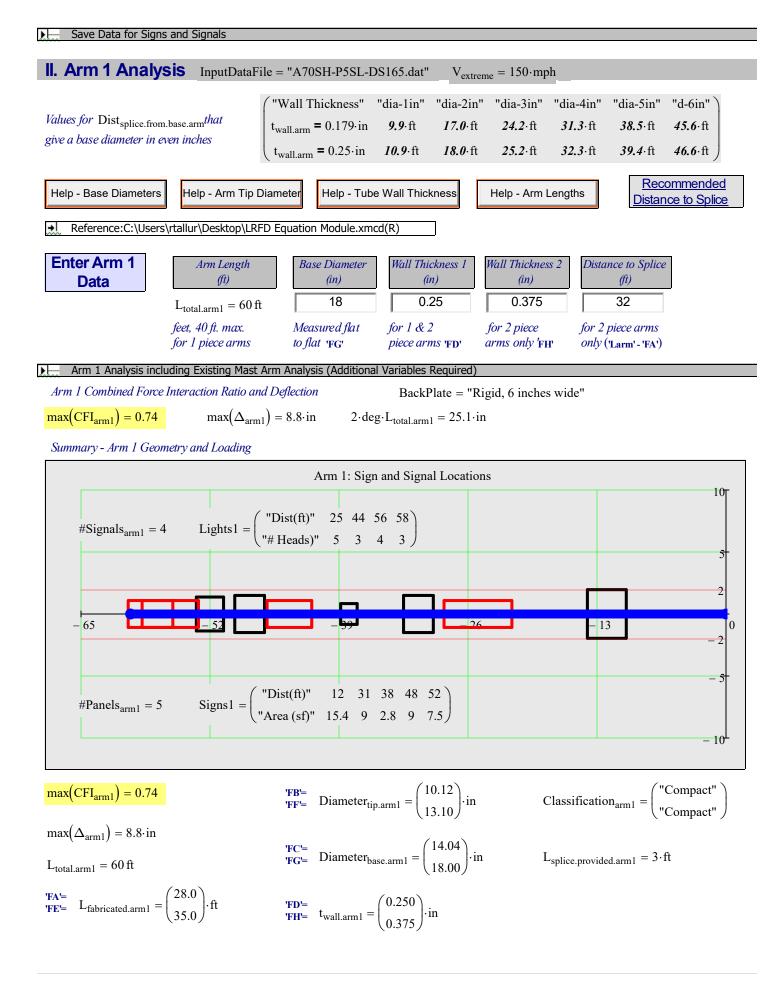
References: AASHTO LRFD Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals (LRFDLTS). FDOT Structures Manual Volume 3 (SM V3). AISC Steel Construction Manual

© 2020 Florida Department of Transportation

For more information see Reference.xmcd and Changes.xmcd.

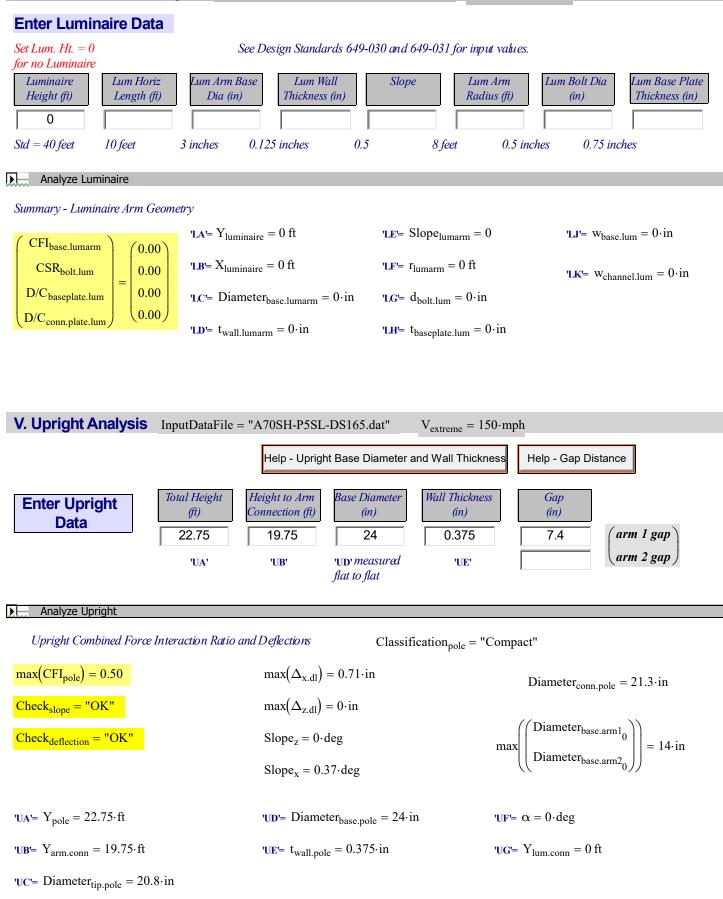
Data Folder and Files

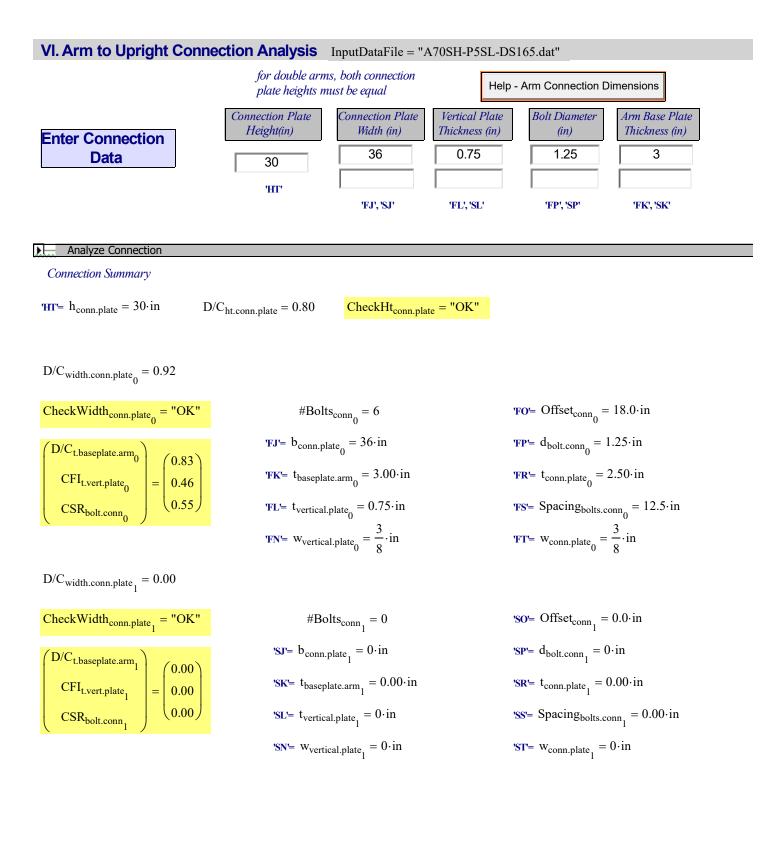
Data Files Folder	Change Folder
C:\Users\rtallur\Desktop\Data\	

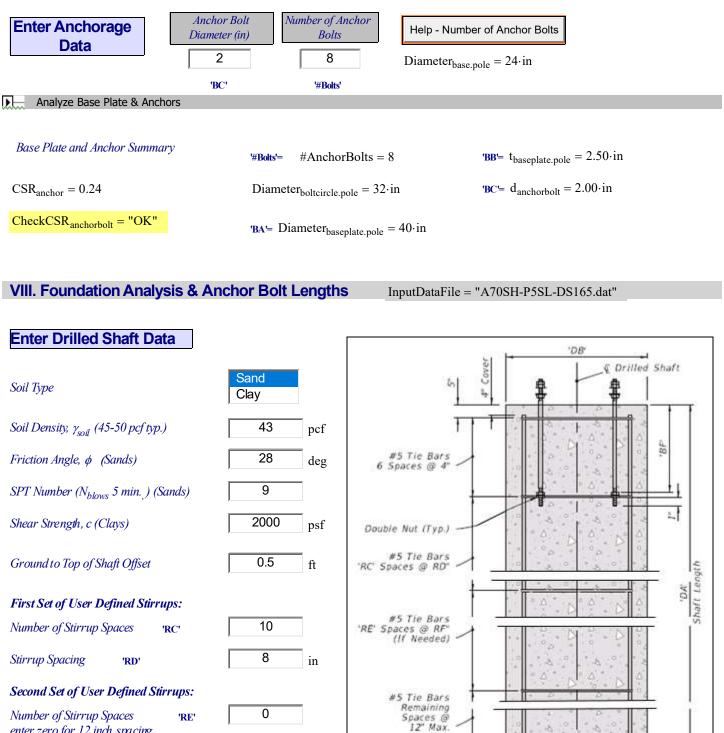

<u>Required</u> - Open Existing Data File. To save New Data Files, enter data variables at the end of Section IX.

A70SH-P5SL-DS165.dat	Refresh List
	Open File

I. General Information and Sign & Signal Data


Enter Proje	ct Informatic	on						
Project Name	Erie Rd a	nd SR 62 Im	provements	;				
Project No.	850-6094	4060						
Designed by	RT		1	Date	5/27/2021			
Checked by				Date				
Signal Name	Pole 1	00/51.0 LT						
Station/Offset	107101.0	0/01.0 ET						
Enter Wind	Speed							
Design Wind Sp	peed 150	mph			Extren	ve Event Wind S	Speed	SDG Wind Speeds <u>by County</u>
Enter Arm	Lengths, Sig	gnal and S	ign Data					
Arm 1					Arm 2 S	et Arm 2 Lengt	h = 0 for sing	le arm Mast Arms
Arm 1 Length	60	Reset Arr	n 1 Data		Arm 2 Length	0	Reset	Arm 2 Data
Arm1 Signal Number	Distance to Signal (ft)	Number of Heads			Arm2 Signal Number	Distance to Signal (ft)	Number of Heads	
1	25	5			1			
2	44	3			2			
3	56	4			3			
4	58	3			4			
5					5			
6					6			
7					7			
8					8			
9					9			
10					10			
Arm 1 Sign Pan	els				Arm 2 Sign Po	anels		
Arm1 Sign Panel Number	Distance to Panel (ft)	Panel Area (sf)			Arm2 Sign Panel Number	Distance to Panel (ft)	Panel Area (sf)	
1	12	15.4			1			
2	31	9			2			
3	38	2.8			3			


 7.5


III. Arm 2 Analysis	InputDataFile = "A	A70SH-P5SL-DS165.	dat" V _{extreme} =	150·mph		
Dist _{splice.from.base.arm} values	("Wall Thickness"	$\Delta dia = 1 \cdot in \Delta dia =$	$2 \cdot in \Delta dia = 3 \cdot in$	$\Delta dia = 4 \cdot in$	$\Delta dia = 5 \cdot in$	$\Delta dia = 6 \cdot in$
hat give a base diameter	$t_{wall.arm} = 0.179 \cdot in$	9.9 ft 17.0	•ft 24.2 •ft	<i>31.3</i> ft	38.5 ft	45.6 ft
in even inches	$t_{wall.arm} = 0.25 \cdot in$	10.9 ft 18.0	•ft 25.2 •ft	<i>32.3</i> ⋅ ft	39.4 · ft	46.6 ∙ft
	elp - Arm Tip Diameter n Length (ft) (in			rm Lengths 2 Distance to (ft)	Distance	nmended to Splice
L _{tot}	$a_{1.arm2} = 0 \text{ ft}$ t, 40 ft. max. Measure t i piece arms to flat 's Existing Mast Arm Analys	G' piece arms	for 2 piece SD' arms only SI	for 2 pie for 2 pie f' only ('La	ece arms urm'- 'SA')	
Arm 2 Combined Force Intera						
$\max(\text{CFI}_{\text{arm2}}) = 0.00$	BackPlate = "Rigid, 6	inches wide"				
Summary - Arm 2 Geometry a	und Loading ⁿ	$\max(\Delta_{\rm arm2}) = 0.0 \cdot in$	2·de	eg·L _{total.arm2} =	= 0∙in	
	A	rm 2: Sign and Signal	Locations			
10 #Signals _{arm2} = 0	Lights2 = ("Dist(f")"""""""""""""""""""""""""""""""""""	t)" 0 0 0 0 0 (ls)" 0 0 0 0 0 ($\left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$			
$= 10 $ $= -10 $ $- (L_{total.arm2} + 5 \cdot ft)$	Signs2 = $\begin{pmatrix} "Dist(ffree) \\ "Area (state) \\ "Area (state) \\ "Area (state) \\ "Area (state) \\ "Dist(ffree) \\ "Dis$	$ \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} $				0
(10141.41112)						
$\frac{\max(\text{CFI}_{\text{arm2}}) = 0.00}{\max(\Delta_{\text{arm2}}) = 0.0 \cdot \text{in}}$	'SB'= 'SF'= Diameter _{ti}	$_{\text{p.arm2}} = \begin{pmatrix} 0.00\\ 0.00 \end{pmatrix} \cdot \text{in}$	(Classification _a	$_{\rm rm2} = \begin{pmatrix} "\rm Comp \\ "\rm N/A \end{pmatrix}$	oact") N")
$L_{total.arm2} = 0 \text{ ft}$	'SC'= 'SG'= Diamete:	$\hat{r}_{\text{base.arm2}} = \begin{pmatrix} 0.00\\ 0.00 \end{pmatrix} \cdot \text{in}$	1	- ∽splice.provided.a	$_{\rm rm2} = 0 \cdot {\rm ft}$	
'SA'= $L_{\text{fabricated.arm2}} = \begin{pmatrix} 0.0 \\ 0.0 \end{pmatrix}$	ft 'SD'='SH'= twall.arm2 =	$\begin{pmatrix} 0.000\\ 0.000 \end{pmatrix}$ in				

IV. Luminaire Arm Analysis InputDataFile = "A70SH-P5SL-DS165.dat" $V_{extreme} = 150 \cdot mph$

VII. Upright Base Plate & Anchor Bolt Analysis InputDataFile = "A70SH-P5SL-DS165.dat"

enter zero for 12 inch spacing Stirrup Spacing 'RF' enter zero for 12 inch spacing

Stirrup Bar Size, use #5 for all Standard Shafts

Analyze Foundation

•

0

0 in

#5 #6

кŦ

'RB' # "RA' Bars

Equally Spaced

ELEVATION

inpLuminaire :	<pre>(inpYLuminaire inpXLuminaire inpLumBaseDia inpLumWallThk inpLumSlope inpLumRadius inpLumBoltDia inptLumBasePlate</pre>	outLuminaire := inpLuminaire
inpUpright :=	(inpUprightTotHeight inpUprightHtToConn inpUprightBaseDia inpUprightWallThk inpAnchorBoltDia inpNumOfAnchorBolts inpConnPlateHeight	outUpright := inpUpright

 $inpConn := \begin{pmatrix} inpArm1Gap & inpArm1VertPlateThk & inpArm1BoltDia & inpArm1BasePlateThk & inpArm1BasePlateWidth \\ inpArm2Gap & inpArm2VertPlateThk & inpArm2BoltDia & inpArm2BasePlateThk & inpArm2BasePlateWidth \end{pmatrix}$

outConn := inpConn

inpShaft :=	(num2str(inpSoilType) inpSoilDensity inpFrictionAngle inpNumBlows inpShearStrength "0.0" "0.0" "0.0" inpShaftOffset inpNumSpacesB inpStirrupSpacingB	outShaft := inpShaft

Foundation Data

SoilType := inpSoilType = 0

 $\gamma_{soil} := str2num(inpSoilDensity) \cdot pcf = 43 \cdot pcf$

```
\phi_{soil} := str2num(inpFrictionAngle) \cdot deg = 28 \cdot deg
```

 $N_{blows} := str2num(inpNumBlows) = 9$

 $c_{soil} := str2num(inpShearStrength) \cdot psf = 2000 \cdot psf$

Offset := $str2num(inpShaftOffset) \cdot ft = 0.5 ft$

NumSpacesStirrupsB := str2num(inpNumSpacesB) = 10 $s_{v_1} := str2num(inpStirrupSpacingB) \cdot in = 8 \cdot in$ NumSpacesStirrupsC := str2num(inpNumSpacesC) = 0 $s_{v_2} := str2num(inpStirrupSpacingC) \cdot in = 0 \cdot in$ StirrupBarSize := inpStirrupSize = 5 $\gamma_{water} := 62.4 \cdot pcf = 62.4 \cdot pcf$ (not used)

Foundation Design References

LRFD = AASHTO LRFD Bridge Design Specifications <u>SDG = FDOT Structures Design Guidelines</u> ACI = ACI 318 Structural Concrete Building Code

Applied Loads

(From Arm1 Design)

<u>SM V3 = FDOT Structures Manual Volume 3</u>

Spec = FDOT Standard Specifications

UF Report = FDOT/University of Florida Report BD545 RPWO #54

 $V_{extreme} = 150 \cdot mph$

(from Base Plate Design)

#AnchorBolts = 8

 $d_{anchorbolt} = 2 \cdot in$

 $Diameter_{boltcircle.pole} = 32 \cdot in$

 $T_{u.anchor} = 40.6 \cdot kip$

(from Upright Design)

$$M_{x,polebase} = \begin{pmatrix} 0\\187.5\\187.5 \end{pmatrix} \cdot kip \cdot ft$$
$$M_{y,polebase} = \begin{pmatrix} 310.7\\0\\310.7 \end{pmatrix} \cdot kip \cdot ft$$
$$\begin{pmatrix} 0\\ \end{pmatrix}$$

$$\mathbf{M}_{z.\text{polebase}} = \begin{pmatrix} \mathbf{0} \\ 107.7 \\ 107.7 \end{pmatrix} \cdot \mathbf{kip} \cdot \mathbf{ft}$$

LoadCaseT = 0 LoadCas

$$V_{x.polebase} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \cdot kip \qquad AxialForce_{polebase} = \begin{pmatrix} 5.9 \\ 5.9 \\ 5.9 \end{pmatrix} \cdot kip \qquad V_{z.polebase} = \begin{pmatrix} 0 \\ 10 \\ 10 \end{pmatrix} \cdot kip$$

Foundation Diameter

 $Diameter_{shaft} := Diameter_{boltcircle.pole} + 12 \cdot in + 12 \cdot in = 4.67 \, ft$

round shaft diameter up to the nearest half foot dimension to accommodate available coring equipment

Diameter_{shaft} := Ceil
$$\left(\text{Diameter}_{\text{shaft}}, \frac{1}{2} \cdot \text{ft} \right) = 5 \text{ ft}$$

 $Diameter_{shaft.custom} := 5 \cdot ft$

 $\underbrace{\text{Diameter}_{shaft}:= if[(\text{Diameter}_{shaft.custom} > 0 \cdot ft), \text{Diameter}_{shaft.custom}, \text{Diameter}_{shaft}] = 1.5$

b:= Diameter_{shaft}

Axial

Offset

sheft length

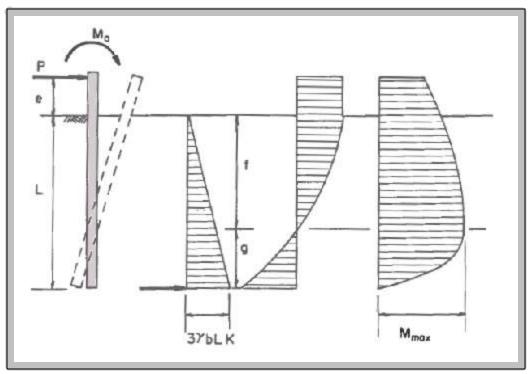
Torsion

M.X

- X

Shaft Depth Required to Resist Overturning

the following calculations are consistent with FDOT's Drilled Shaft Program V1.1


$$\phi_{ot} := 0.6$$
 SM V3 13.6 Offset = 0.5 ft vertical distance between top of foundation and ground line

$$M_{u} := \sqrt{\left(M_{x.polebase}_{LoadCaseOT}\right)^{2} + \left(M_{z.polebase}_{LoadCaseOT}\right)^{2}} = 216.3 \cdot kip \cdot ft$$

$$P_{u} := \sqrt{\left(V_{x.polebase}_{LoadCaseOT}\right)^{2} + \left(V_{z.polebase}_{LoadCaseOT}\right)^{2}} = 10.04 \cdot kip$$

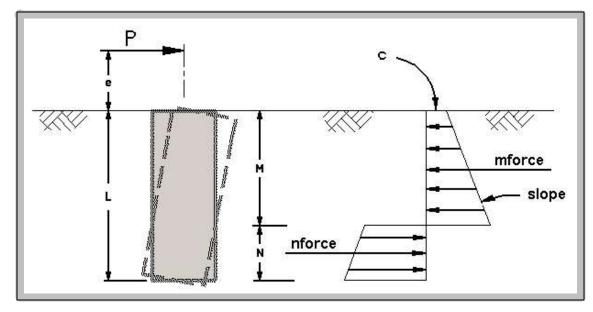
$$T_u := M_{y.polebase}_{LoadCaseT} = 310.7 \cdot kip \cdot ft$$

short free-head pile in <u>cohesionless soil</u> using Broms method

Deflection, load, shear and moment diagram for a short pile in cohesionless soil that is unrestrained against rotation.

$$K_{p} := \tan\left(45 \cdot \deg + \frac{\Phi_{soil}}{2}\right)^{2} = 2.8 \qquad e_{sand} := \text{Offset} = 0.5 \text{ ft}$$

$$Guess \text{ value} \qquad L_{otSand} := 8 \cdot \text{ft}$$


$$Given \qquad P_{u} \cdot \left(e_{sand} + L_{otSand}\right) + M_{u} = \phi_{ot} \cdot \left[\left(3 \cdot \gamma_{soil} \cdot b \cdot L_{otSand} \cdot K_{p}\right) \cdot \left(\frac{1}{2} \cdot L_{otSand}\right) \cdot \left(\frac{1}{3} \cdot L_{otSand}\right)\right]$$

 $L_{otSand} := Find(L_{otSand}) = 12.5 ft$

$$L_{\text{votSand}} := \operatorname{ceil}\left(\frac{L_{\text{otSand}}}{\mathrm{ft}}\right) \cdot \mathrm{ft} = 13 \, \mathrm{ft} \qquad (round up to nextfoot)$$

$$D/C_{otSand} \coloneqq \frac{M_u + P_u \cdot (e_{sand} + L_{otSand})}{\frac{(\phi_{ot}) \cdot \gamma_{soil} \cdot b \cdot L_{otSand}^3 \cdot K_p}{2}} = 0.9$$

short free-head pile in <u>cohesive soil</u> using Modified Broms method for L < 3b (see reference file for derivation)

Deflection, load, shear and moment diagram for a short pile in cohesive soil that is unrestrained against rotation.

$$c_{\text{soil}} := \text{if}\left[\left(c_{\text{soil}} = 0 \cdot \text{ksf}\right), 0.1 \cdot \text{ksf}, c_{\text{soil}}\right] = 2 \cdot \text{ksf} \qquad c_{\text{soil}} = 2000 \cdot \text{psf}$$

Slope:=
$$8 \cdot \frac{c_{soil}}{3 \cdot b} = 1.1 \cdot \frac{kip}{ft^3}$$
 $e_{clay} := \frac{M_u}{P_u} + Offset = 22 \text{ ft}$

 $nforce(M, N) := \left[Slope \cdot (2 \cdot M + N) + 2 \cdot c_{soil} \right] \cdot N \cdot \frac{b}{2} \qquad mforce(M) := \left(2 \cdot c_{soil} + M \cdot Slope \right) \cdot M \cdot \frac{b}{2}$

$$m_arm(M) := e_{clay} + \frac{M}{3} \cdot \frac{2 \cdot (M \cdot Slope + c_{soil}) + c_{soil}}{M \cdot Slope + 2 \cdot c_{soil}}$$

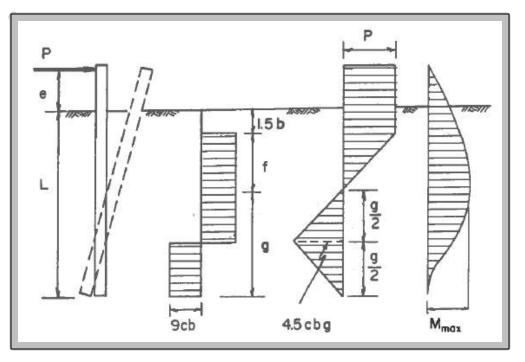
$$n_arm(M,N) := e_{clay} + M + \frac{N}{3} \cdot \frac{2 \cdot (N \cdot Slope + M \cdot Slope + c_{soil}) + (M \cdot Slope + c_{soil})}{Slope \cdot (2 \cdot M + N) + 2 \cdot c_{soil}}$$

Guess value

 $M := 4.0 \cdot ft \qquad \qquad \underset{\text{M}}{\text{N}} := 4.0 \cdot ft$

Given

 $P_u + \phi_{ot} \cdot nforce(M, N) = \phi_{ot} \cdot mforce(M)$


$$\begin{pmatrix} M \\ N \\ N \end{pmatrix} := Find(M, N) \qquad \qquad L_{ot1Clay} := M + N = 8.1 \text{ ft}$$

MastArmV1.2.xmcd

 $mforce(M) \cdot m_arm(M) = nforce(M, N) \cdot n_arm(M, N)$

$$L_{\text{MAXWORKW}} = \operatorname{ceil}\left(\frac{L_{ot1Clay}}{ft}\right) \cdot ft = 9 \ ft \qquad (round up \ to \ nextfoot)$$

short free-head pile in <u>cohesive soil</u> using Regular Broms method for L > 3b

Deflection, load, shear and moment diagram for a short pile in cohesive soil that is unrestrained against rotation. M_{max.clay} equation is derived from the integration of the upper part of the shear diagram to the point of zero shear.

$$f := \frac{P_u}{\phi_{ot} \cdot 9 \cdot c_{soil} \cdot b} = 0.2 \, ft$$

 $M_{max.clay} := P_u \cdot \left(e_{clay} + 1.5 \cdot b + 0.5 \cdot f \right) = 297.5 \cdot kip \cdot ft$

$$g := \sqrt{\frac{M_{max.clay}}{2.25 \cdot \varphi_{ot} \cdot c_{soil} \cdot b}} = 4.7 \, \text{ft}$$

 $L_{ot2Clay} := (1.5 \cdot b + f + g) = 12.4 \text{ ft}$

$$L_{\text{ot2Clay}} := \text{ceil}\left(\frac{L_{\text{ot2Clay}}}{\text{ft}}\right) \cdot \text{ft} = 13 \text{ ft}$$

 $L_{otClay} \coloneqq if\left[\left(L_{ot1Clay} < 3 \cdot b\right), L_{ot1Clay}, L_{ot2Clay}\right] = 2.7$

 $L_{reqdOT} \coloneqq if \left[(SoilType = 0), L_{otSand}, L_{otClay} \right]$

 $L_{reqdOT} = 13 \text{ ft}$

(round up to next foot)

(If $L_{ot} < 3b$, use Modified Broms method)

required shaft embedment depth to resist overturning

$\phi_{tor} := 1.0$ **SM V3 13.6**

short free-head pile in cohesionless soil

NOTE: ω_{fdot} *is based upon concrete soil interaction. This tors ion methodology is not to be used with permanent casing.*

 $N_{blows} = 9$

$$\omega_{fdot} \coloneqq if\left[\left(N_{blows} < 5\right), 0, if\left[\left(N_{blows} \ge 15\right), 1.5, 1.5, \frac{N_{blows}}{15}\right]\right] = 0.9$$

load transfer ratio, If 5<N<15, ω_{fdot} is

SM Vol-3 13.6

0 - Sand

1 - Clay

reduced by a factor of
$$\frac{N_{blows}}{15}$$

Guess value Ltors

 $L_{torSand} := L_{reqdOT} = 13 \text{ ft}$

Given
$$T_u = \phi_{tor} \cdot \left[\left(\pi \cdot b \cdot L_{torSand} \right) \cdot \left(\gamma_{soil} \cdot \frac{L_{torSand}}{2} \right) \cdot \left(\omega_{fdot} \right) \cdot \frac{b}{2} \right]$$

$$L_{torSand} := Find(L_{torSand}) = 20.2 ft$$

$$L_{\text{torSand}} := \operatorname{ceil}\left(\frac{L_{\text{torSand}}}{\operatorname{ft}}\right) \cdot \operatorname{ft} = 21 \operatorname{ft} \qquad (round up to nextfoot)$$

short free-head pile in cohesive soil

CohesionFactor := 0.55

 $f_{se} := CohesionFactor \cdot c_{soil} = 1.1 \cdot ksf$

Guess value

 $L_{torClay} := L_{reqdOT}$

Given
$$T_u = \phi_{tor} \cdot \left[f_{se} \cdot (\pi \cdot b) \cdot \left(L_{torClay} - 1.5 \cdot ft \right) \cdot \frac{b}{2} \right]$$

$$L_{torClay} := Find(L_{torClay}) = 8.7 \, \text{ft}$$

$$L_{\text{torClay}} := \operatorname{ceil}\left(\frac{L_{\text{torClay}}}{\mathrm{ft}}\right) \cdot \mathrm{ft} = 9 \ \mathrm{ft} \qquad (round up \ to \ next foot)$$

$$L_{reqdTor} := if[(SoilType = 0), L_{torSand}, L_{torClay}] \frac{L_{reqdTor}}{L_{reqdTor}} = 21 ft$$

required shaft embedment depth to resist torsion

SoilType = 0

 $L_{embedded} := if \left[\left(L_{reqdTor} > L_{reqdOT} \right), L_{reqdTor}, L_{reqdOT} \right] = 21 \cdot ft$

 $L_{shaft} := L_{embedded} + Offset$

 $L_{shaft} = 21.5 \text{ ft}$ shaft length

Maximum Moment in Shaft

short free-head pile in cohesionless soil using Broms method

$$f_{sand} := \sqrt{\frac{2 \cdot P_u}{3 \cdot \gamma_{soil} \cdot b \cdot K_p \cdot \varphi_{ot}}} = 4.3 \text{ ft}$$

6/1/2021

$$M_{maxSand} := P_{u} \cdot \left(e_{sand} + f_{sand} \right) - \frac{P_{u} \cdot f_{sand}}{3} + M_{u} = 250.3 \cdot \text{kip} \cdot \text{ft}$$

short free-head pile in <u>cohesive soil</u> using Modified Broms method for L < 3b (see reference file for derivation)

Guess value $f_{mod} := 4.0 \cdot ft$

Given
$$P_{u} = \frac{f_{mod} \cdot b}{2} \cdot (2\phi_{ot} \cdot c_{soil} + \phi_{ot} \cdot f_{mod} \cdot Slope)$$

$$f_{mod} := Find(f_{mod}) = 1.3 ft$$

 $M_{modBroms} := P_{u} \cdot \left(e_{clay} + f_{mod} \right) - \frac{\phi_{ot} \cdot c_{soil} \cdot b \cdot f_{mod}^{2}}{2} - \frac{\phi_{ot} \cdot b \cdot f_{mod}^{3} \cdot Slope}{6} = 228.1 \cdot kip \cdot ft$

short free-head pile in <u>cohesive soil</u> using Regular Broms method for L > 3b

 $M_{Broms} := P_u \cdot \left(e_{clay} + 1.5 \cdot b + 0.5 \cdot f \right) = 297.5 \cdot kip \cdot ft$

 $M_{maxClay} := if[(L_{ot1Clay} < 3 \cdot b), M_{modBroms}, M_{Broms}] = 228.1 \cdot kip \cdot ft \qquad (If L_{ot} < 3b, use Modified Broms method)$

 $M_{max} := if[(SoilType = 0), M_{maxSand}, M_{maxClay}] = 250.3 \cdot kip \cdot ft$

Minimum Reinforcing and Spacing

$F_{y.rebar} := 60 \cdot ksi$	reinforcing yield strength		
$f_c := \textbf{4.0} \cdot ksi$	concrete strength Spe		<u>Spec 346-3</u>
Cover := 6·in	cover	<u>SDG Ta</u>	<u>ble 1.4.2–1</u>

$A_{long.bar} \coloneqq \textbf{1.56} \cdot in^2$	longitudinal bar area	
$d_{long.bar} := \textbf{1.41} \cdot in$	longitudinal bar diameter	
$A_{v,bar} := if (StirrupBarSiz)$	$e = 5, 0.31 \cdot in^2, 0.44 \cdot in^2 = 0.31 \cdot in^2$ stirrup area	<u>SM V3 13.6.2</u>

 $d_{v,bar} := if(StirrupBarSize = 5, 0.625 \cdot in, 0.75 \cdot in) = 0.625 \cdot in$ stirrup diameter

$$s_{v} := \begin{pmatrix} 4 \cdot in \\ s_{v_{1}} \\ s_{v_{2}} \\ 12 \cdot in \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \\ 0 \\ 12 \end{pmatrix} \cdot in \begin{pmatrix} "Stirrups A" \\ "Stirrups B" \\ "Stirrups C" \\ "Stirrups D" \end{pmatrix} \qquad stirrup spacing, depth = 2 ft-depth.stir \\ stirrup spacing, depth > depth.stir \\ stirrup spacing, depth > depth.stirA \\ depth > depth.stirA \\ Stirrup spacing, depth > depth.stirA \\ MastArmV1.2.xmcd \\ \end{bmatrix}$$

$$\begin{split} & \#\text{Spaces}_{vbar} := \begin{pmatrix} 6 \\ \text{NumSpacesStirrupsB} \\ \text{NumSpacesStirrupsC} \\ 1 \end{pmatrix} = \begin{pmatrix} 6 \\ 10 \\ 0 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} \text{"Stirrups A"} \\ \text{"Stirrups B"} \\ \text{"Stirrups D"} \end{pmatrix} \\ & \text{s}_v = \begin{pmatrix} 4 \\ 8 \\ 0 \\ 12 \end{pmatrix} \cdot \text{in} \qquad \#\text{Spaces}_{vbar} = \begin{pmatrix} 6 \\ 10 \\ 0 \\ 1 \end{pmatrix} \\ & \#\text{Spaces}_{vbar_2} := \text{if} \begin{bmatrix} \#\text{Spaces}_{vbar} = 0, \text{floor} \end{bmatrix} \begin{pmatrix} L_{\text{shaft}} - 5 \cdot \text{in} - \sum_{i=0}^{1} \left(s_{v_i} \cdot \#\text{Spaces}_{vbar_i} \right) \\ & \frac{1}{s_{v_3}} \end{bmatrix}, \#\text{Spaces}_{vbar_2} = 0, \text{floor} \begin{bmatrix} L_{\text{shaft}} - 5 \cdot \text{in} - \sum_{i=0}^{1} \left(s_{v_i} \cdot \#\text{Spaces}_{vbar_i} \right) \\ & \frac{1}{s_{v_3}} \end{bmatrix} = 12 \\ & \#\text{Spaces}_{vbar_3} := \text{floor} \begin{bmatrix} L_{\text{shaft}} - 5 \cdot \text{in} - \sum_{i=0}^{2} \left(s_{v_i} \cdot \#\text{Spaces}_{vbar_i} \right) \\ & \frac{1}{s_{v_3}} \end{bmatrix} = 12 \\ & L_{\text{shaft}} = 21.5 \text{ ft} \qquad \sum_{i=0}^{3} \left(s_{v_i} \cdot \#\text{Spaces}_{vbar_i} \right) = 20.7 \text{ ft} \end{split}$$

$$b = 5 ft$$
 shaft diameter

#LongBars_{reqd1} :=
$$\frac{0.01}{A_{long,bar}} \cdot \frac{\pi \cdot b^2}{4} = 18.1$$

#LongBars_{reqd2} :=
$$\frac{0.135}{A_{long,bar} \cdot F_{y,rebar}} \cdot \left(\frac{\pi \cdot b^2}{4} \cdot f_c\right) = 16.3$$

 $\#LongBars_{prov} := ceil(max(\#LongBars_{reqd_1}, \#LongBars_{reqd_2})) = 10$ number of longitudinal bars Use 18

$$Dia_{bar.circle} := b - 2 \cdot Cover - 2 \cdot d_{v.bar} - d_{long.bar} = 45.3 \cdot in$$

 $Spacing_{vert.reinf} := Dia_{bar.circle} \cdot \frac{\pi}{\# Long Bars_{prov}} = 7.5 \cdot in \quad Clearance_{vert.reinf} := Spacing_{vert.reinf} - d_{long.bar} = 6.09 \cdot in$

 $CheckReinfClearSpacing := if (Clearance_{vert.reinf} \ge 6in, "OK", "No Good") CheckReinfClearSpacing = "OK"$

<u>SDG 3.6.10</u>

$$\Phi_{u} := 0.90 \qquad Shear Resistance Factor \qquad \underline{LRFD 5.5.4.2.1}$$
$$V_{u} := \sqrt{\left(V_{x.polebase}_{LoadCaseOT}\right)^{2} + \left(V_{z.polebase}_{LoadCaseOT}\right)^{2}} = 10 \cdot kip$$

 $T_u = 310.7 \cdot kip \cdot ft$

Effective shear depth

$$D_{r} := b - 2 \cdot \left(Cover + d_{v.bar} + \frac{d_{long.bar}}{2} \right) = 3.8 \text{ ft} \qquad d_{e} := \frac{b}{2} + \frac{D_{r}}{\pi} = 3.7 \text{ ft}$$
LRFD C5.8.2.9-2

 $d_v := max(0.9 \cdot d_e, 0.72 \cdot b) = 3.6 \, ft$

Check Shear Strength

$$V_{c} := 0.0316 \cdot (2.0) \cdot \sqrt{f_{c} \cdot ksi} \cdot (d_{v}) \cdot b = 327.6 \cdot kip \qquad \underline{\textit{LRFD Eqn 5.8.3.3-3}} \qquad \underline{\textit{LRFD 5.8.3.4.1}} \qquad \underline{\textit{ACI 11.3.3}}$$

$$V_{s} \coloneqq \frac{A_{v,bar} \cdot F_{y,rebar} \cdot d_{v}}{\max\left(s_{v_{0}}, s_{v_{1}}, s_{v_{2}}\right)} = 100.4 \cdot kip \qquad \underline{\textit{LRFD Eqn 5.8.3.3-4}}$$

$$D/C_{shear} := max \left(\left(\begin{array}{c} V_u - \phi_v \cdot V_c \\ \phi_v \cdot V_s \\ 0 \end{array} \right) \right) = 0$$

1 1

Check Torsion Strength

$$A_{cp} := \pi \cdot \left(\frac{b}{2}\right)^2 = 2827.4 \cdot in^2 \qquad p_{cp} := 2 \cdot \pi \cdot \left(\frac{b}{2}\right) = 188.5 \cdot in \qquad Area and perimeter of concrete cross-section$$

$$d_{oh} \coloneqq b - 2 \cdot \left(\text{Cover} + \frac{d_{v,bar}}{2} \right) = 47.4 \cdot \text{in} \qquad p_h \coloneqq \pi \cdot d_{oh} = 148.8 \cdot \text{in}$$
$$A_{oh} \coloneqq \pi \left(\frac{d_{oh}}{2} \right)^2 = 1.8 \times 10^3 \cdot \text{in}^2 \qquad A_o \coloneqq 0.85 \cdot A_{oh} = 1.5 \times 10^3 \cdot \text{in}^2$$

$$T_{n.torsion_{0}} \coloneqq \frac{2 \cdot A_{o} \cdot A_{v.bar} \cdot F_{y.rebar}}{s_{v_{0}}} = 1161.2 \cdot kip \cdot ft$$

$$\frac{LRFD \ Eqn \ 5.8.3.6.2-1}{RFD \ 5.8.3.6.2-1}$$

$$T_{n.torsion_{1}} \coloneqq \frac{2 \cdot A_{o} \cdot A_{v.bar} \cdot F_{y.rebar}}{s_{v_{1}}} = 580.6 \cdot kip \cdot ft$$

$$\frac{LRFD \ 5.8.3.4.1}{RFD \ 5.8.3.4.1}$$

 $T_{n.torsion_2} := T_{n.torsion_1}$ on error $\frac{2 \cdot A_o \cdot A_{v.bar} \cdot F_{y.rebar}}{s_{v_2}} = 580.6 \cdot kip \cdot ft$

 $\varphi_{\rm v}=0.9$ $T_u = 310.7 \cdot kip \cdot ft$

 $L_{reqdTor} = 21 \text{ ft}$

6/1/2021

MastArmV1.2.xmcd

Diameter, perimeter and area enclosed by the centerline of the outermost closed transverse torsion reinforcement

depth_{stir} :=
$$\begin{cases} \text{for } i \in 0..1 \\ \text{depth}_{i} \leftarrow \sum_{j=0}^{i} \left(s_{v_{j}} \cdot \# \text{Spaces}_{vbar_{j}} \right) \\ \text{depth} \end{cases} \quad \text{depth}_{stir} = \begin{pmatrix} 2 \\ 8.7 \end{pmatrix} \text{ft}$$

 $T_{u.section_0} := T_u$

$$T_{u.sand_{1}} := T_{u} - if\left[\left(depth_{stir_{0}} > Offset\right), \left[\pi \cdot b \cdot \left(depth_{stir_{0}} - Offset\right) \cdot \gamma_{soil} \cdot \left(\frac{depth_{stir_{0}} - Offset}{2}\right) \cdot \left(\omega_{fdot}\right) \cdot \frac{b}{2}\right], 0 \cdot kip \cdot ft\right] = 309 \cdot kip \cdot ft$$

$$T_{u.sand_{2}} := T_{u} - if\left[\left(depth_{stir_{1}} > Offset\right), \left[\pi \cdot b \cdot \left(depth_{stir_{1}} - Offset\right) \cdot \gamma_{soil} \cdot \left(\frac{depth_{stir_{0}} - Offset}{2}\right) \cdot \left(\omega_{fdot}\right) \cdot \frac{b}{2}\right], 0 \cdot kip \cdot ft\right] = 260.1 \cdot kip \cdot ft$$

$$T_{u.clay_{1}} \coloneqq T_{u} - if \left[\left(depth_{stir_{0}} - 1.5ft > Offset \right), \left[f_{se} \cdot (\pi \cdot b) \cdot \left(depth_{stir_{0}} - Offset - 1.5 \cdot ft \right) \cdot \frac{b}{2} \right], 0 \cdot kip \cdot ft \right] = 310.7 \cdot kip \cdot ft$$

$$T_{u.clay_{1}} \coloneqq T_{u} - if \left[\left(depth_{stir_{0}} - 1.5ft > Offset \right), \left[f_{se} \cdot (\pi \cdot b) \cdot \left(depth_{stir_{0}} - Offset - 1.5 \cdot ft \right) \cdot \frac{b}{2} \right], 0 \cdot kip \cdot ft \right] = 22.8 \cdot kip \cdot ft$$

$$T_{u.clay_2} := T_u - if \left[\left(depth_{stir_1} - 1.5ft > Offset \right), \left[f_{se} \cdot (\pi \cdot b) \cdot \left(depth_{stir_1} - Offset - 1.5 \cdot ft \right) \cdot \frac{1}{2} \right], 0 \cdot kip \cdot ft \right] =$$

 $T_{u.section_{1}} \coloneqq if \left[(SoilType = 0), T_{u.sand_{1}}, T_{u.clay_{1}} \right] = 309 \cdot kip \cdot ft$

$$T_{u.section_2} := if\left[(SoilType = 0), T_{u.sand_2}, T_{u.clay_2}\right] = 260.1 \cdot kip \cdot ft$$

$$T_{u.section} = \begin{pmatrix} 310.7\\ 309\\ 260.1 \end{pmatrix} \cdot kip \cdot ft \qquad T_{n.torsion} = \begin{pmatrix} 1161.2\\ 580.6\\ 580.6 \end{pmatrix} \cdot kip \cdot ft$$

$$D/C_{torsion} := \frac{T_{u.section}}{\phi_{tor} \cdot T_{n.torsion}} = \begin{pmatrix} 0.27\\ 0.53\\ 0.45 \end{pmatrix} \qquad D/C_{max.torsion} := max(D/C_{torsion}) = 0.53$$

$$T_{cr} \coloneqq 0.125 \sqrt{\frac{f_c}{ksi}} \cdot \left(\frac{A_{cp}^2}{p_{cp} \cdot in^3}\right) \cdot kip \cdot in = 883.6 \cdot kip \cdot ft$$
LRFD Eqn 5.8.2.1-4

 $0.25 \cdot \phi_{tor} \cdot T_{cr} = 220.9 \cdot kip \cdot ft$ $T_u = 310.7 \cdot kip \cdot ft$

$$D/C_{torsion.max} := if[(T_u \le 0.25 \cdot \phi_{tor} \cdot T_{cr}), 0, max(D/C_{torsion})] = 0.532$$
LRFD Eqn 5.8.2.1-3

 $D/C_{shear} = 0.000$ $D/C_{torsion.max} = 0.532$

 $CheckD/C_{shear.and.torsion} \coloneqq if\left[\left(D/C_{shear} + D/C_{torsion.max} \le 1\right), "OK", "No \ Good"\right]$ 6/1/2021 MastArmV1.2.xmcd

CheckD/C_{shear.and.torsion} = "OK"

$$v_{u} \coloneqq \frac{V_{u}}{\varphi_{v} \cdot b \cdot d_{v}} = 0.0043 \cdot \text{ksi} \qquad 0.125 \cdot f_{c} = 0.5 \cdot \text{ksi} \qquad \underline{\textit{LRFD Eqn 5.8.2.9-1}}$$

$$s_{max1} \coloneqq \text{if} \left[\left(0.8 \cdot d_{v} < 24 \cdot \text{in} \right), 0.8 d_{v}, 24 \cdot \text{in} \right] = 24 \cdot \text{in} \qquad \underline{\textit{LRFD Eqn 5.8.2.7-1}}$$

$$s_{max2} \coloneqq \text{if} \left[\left(0.4 \cdot d_{v} < 12 \cdot \text{in} \right), 0.4 d_{v}, 12 \cdot \text{in} \right] = 12 \cdot \text{in} \qquad \underline{\textit{LRFD Eqn 5.8.2.7-2}}$$

$$s_{max} \coloneqq \text{if} \left[\left(v_{u} < 0.125 \cdot f_{c} \right), s_{max1}, s_{max2} \right] = 24 \cdot \text{in} \qquad \underline{\textit{max}}(s_{v}) = 12 \cdot \text{in}$$

 $CheckMaxSpacingTransvReinf := if[(max(s_v) \le s_{max}), "OK", "No Good"]$

CheckMaxSpacingTransvReinf = "OK"

LRFD Eqn 5.8.3.6.3-1

LRFD 5.8.3.4.1

Check Longitudinal Reinforcement for Combined Shear and Torsion

 $M_u = 216.3 \cdot kip \cdot ft$

$$V_{temp} := if\left(\frac{V_u}{\phi_v} - 0.5 \cdot V_s > 0 \cdot kip, \frac{V_u}{\phi_v} - 0.5 \cdot V_s, 0 \cdot kip\right) = 0 \cdot kip$$

$$\text{LongReinf}_{\text{shr.tor}} \coloneqq \frac{\frac{M_{u}}{\phi_{v} \cdot d_{v}} + \sqrt{\left(V_{\text{temp}}\right)^{2} + \left(\frac{0.45 \cdot p_{h} \cdot T_{u}}{2 \cdot A_{o} \cdot \phi_{v}}\right)^{2}}}{F_{v,\text{rebar}}} = 2.66 \cdot \text{in}^{2}$$

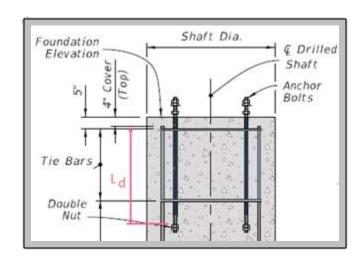
$$\#$$
LongBars_{prov}·A_{long.bar} = 29.6·in²

 $CheckLongReinf_{shr.tor} := if[(\#LongBars_{prov} \cdot A_{long.bar} \ge LongReinf_{shr.tor}), "OK", "No Good"]$

CheckLongReinf_{shr.tor} = "OK"

Anchor Bolt Embedment

 $T_{u.anchor} = 40.6 \cdot kip$


tension force in anchor

 $Dia_{bar.circle} = 45.3 \cdot in$

 $Dia_{anchor.circle} := Diameter_{boltcircle.pole} = 32 \cdot in$

center-to-center distance

 $\text{Dist}_{\text{bar.to.bolt}} \coloneqq \frac{\text{Dia}_{\text{bar.circle}} - \text{Dia}_{\text{anchor.circle}}}{2} = 6.7 \cdot \text{in}$

$$Num_{bars.per.anchor} := min\left(\frac{\#LongBars_{prov}}{\#AnchorBolts}, 3\right) = 2.4 \qquad Use \ a \ maximum \ of three \ rebar per \ anchor \ bolt \ (conservative)$$

$$Num_{bars.reqd.per.anchor} := \frac{T_{u.anchor}}{A_{long.bar} \cdot (\phi \cdot F_{y.rebar})} \cdot \frac{Dia_{anchor.circle}}{Dia_{bar.circle}} = 0.34$$

AreaRatio :=
$$min\left(\frac{Num_{bars.reqd.per.anchor}}{Num_{bars.per.anchor}}, 1\right) = 0.14$$

2015 AASHTO Development Length of Deformed Bars in Tension 5.11.2.1

 $Cover = 6 \cdot in$

 $c_b =$ the smaller of the distance from center of bar or wire being developed to the nearest concrete surface and one half the center-to-center spacing of the bars or wires being developed

$$c_{b} := \min\left(\begin{pmatrix} Cover + d_{v,bar} + \frac{d_{long,bar}}{2} \\ \frac{Spacing_{vert,reinf}}{2} \end{pmatrix} \right) = 3.7 \cdot in$$

 $k_{tr} := 0 \cdot in$ assume no transverse bars:

$$\begin{split} \lambda_{rc} &:= \min \left[\begin{bmatrix} 1.0 \\ \max \left(\begin{pmatrix} 0.4 \\ \frac{d_{long,bar}}{c_b + k_{tr}} \right) \right) \end{bmatrix} = 0.4 \quad LRFD \ Eqn \ 5.11.2.1.3-1 \\ L_{d,bar} &:= \max \left(\begin{bmatrix} 12 \cdot in \\ \lambda_{rc} \cdot 2.4 \cdot d_{long,bar} \cdot \frac{F_{y,rebar}}{\sqrt{f_c \cdot k_{si}}} \right) \right) = 40.6 \cdot in \quad tension \ development \ length \ LRFD \ Eqn \ 5.11.2.1.1-2 \\ SpacingFactor &:= \max \left[\begin{bmatrix} 0.5 \\ Num_{bars,per,anchor} \cdot 0.5 - 0.5 \end{pmatrix} \right] = 0.7 \\ L_{embedment,added} &:= \sqrt{\left(Clearance_{vert,reinf} \cdot SpacingFactor \right)^2 + Dist_{bar,to,bolt}^2} = 7.9 \cdot in \\ L_{embedment,anchor} &:= \max \left[\begin{bmatrix} L_{d,bar} \cdot (AreaRatio) + 12 \cdot in + L_{embedment,added} \\ 20 \cdot d_{anchorbolt} \end{bmatrix} \right] = 40 \cdot in \quad in \ LTS, 3rd \ Ed. \ 1994, \ Section \ 3, 1.3.4 \ and \ still \ a \ good \ rule \ of \ thumb. \\ L_{anchor,bolt,exposed} &:= \max \left(\begin{pmatrix} 8 \cdot in \\ 2 \cdot d_{anchorbolt} + t_{baseplate,pole} + 2 \cdot d_{anchorbolt} + 2 \cdot in \end{pmatrix} \right) = 12.5 \cdot in \end{split}$$

 $L_{anchor.bolt} = 53 \cdot in$

Anchor Bolt Shear Break-Out Strength

References: ACI 318-05 Appendix D. FDOT/University of Florida Report BD545 RPWO #54, Anchor Embedment Requirements for Signal/Sign Structures, July 2007. number of anchor bolts #AnchorBolts = 8anchor bolt diameter $d_{anchorbolt} = 2 \cdot in$

anchor bolt circle diameter $Diameter_{boltcircle,pole} = 32 \cdot in$

anchor bolt embedment $L_{embedment.anchor} = 40 \cdot in$

 $b = 60 \cdot in$

shaft diameter

$$r_{\rm b} := \frac{{\rm Dia}_{\rm anchor.circle}}{2} = 16 \cdot {\rm in}$$

$$r := \frac{b}{2} = 30 \cdot in$$

$$c_{a1} := \frac{\sqrt{r_b^2 + 3.25 \cdot (r^2 - r_b^2)} - r_b}{3.25} = 10 \cdot in$$

adjusted cover

UF Report Eqn 3-2

 $L_e := \min\left(\begin{pmatrix} 8 \cdot d_{anchorbolt} \\ L_{embedment.anchor} \end{pmatrix} \right) = 16 \cdot in$

load bearing length of anchor for shear ACI D.6.2.2

$$V_{b} := 13 \cdot \left(\frac{L_{e}}{d_{anchorbolt}}\right)^{0.2} \cdot \sqrt{\frac{d_{anchorbolt}}{in}} \cdot \sqrt{\frac{f_{c}}{psi}} \left(\frac{c_{a1}}{in}\right)^{1.5} \cdot lbf = 55.6 \cdot kip \qquad shear break-out strength (single anchor) \\ UF Report Eqn 2-11$$

 $A_{bolt.sector} := \frac{(360 \cdot deg)}{\#AnchorBolts} = 45 \cdot deg$

UF Report Fig 3-7

$$\alpha_{\text{cone}} \coloneqq 2 \operatorname{asin}\left[\frac{(1.5 \cdot c_{a1})}{r}\right] = 59.9 \cdot \deg$$

OverlapTest := if $(A_{bolt,sector} \le \alpha_{cone}, "Overlap of Failure Cones", "No Overlap of Failure Cones") = "Overlap of Failure Cones"$

chord :=
$$2 \cdot \mathbf{r} \cdot \sin\left(\frac{\mathbf{A}_{\text{bolt.sector}}}{2}\right) = 23 \cdot \mathbf{in}$$
 UF Report Fig 3-7

 $A_{Vco} := 4.5 \cdot c_{a1}^2 = 449.1 \cdot in^2$

projected concrete failure area (single anchor) ACI Eqn D-23

 $A_{Vc} := chord \cdot 1.5 \cdot c_{a1} = 344.1 \cdot in^2$

projected concrete failure area (group) ACI D.6.2.1

 $\underset{\text{WW}}{\text{A}_{\text{Vco}}} := \text{if}\left[\left(A_{\text{Vc}} > A_{\text{Vco}}\right), A_{\text{Vco}}, A_{\text{Vc}}\right] = 344.1 \cdot \text{in}^2$

$\psi_{ecV} \coloneqq \textbf{1.0}$	eccentric load modifier	ACI D.6.2.5	
$\psi_{edV} \coloneqq \textbf{1.0}$	edge effect modifier	ACI D.6.2.6	
$\psi_{cV} \coloneqq \textbf{1.0}$	cracked section modifier	ACI D.6.2.7	(stirrup spacing <= 4")
$\psi_{hV} \coloneqq \textbf{1.0}$	member thickness modifier	ACI D.6.2.8	
$\phi_{breakout} := 0.75$	strength reduction factor	ACI D.4.4.c.i	(shear breakout, condition A)

 $V_{cbg} := #AnchorBolts \cdot \left(\frac{A_{Vc}}{A_{Vco}}\right) \cdot \left(\psi_{ecV} \cdot \psi_{edV} \cdot \psi_{cV} \cdot \psi_{hV}\right) \cdot V_b = 341.1 \cdot kip$

concrete breakout strength - shear **ACI Eqn D-22** Shear force \perp to edge

 $V_{cbg_parallel} := 2 \cdot V_{cbg} = 682.1 \cdot kip$ ACI D.6.2.1.c Shear force || to edge

 $T_{n.breakout} := V_{cbg_parallel} \cdot r_b = 909.5 \cdot kip \cdot ft$

concrete breakout strength - torsion

 $\varphi_{breakout} \cdot T_{n.breakout} = 682.1 \cdot kip \cdot ft$

 $T_u = 310.7 \cdot kip \cdot ft$

 $BreakoutTest := if \left[\left(\varphi_{breakout} \cdot T_{n.breakout} \ge T_u \right), "OK", "No Good" \right]$

BreakoutTest = "OK"

OverlapDesign := if $[(A_{bolt,sector} \le \alpha_{cone}), "Based on Overlap of Failure Cones", "Based on No Overlap of Failure Cones"]$ OverlapDesign = "Based on Overlap of Failure Cones"

Clearance Between Vertical Reinforcement and Anchor Bolt Nut

 $Dist_{bar.to.bolt} = 6.7 \cdot in$ center-to-center distance

 $d_{anchor.nut} := 1.85 \cdot d_{anchorbolt} = 3.7 \cdot ir use$ an .to account for anchor nut

 $Clearance_{bar.to.nut} := Dist_{bar.to.bolt} - \left(\frac{d_{anchor.nut} + d_{long.bar}}{2}\right) = 4.1 \cdot in$

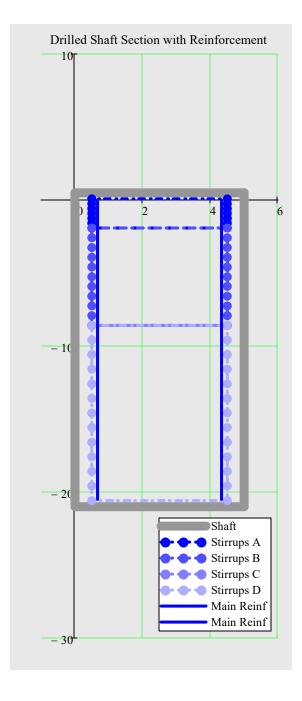
CheckAnchorageClearance = "OK"

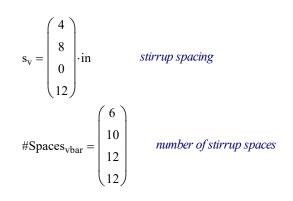
CSL tubes can be relocated plus/minus 2 inches from planned position (see Specifications)

 $d_{csl.tube} := 2 \cdot in$

Draw Drilled Shaft Section with Reinforcement

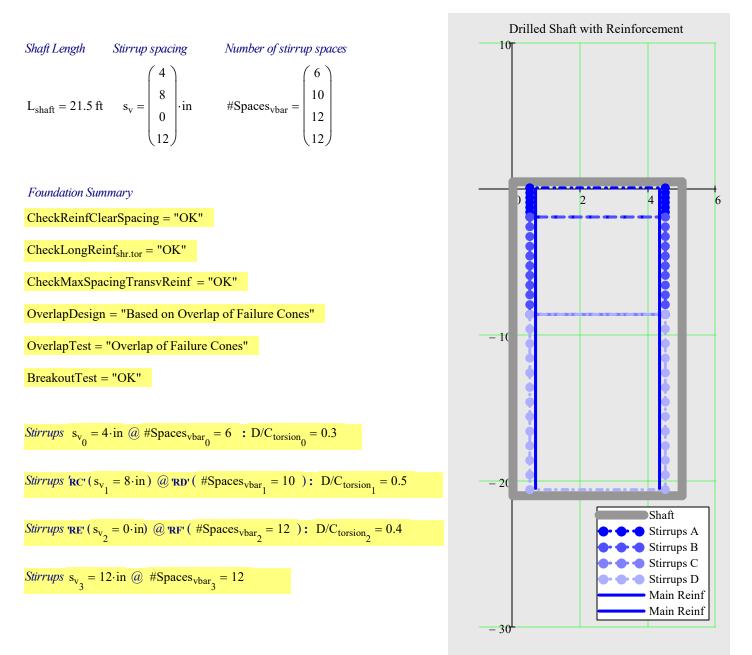
$$\begin{aligned} \text{fDrawStirrups(spacing, \#spaces, inix, iniy)} &\coloneqq & \text{coord}_{0,0} \leftarrow \text{inix} \\ & \text{coord}_{0,1} \leftarrow \text{iniy} \\ & \text{for } i \in 1 .. \# \text{spaces} \\ & \text{coord}_{i,0} \leftarrow \text{coord}_{0,0} \\ & \text{coord}_{i,1} \leftarrow \text{coord}_{i-1,1} - \text{spacing} \\ & \text{index} \leftarrow 1 \\ & \text{for } i \in \# \text{spaces} + 1 .. 2 .\# \text{spaces} + 1 \\ & \text{for } i \in \# \text{spaces} + 1 .. 2 .\# \text{spaces} + 1 \\ & \text{coord}_{i,0} \leftarrow b - \text{inix} \\ & \text{coord}_{i,1} \leftarrow \text{coord}_{i-\text{index},1} \\ & \text{index} \leftarrow \text{index} + 2 \\ & \text{coord}_{2 .\# \text{spaces} + 2, 0} \leftarrow \text{inix} \\ & \text{coord}_{2 .\# \text{spaces} + 2, 1} \leftarrow \text{iniy} \\ & \text{coord} \end{aligned}$$


$$\begin{split} & \text{StirrupsA} \coloneqq \text{fDrawStirrups} \Big(s_{v_0}, \#\text{Spaces}_{vbar_0}, \text{Cover}, \text{Offset} - 5 \cdot \text{in} \Big) \\ & \text{StirrupsB} \coloneqq \text{fDrawStirrups} \Big(s_{v_1}, \#\text{Spaces}_{vbar_1}, \text{Cover}, \min\left(\text{StirrupsA}^{\langle 1 \rangle}\right) \Big) \\ & \text{StirrupsC} \coloneqq \text{fDrawStirrups} \Big(s_{v_2}, \#\text{Spaces}_{vbar_2}, \text{Cover}, \min\left(\text{StirrupsB}^{\langle 1 \rangle}\right) \Big) \end{split}$$


StirrupsD :=
$$\begin{pmatrix} \text{Cover} & \min(\text{StirrupsC}) \\ b - \text{Cover} & \min(\text{StirrupsC}) \end{pmatrix}$$

 $\operatorname{coord} \leftarrow \operatorname{fDrawStirrups}\left(s_{v_3}, \#\operatorname{Spaces}_{vbar_3}, \operatorname{Cover}, \min\left(\operatorname{StirrupsC}^{\langle 1 \rangle}\right)\right) \text{ if } \min(\operatorname{StirrupsC}) > -L_{\operatorname{shaft}} + \operatorname{Cover} + 6 \cdot \operatorname{in} \operatorname{coord}$

Shaft :=
$$\begin{pmatrix} 0 \cdot in & Offset \\ b & Offset \\ b & -L_{shaft} + Offset \\ 0 \cdot in & -L_{shaft} + Offset \\ 0 \cdot in & Offset \end{pmatrix} = \begin{pmatrix} 0 & 0.5 \\ 5 & 0.5 \\ 5 & -21 \\ 0 & -21 \\ 0 & 0.5 \end{pmatrix} ft$$


$$\operatorname{Rebar} := \begin{bmatrix} (\operatorname{Cover} + 2 \cdot \operatorname{in}) & -\operatorname{Cover} + \operatorname{Offset} & (b - \operatorname{Cover} - 2 \cdot \operatorname{in}) \\ (\operatorname{Cover} + 2 \cdot \operatorname{in}) & (-L_{\operatorname{shaft}} + \operatorname{Cover} + \operatorname{Offset}) & (b - \operatorname{Cover} - 2 \cdot \operatorname{in}) \end{bmatrix} = \begin{pmatrix} 8 & 1.1 \times 10^{-15} & 52 \\ 8 & -246 & 52 \end{pmatrix} \cdot \operatorname{ind} \frac{1}{2} + \frac{$$

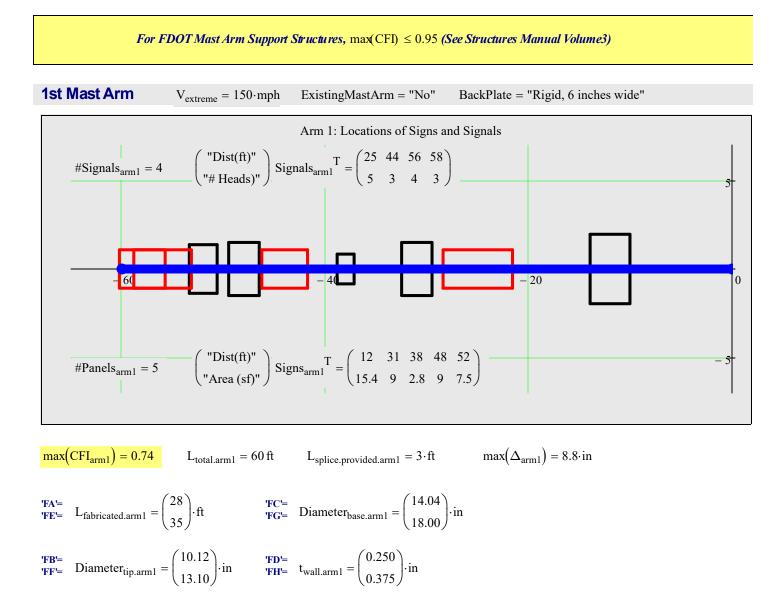
MastArmV1.2.xmcd

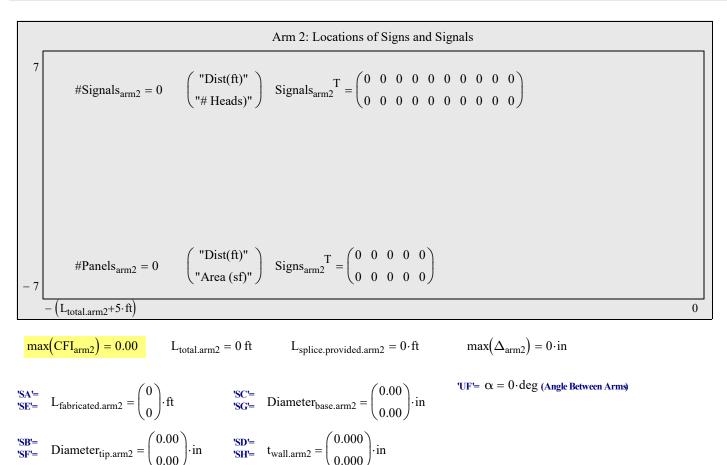
Analyze Foundation

Offset = 0.5 ft	Use 22 ft 'DA'= $L_{shaft} = 21.5 \cdot ft$	'RA'= round $\left(\frac{d_{long,bar}}{0.125n}\right) = 11$	#Spaces _{vbar₀} = 6
$d_{long.bar} = 1.41 \cdot in$	'DB'= Diameter _{shaft} = $5 \cdot \text{ft}$	'RB'= #LongBars _{prov} = 19	$s_{v_0} = 4 \cdot in$
Dia _{bar.circle} = 45.3·in	'BF'= $L_{embedment.anchor} = 40 \cdot in$		'RC'= $\#$ Spaces _{vbar1} = 10
	$L_{anchor.bolt} = 53 \cdot in$		'RD'= $s_{v_1} = 8 \cdot in$
			' RE' = $\#$ Spaces _{vbar₂} = 12
	required total number of lo match FDOT Standard Pla	heets in this documentation shows ongitudinal rebar is 18.1. Provide 18 to ans Index 649-030 typical drilled shaft . This reinforcement is considered to be	$\mathbf{RF} = \mathbf{s}_{\mathbf{v}_2} = 0 \cdot \mathbf{in}$
	the 1% requirement per F	DOT S-1 provision 13.6.2 (within 1%), which	#Spaces _{vbar₃} = 12
	is considered to typically t	be a gn. Meets Eq. 5.6.4.2-3 of the AASHTO	$s_{v_3} = 12 \cdot in$
			,

IX. Fatigue Analysis InputDa	taFile = "A70SH-P5SL-DS165.	dat"		
FatigueCategory _{galloping} := 2	FatigueCategory _{natural.wind} := 2	2 <u>SM V3 11.6</u>		
Analyze Structure for Fatigue				
Fatigue Summary				
	1 values within 2% of LTS threshold	ds of 3.0 and 4.0 may use next higher CAFT values		
Check _{galloping.arm1} = "OK"	$f_{galloping.arm1} = 6.0 \cdot ksi$	$CAFT_{fullpengroove.weld.arm1} = 7 \cdot ksi$		
Check _{galloping.arm2} = "NA"	$f_{galloping.arm2} = 0.0 \cdot ksi$	$CAFT_{fullpengroove.weld.arm2} = "NA" \cdot ksi$		
Check _{galloping.pole} = "OK"	$f_{galloping.pole} = 3.3 \cdot ksi$	$CAFT_{fullpengroove.weld.pole} = 4.5 \cdot ksi$		
Check _{nwg.arm1} = "OK"	$f_{nwg.arm1} = 3.4 \cdot ksi$	$CAFT_{fullpengroove.weld.arm1} = 7 \cdot ksi$		
Check _{nwg.arm2} = "NA"	$f_{nwg.arm2} = 0.0 \cdot ksi$	$CAFT_{fullpengroove.weld.arm2} = "NA" \cdot ksi$		
Check _{nwg.pole} = "OK"	$f_{nwg.pole} = 1.6 \cdot ksi$	$CAFT_{fullpengroove.weld.pole} = 4.5 \cdot ksi$		
CheckK1Values = $\begin{pmatrix} "K1 \text{ is outside of } 2\% \text{ of } K1 \text{ thresholds"} \\ "K1 \text{ is outside of } 2\% \text{ of } K1 \text{ thresholds"} \\ "K1 \text{ is outside of } 2\% \text{ of } K1 \text{ thresholds"} \end{pmatrix}$ $\begin{pmatrix} K_{\text{Larm1}} \\ K_{\text{Larm2}} \\ K_{\text{Lpole}} \end{pmatrix} = \begin{pmatrix} 3.875 \\ 100.000 \\ 7.033 \end{pmatrix} \begin{pmatrix} "Arm 1 \text{ Base Weld"} \\ "Arm 2 \text{ Base Weld"} \\ "Upright \text{ Base Weld"} \end{pmatrix}$				
A325 Connection Bolts				
$Check_{g.conn.bolt} = \begin{pmatrix} "OK" \\ "OK" \end{pmatrix}$	$f_{t.g.bolt} = \begin{pmatrix} 7.6\\ 0.0 \end{pmatrix} \cdot ksi$	$CAFT_{conn.bolt} = 16 \cdot ksi$		
$Check_{nwg.conn.bolt} = \begin{pmatrix} "OK" \\ "OK" \end{pmatrix}$	$f_{t.nwg.bolt} = \begin{pmatrix} 4.3\\ 0.0 \end{pmatrix} \cdot ksi$			
Anchor Bolts				
Check _{g.anchor} = "OK"	$f_{t.g.anchor} = 2.8 \cdot ksi$	$CAFT_{anchor.bolts} = 7 \cdot ksi$		
Check _{nwg.anchor} = "OK"	$f_{t.nwg.anchor} = 1.4 \cdot ksi$			
Save Data File (optional)				
Use current input file				
File Name A70SH-P5SL-DS165	dat			
Note: Select an output fol	der by using the "Change Folder" o	pption above.		
A30/D/H - Arm 30 fe P5/D/L - Pole 5 , D	et long, Double Arm et long, Double Arm, Heavy Duty ouble Arm, with Luminaire aft 16 ft deep, 5 foot diameter	Save Data		

X. Mast Arm Design and Analysis Summary InputDataFile = "A70SH-P5SL-DS165.dat"


If comparing results to Standard Index 649-030, some values in the index have been increased to reduce the number of variations.


 Subject
 = "Erie Rd and SR 62 Improvements"
 DesignedBy
 = "RT"
 PoleLocation
 =

 ProjectNo
 = "850-6094060"
 CheckedBy
 = ""
 Date
 = "5 / 27 /

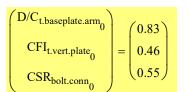
<u>PoleLocation</u> = "107+91.00/51.0 LT" <u>Date</u> = "5 / 27 / 2021"

ExistingMastArm = "No"

Luminaire Arm and Connection (use MC10x33.6 channel for connection)

(CFI _{base.lumarm})	(0.00	$'LA' = Y_{luminaire} = 0 \text{ ft}$	$\mathbf{'LF'} = \mathbf{r}_{lumarm} = 0 \ \mathrm{ft}$
CSR _{bolt.lum} =	7.17×10^{-9}	$\mathbf{TB} = \mathbf{X}_{\text{luminaire}} = 0 \text{ ft}$	'LG'= $d_{bolt.lum} = 0 \cdot in$
D/C _{conn.plate.lum}	0.00	'LC'= Diameter _{base.lumarm} = $0 \cdot in$	'LH'= $t_{baseplate.lum} = 0 \cdot in$
		'LD'= $t_{wall.lumarm} = 0 \cdot in$	'LJ'= $w_{base.lum} = 0 \cdot in$
		'LE'= $Slope_{lumarm} = 0$	$\mathbf{W} = \mathbf{W} \cdot \mathbf{U} = 0 \cdot \mathbf{i} \mathbf{n}$

Upright		
$\max(\text{CFI}_{\text{pole}}) = 0.50$	Check _{deflection} = "OK" Check _{slop}	_e = "OK"
'UA'= $Y_{pole} = 22.75 \cdot ft$	'UC'= Diameter _{tip.pole} = 2	20.8·in UE $t_{wall.pole} = 0.375 \cdot in$
' UB'= Y _{arm.conn} = 19.75·ft	'UD'= Diameter _{base.pole} =	*
		'UG'= $Y_{lum.conn} = 0$ ft


'LK'= $w_{channel.lum} = 0 \cdot in$

1st Arm to Upright Connection

$D/C_{ht.conn.plate} = 0.80$

 $D/C_{width.conn.plate_0} = 0.92$

$$CheckWidth_{conn.plate_0} = "OK$$

HT'=
$$h_{\text{conn.plate}} = 30 \cdot \text{in}$$

 $\#Bolts_{conn_0} = 6$

'FJ'= $b_{\text{conn.plate}_0} = 36 \cdot \text{in}$

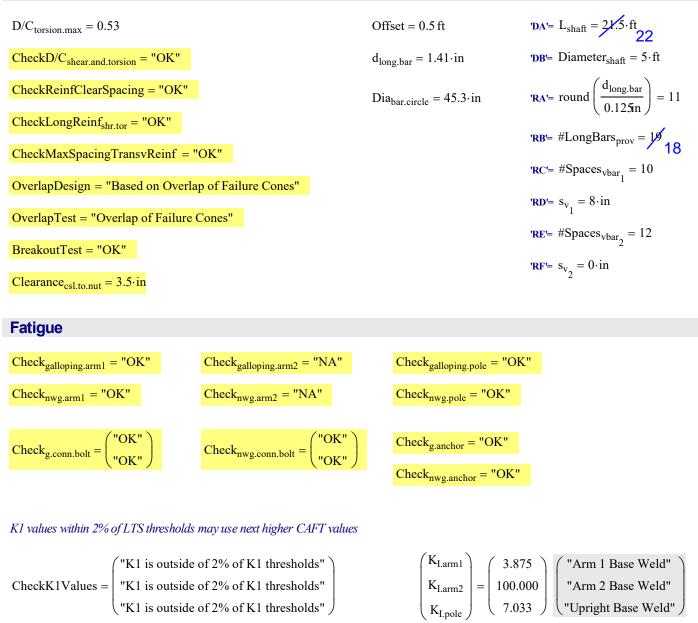
'FK'= $t_{\text{baseplate.arm}_0} = 3 \cdot \text{in}$

FL=
$$t_{vertical.plate_0} = 0.75 \cdot in$$

FN= $w_{vertical.plate_0} = \frac{3}{8} \cdot in$

TFO= Offset_{conn₀} = 18.0·in **TFP=** $d_{bolt.conn_0} = 1.25 \cdot in$ **TFR=** $t_{conn.plate_0} = 2.5 \cdot in$ **TFS=** Spacing_{bolts.conn_0} = 12.5·in **TFT=** $w_{conn.plate_0} = \frac{3}{8} \cdot in$

2nd Arm to Upright Connection


$D/C_{width.conn.plate_1} = 0.00$	'HT'= $h_{conn.plate} = 30 \cdot in$
CheckWidth _{conn.plate₁} = "OK"	$\#Bolts_{conn_1} = 0$
$(\mathbf{D}/\mathbf{C}_{1}, \mathbf{L}_{2})$	'SJ'= $b_{\text{conn.plate}_1} = 0 \cdot \text{in}$
$\begin{array}{c c} CFI \\ CFI \\ \end{array} = \begin{pmatrix} 0.00 \\ 0.00 \\ 0.00 \\ \end{array}$	'SK'= $t_{\text{baseplate.arm}_1} = 0.$ in
$\begin{pmatrix} D/C_{t.baseplate.arm_1} \\ CFI_{t.vert.plate_1} \\ CSR_{bolt.conn_1} \end{pmatrix} = \begin{pmatrix} 0.00 \\ 0.00 \\ 0.00 \end{pmatrix}$	'SL'= $t_{vertical.plate_1} = 0 \cdot in$
	$v_{\text{SN'=}} w_{\text{vertical.plate}_1} = 0.i$

$#Bolts_{conn_1} = 0$	'SO'= Offset _{conn₁} = $0.0 \cdot in$
$\mathbf{J} = \mathbf{b}_{\text{conn.plate}_1} = 0 \cdot \text{in}$	$\mathbf{SP'=} \ d_{bolt.conn_1} = 0 \cdot in$
K '= $t_{\text{baseplate.arm}_1} = 0 \cdot \text{in}$	'SR'= $t_{conn.plate_1} = 0 \cdot in$
L'= $t_{vertical.plate_1} = 0 \cdot in$	'SS'= Spacing _{bolts.conn} = $0 \cdot in$
$\mathbf{N} = \mathbf{W}_{\text{vertical.plate}_1} = 0 \cdot \text{in}$	'ST= $w_{\text{conn.plate}_1} = 0 \cdot \text{in}$

Pole Base Plate

$CSR_{anchor} = 0.24$	#Bolts'= #AnchorBolts = 8	BA'= Diameter _{baseplate.pole} = $40 \cdot in$
CheckCSR _{anchorbolt} = "OK"	Diameter _{boltcircle.pole} = $32 \cdot in$	'BB' = $t_{baseplate,pole} = 2.5 \cdot in$
		'BC'= $d_{anchorbolt} = 2.00 \cdot in$
		'BF'= $L_{embedment.anchor} = 40 \cdot in$ $L_{anchor.bolt} = 53 \cdot in$

Foundation

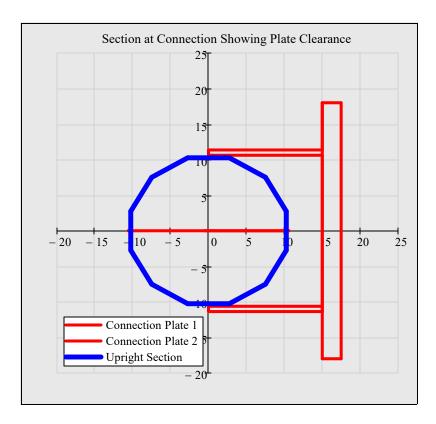
WRITEPRN to Line 1-2-3 for Mast Arm Data Table

Mast Arm Tip Deflection

Compare Mast Arm deflection of each arm to a proposed camber

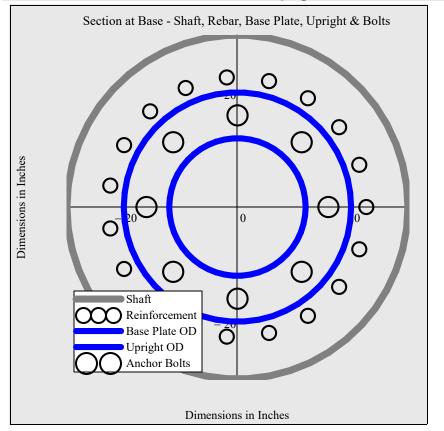
$$\begin{array}{ll} \text{Camber}_{arm1} \coloneqq \mathbf{2} \cdot \text{deg} \\ \text{Deflection}_{arm1} \coloneqq \text{Slope}_{x} \cdot \text{L}_{total.arm1} + \max(\Delta_{arm1}) = 13.4 \cdot \text{in} \\ \text{CamberArm1}_{upward} \coloneqq \sin(\text{Camber}_{arm1}) \cdot \text{L}_{total.arm1} = 25.1 \cdot \text{in} \\ \text{Deflection}_{arm2} \coloneqq \left[\text{Slope}_{z} \cdot \text{L}_{total.arm2} \cdot (\sin(\alpha)) \right] + \text{Slope}_{x} \cdot \text{L}_{total.arm2} \cdot \cos(\alpha) + \max(\Delta_{arm2}) = 0 \cdot \text{in} \\ \text{CamberArm2}_{upward} \coloneqq \sin(\text{Camber}_{arm2}) \cdot \text{L}_{total.arm2} = 0 \cdot \text{in} \end{array}$$

MastArmV1.2.xmcd

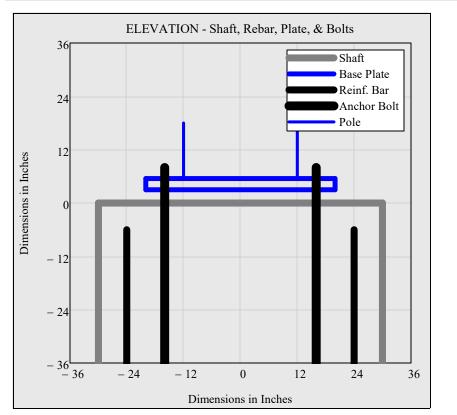

Check Clearance Between Connection Plates (for Two Arm Structures only)

$\alpha = 0 \cdot \deg$ $\alpha := if[$	$(\alpha > 180 \cdot \deg), (360 \cdot \deg - \alpha),$	α]	
$Offset_{conn_0} = 18 \cdot in$	$b_{\text{conn.plate}_0} = 36 \cdot \text{in}$	$h_{\text{conn.plate}} = 30 \cdot \text{ir}$	$\alpha = 0 \cdot \deg$
1	$b_{\text{conn.plate}_1} = 0 \cdot \text{in}$		
x1 := Offset _{conn₀} - $t_{conn.plate_0}$ -	$-h_{\text{conn.plate}} \cdot \frac{\sin(\text{Camber}_{\text{arm1}})}{2} =$	15·in y1 :=	$\frac{b_{\text{conn.plate}_0}}{2} = 18 \cdot \text{in}$
$x2 := \left(Offset_{conn_1} - t_{conn.plate_1}\right)$	$-h_{conn.plate} \cdot \frac{sin(Camber_{arm2})}{2}$	$\left \cos(\alpha) + \frac{b_{\text{conn.plate}}}{2} \right $	$\frac{c_1}{1} \cdot \sin(\alpha) = -0.5 \cdot in$
$y2 := \left(Offset_{conn_1} - t_{conn.plate_1}\right)$	$-h_{conn.plate} \cdot \frac{sin(Camber_{arm2})}{2}$	$\dot{b}_{conn.plate}$	$\frac{1}{1} \cdot \cos(\alpha) = 0 \cdot in$
$Clearance_{plate.to.plate} := if [(x1)]$	$> x2) \cdot (y2 > y1), \sqrt{(x1 - x2)^2 + (x1 - x2)^2}$	$(y_1 - y_2)^2, 0 \cdot in =$	0·in

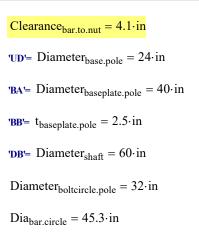
(if Clearance < 2 inches, a redesign is required.


Coordinates for Drawings

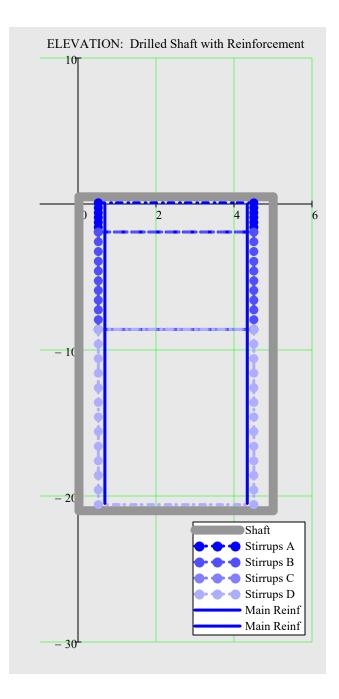
Plan View - Connection Plate Clearance for Two Arm Connections

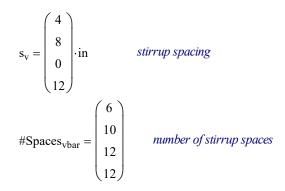

Clearance_{plate.to.plate} = $0 \cdot in$ Diameter_{conn.pole} = $21.3 \cdot in$ **TR'**= $t_{conn.plate_0} = 2.5 \cdot in$ **FJ'**= $b_{conn.plate_0} = 36 \cdot in$ **FL'**= $t_{vertical.plate_0} = 0.75 \cdot in$ **FO'**= Offset_{conn_0} = $18.0 \cdot in$ Gap₀ = $7.4 \cdot in$ **'SR'**= $t_{conn.plate_1} = 0 \cdot in$ **'SL'**= $t_{vertical.plate_1} = 0 \cdot in$ **'SL'**= $t_{vertical.plate_1} = 0 \cdot in$ **'SO'**= Offset_{conn_1} = $0.0 \cdot in$ Gap₁ = $0 \cdot in$

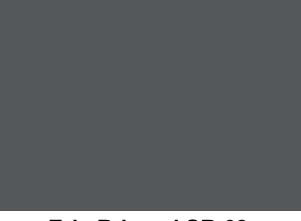
Plan View - Drilled Shaft, Base Plate, Upright, Anchor Bolts, & Reinforcing Steel



Clearance_{bar.to.nut} = $4.1 \cdot in$ "UD"= Diameter_{base.pole} = $24 \cdot in$ "BA"= Diameter_{baseplate.pole} = $40 \cdot in$ "DB"= Diameter_{shaft} = $60 \cdot in$ Diameter_{boltcircle.pole} = $32 \cdot in$ Dia_{bar.circle} = $45.3 \cdot in$ #AnchorBolts = 8#LongBars_{prov} = 19° 18


Note: The Plan and Elevation Views do not show the 4 or 5 1.9" O.D. Nondestructive Integrity Testing Access Tubes that are tied to the inside of the reinforcing cage (see FDOT Spec 455-16.4).




Elevation View - Drilled Shaft, Base Plate, Anchor Bolts, & Reinforcing Steel

Elevation View - Drilled Shaft with Main Reinforcement and Stirrups

Erie Rd. and SR 62 Improvements

HDR Project Number: 10151274

Miscellaneous Structures

1.5 Pole 2

For: Manatee County Public Works

Erie Rd. and SR 62 Improvements

HDR Project Number: 10151274

Miscellaneous Structures

1.5 Pole 2

1.5.1 Geometry and Loading

For: Manatee County Public Works

FJS

Project:	Erie Rd and SR 62 Improvements	Computed:	RT	Date:
Subject:	Misc. Structures	Check ed:		Date:
Task:	Pole 2	Page:	1	of:
Job#:	850-6094060	No:		

General Input

eneral input		
Pole No.	2	
Station	108+03.00	
Offset	49.0' RT	
County	Manatee	
Wind speed	150	mp
Luminaire Orientation	N	
Signal Orientation (V or H)	V	
Arm 2 Orientation	N	
Backplates (Y or N)	Y	
Elevation below Arm 1 tip	43.60	ft
Elevation below Arm 2 tip	N	
Elevation at top of foundation	44.40	ft
Arm center to signal / sign bottom	2.83	ft
Arm connection height (min)	19.31	ft
Arm connection height	19.75	ft
Arm connection height (max)	20.81	ft
Arm 1 length	45	ft
Arm 2 length	N	
Soil type	1	
Effective soil weight	43	pct
Phi	29	de
N-blowcount	6	
Foundation offset	0.5	ft

mph

pcf deg.

Choose "County" from drop-down list
Basic wind speed for Manatee County is 150 per FDOT SDG, Jan. 2018, Table 2.4.1-1
Enter N for no luminaire, otherwise enter angle measured CCW from arm 1 (0, 45, 90)
V for vertical, H for horizontal
Enter N for no arm 2, otherwise enter angle between dual arms
Used in determining arm con. ht. (FDM 232 req. the use of backplates on Mast Arms)
Enter N for no arm 2
Tabulated based on input for Arm 1 Signals and Signs
Based on 17.5 ft clearance
Dimension 'UB'; Use 0.25 ft increments
Based on 19.0 ft clearance
Arm 1 is the longer arm.
Enter N for no arm 2.

0 for clay (cohesive soil), 1 for sand (cohesionless soil)

Enter initial value from 'Average N-count V2.0.xls' or as directed by geotech Distance from finish ground to top of shaft

Arm 1 Signals and Signs - Vertical Geometry Check

Signal Head	1/2 Signal	Height of	Width of	Sign	Sign	Sign Area	Sign Location	1/2 Sign
Туре	Height (ft.)	Sign Dim. (ft.)	Sign Dim. (ft).	Attachment	Location	Check	Check	Height (ft.)
5-Doghouse	2.25	2.00	6.00	n/a	outside roadway	n/a	n/a	0
4	2.83	3.00	2.50	n/a	over roadway	n/a	n/a	1.5
3	2.25	3.00	3.00	n/a	over roadway	n/a	n/a	1.5
n/a	0.00	0.00	0.00	n/a	n/a	n/a	n/a	0
n/a	0.00	0.00	0.00	n/a	n/a	n/a	n/a	0

Arm 2 Signals and Signs - Vertical Geometry Check

	Signal Head	1/2 Signal	Height of	Width of	Sign	Sign	Sign Area	Sign Location	1/2 Sign
	Туре	Height (ft.)	Sign Dim. (ft.)	Sign Dim. (ft).	Attachment	Location	Check	Check	Height (ft.)
	n/a	0.00	0.00	0.00	n/a	n/a	n/a	n/a	0
	n/a	0.00	0.00	0.00	n/a	n/a	n/a	n/a	0
	n/a	0.00	0.00	0.00	n/a	n/a	n/a	n/a	0
	n/a	0.00	0.00	0.00	n/a	n/a	n/a	n/a	0
ſ	n/a	0.00	0.00	0.00	n/a	n/a	n/a	n/a	0

Analysis Requirement	Info	ormation for St	andard Mast Arr	n Assemblies Dat	ta Table		
Mathcad Analysis Required =	Yes			Arm 1 Type =	Heavy Duty	Arm 2 Type =	n/a
The following criteria are not satisfied:	1 Effective soil we	ight < 50 pcf		Designation	A50/S/H - P3/S		
	2 Friction angle <	30 deg		Arm 1 ID	A50/S/H		
	3 N-value < 15			FAA (ft)	27.5		
				Arm 2 ID		Leave blank in da	ata table
				SAA (ft)		Leave blank in da	ata table
				UF (deg)		Leave blank in da	ata table
				LL (deg)		Leave blank in da	ata table
				Pole ID	P3/S		
Pay Item Number				UAA (ft)	22.75		
649-2A-BB Steel Mast Arm Assembly	y			UB (ft)	19.75		
Operation =	(Furnish & Install)	Cł	hoose correct "Ope	eration" from dr	op-down list		
AA =	1						
Arm 1 =	50	Arm length used to	o determine Pay Ite	em Number, Se	e SPI for Arm Co	mbinations	
Arm 2 =	Single	If Arm 2 = N or Arr	m 2 Orientation = N	N, then 'Single'	will be displayed		
BB =	6						
Pay Item Number is	649-21-6	Provide to Signal [Designer for verific	ation			

Project: Erie Rd. and SR 62 Improvements	Computed: RT	Date: 05/26/2021
Subject: Misc. Structures - Pole 2	Checked:	Date:
Task: Design Approach	Page:	of:
Job #: 850-6094060	No:	

Signal Inputs:

The design accounts for MVDS devices as a 14" X 14" sign.

FDOT's 'mastarm-index-649-030-v1-4.xlsx' program limits the total number of signal / sign inputs to 10, and does not have an option for 1-section signal head; so the devices are accounted for by using a 14" X 14" sign.

FDOT's 'MastArmV1.2.xmcd' limits the number of sign inputs to 5, and does not have an option for 1-section signal head; so the the devices are accounted for by using a 14" X 14" sign.

Analysis:

1. FDOT's 'MastArmV1.2.xmcd' is used only to perform the foundation analysis. Other design sections are collapsed as individual components of the Mast Arm do not require detailed design based on the results from FDOT's 'mastarm-index-649-030-v1-4.xlsx'.

2. The signal and sign configuration for "Future Scenario" is chosen for foundation design to account for the higher moment demand due to the addition of Sign C.

	Design	Design Aid for FDOT Standard Mast Arm Assemblies (Standard Plans Index 649-030)								
Mast Arm Assembly Information		Arm 1 Length, Signal/Sign Location and Size								
Wind Speed	Signal\Sign	Signal\Sign	Signal\Sign	Signal\Sign	Signal\Sign	Signal\Sign	Signal\Sign	Signal\Sign	Signal\Sign	Signal\Sig
○ 130 mph ● 150 mph ○ 170 mph	#10	#9	#8	#7	#6	#5	#4	#3	#2	#1
Dist from Pole (ft.)			43	36	28	12	40	32	24	8
Signal Orientation Vertical Horizontal Back Plates? Ores No	None B Head H Head Head Sign	None Head Head Head Jign	None Head Head Head Sign	None B Head Head Head Sign	None Head Head Head Sign	Vone Head Head Head Head	None Head Head Head Jign	None B Head Head Head Jign	None Head Head Head Sign	None B Head Head Head J Head Jign
Luminaire? Sign Width (in.)			36	30	14	72				
Sign Height (in.)			36	36	14	24				
		0.0	0.0		4.4	12.0	42.2	9.8	14.8	9.8
Area (SF)	0.0	0.0	9.0	7.5	1.4	12.0	12.3	9.8	14.0	5.0
No Area (SF) M _{wl} . (kip*ft)	0.0	0.0	26	18	3	12.0	33	21	24	5
71164 (517)	0	0	26	18	3	10	33 20 15	21		
80 75 70 65	0	0	26	18 40 3 nal/Sign 9	3 Signal/Sign 8	10 25 Signal/Sign 7 Signal/Sign 1	33 20 15 Signal/Sig	21	24	5
Arm 1 Length (ft)	0 	0	26	18 40 3 hal/Sign 9 hal/Sign 3	3 Signal/Sign 8 Signal/Sign 2	10 Signal/Sign 7 Signal/Sign 1 Heavy Duty	33 20 15 Signal/Sig	21	24	5
Arm 1 Length (ft)	0 	0 5 50 Signal/S 5 Heavy Duty	26	18 40 3 hal/Sign 9 hal/Sign 3 Loads Tm M _{dl} (kip*ft)	3 Signal/Sign 8 Signal/Sign 2 Regular 40	10 Signal/Sign 7 Signal/Sign 1 Heavy Duty 44	33 20 15 Signal/Sig	21	24	5
Arm 1 Length (ft Design Standard Index 17743 Dia. at Arm Base (in)	0 	0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	26	18 40 3 hal/Sign 9 hal/Sign 3 Loads m M _{dl} (kip*ft) m M _{wl} (kip*ft)	3 Signal/Sign 8 Signal/Sign 2 Regular 40 44	10 Signal/Sign 7 Signal/Sign 1 Heavy Duty 44 49	33 20 15 Signal/Sig	21	24	5
Arm 1 Length (ft)	0 	0 5 50 Signal/S 5 Heavy Duty	26	18 40 3 hal/Sign 9 hal/Sign 3 Loads Tm M _{dl} (kip*ft)	3 Signal/Sign 8 Signal/Sign 2 Regular 40 44	10 Signal/Sign 7 Signal/Sign 1 Heavy Duty 44 49 1	33	21 + 10 	24	5

Notes:

Run the FDOT Mast Arm Mathcad Program for more accurate results.

For new designs, always design with backplates.

Mast Arm Assembly ID consists of three parts for a single arm and 4 parts for a double Arm. Each part is separated by "-".

Part 1 is Arm 1: Axx/y/z, where xx is the arm length, y is "S" for single arm or "D" for double arms and z is "H" for heavy duty arm or blank for regular arm.

Part 2 is Arm 2 and has the same nomenclature as the 1st arm. For single arm assemblies, Part 2 is omitted.

Part 3 is the Pole: Px/y/z where x is the pole ID, y is "S" for single arm or "D" for double arms and z is "L" for luminaire or blank for no luminaire.

Part 4 is the Drilled Shaft: DS/xx/y where xx is the shaft length and y is the shaft diameter.

Arm to pole connection is at 22 ft.

No foundation offset is considered. If the top of drilled shaft > 2 feet above ground, run the Mathcad Mast Arm Program.

Erie Rd. and SR 62 Improvements

HDR Project Number: 10151274

Miscellaneous Structures

1.5 Pole 2

1.5.2 Average N-count

For: Manatee County Public Works

Project: Erie Rd and SR-62 Improvement	Computed:	RT	Date: 5/27/2021
Subject: Misc. Structures	Checked:		Date:
Task: Average N Count	Page:	1	of: 1
Job #: 850-6094060			

Boring Details					
Dept	Depth (ft)				
Total	Step	N-count			
2	2	6			
4	2	3			
6	2	5			
8	2	8			
10	2	2			
12.5	2.5	3			
15	2.5	7			
17.5	2.5	5			
20	2.5	21			
22.5	2.5	25			
25	2.5	22			
27.5	2.5	9			
30	2.5	10			
Average	10.10				
Initial De	sign N _{AVG}	12.00			

Pole #	Pole 2		
Boring #	B-3		
Station	108+03.00/49.0 RT		
N-multiplier	1.24		
*Automatic Hammer Used: therefore N-multiplier = 1.24			

Notes: (Calculate N-value for drilled shaft)

1- Automatic hammer N value multiplier and Boring details (soil layers thicknesses and number of counts) should be entered as inputs.

2- Initial design N value from "Boring Details" table is used to determine drilled shaft lengths in Mathcad.

3- Drilled shaft length output from the Mathcad file should be entered in the table below.
4- Final design N value for each shaft based on the average of layers where drilled shaft is surrounded with will be calculated in the "Drilled Shaft Details" table.

5- If New N value is smaller than original value, Mathcad file should be updated with new N value to calculate final drilled shaft length.

Drilled Shaft Length After Initial Analysis
15.5

(Mathcad First Output)

Drilled Shaft Details					
Dept	:h (ft)	N-count			
Total	Step	N-COunt			
2	2	6			
4	2	3			
6	2	5			
8	2	8			
10	2	2			
12.5	2.5	3			
15	2.5	7			
17.5	2.5	5			
-	-	-			
-	-	-			
-	-	-			
-	-	-			
-	-	-			
Average	4.89				
Final Des	sign N _{AVG}	6.00			
Update N	_{AVG} ? (Y/N)	YES			

Final Drilled Shaft Length

22

(Mathcad Final Output)

Erie Rd. and SR 62 Improvements

HDR Project Number: 10151274

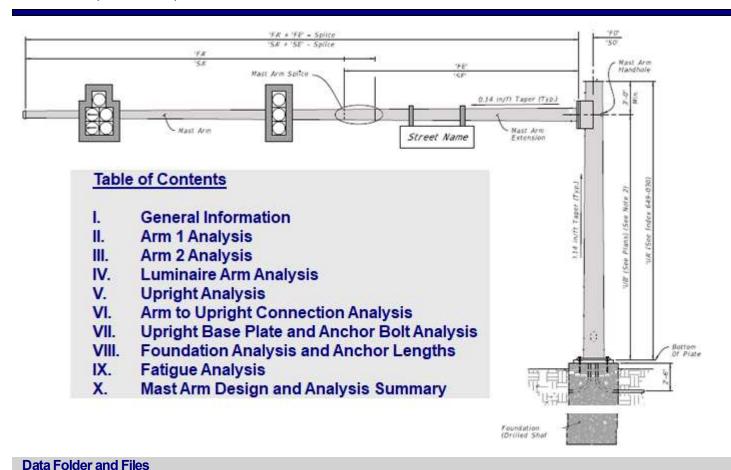
Miscellaneous Structures

1.5 Pole 2

1.5.3 Foundation Analysis

For: Manatee County Public Works

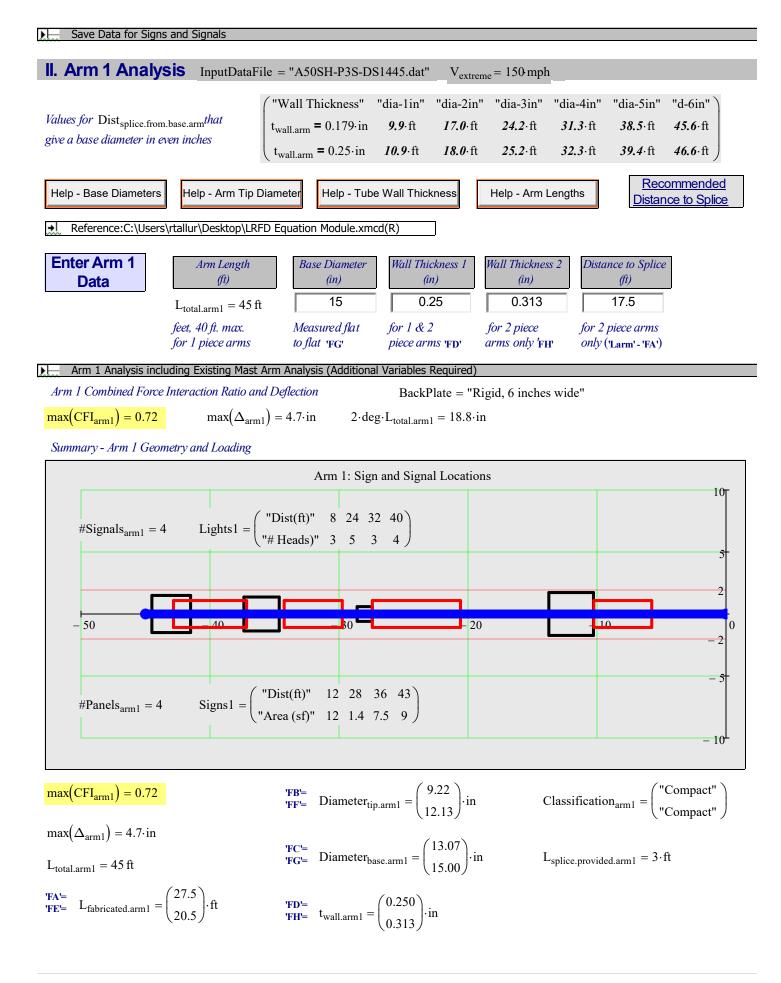
FDOT Mast Arm Traffic Signal Support Analysis Program V1.2


This program works in conjunction with FDOT Mast Arm Standard Plans 649-030 & 649-031.

References: AASHTO LRFD Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals (LRFDLTS). FDOT Structures Manual Volume 3 (SM V3). AISC Steel Construction Manual

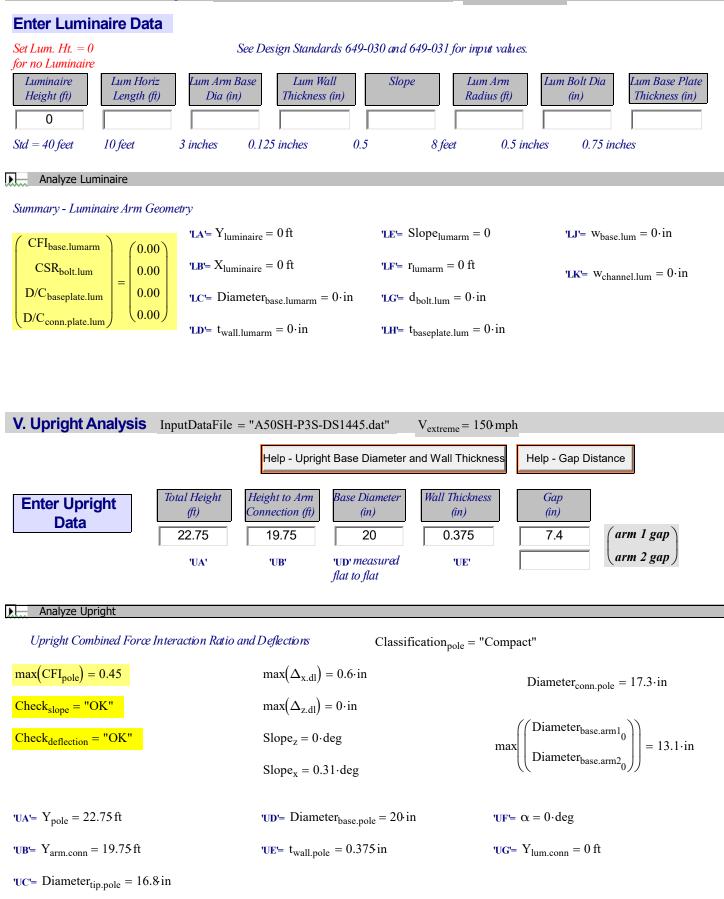
© 2020 Florida Department of Transportation

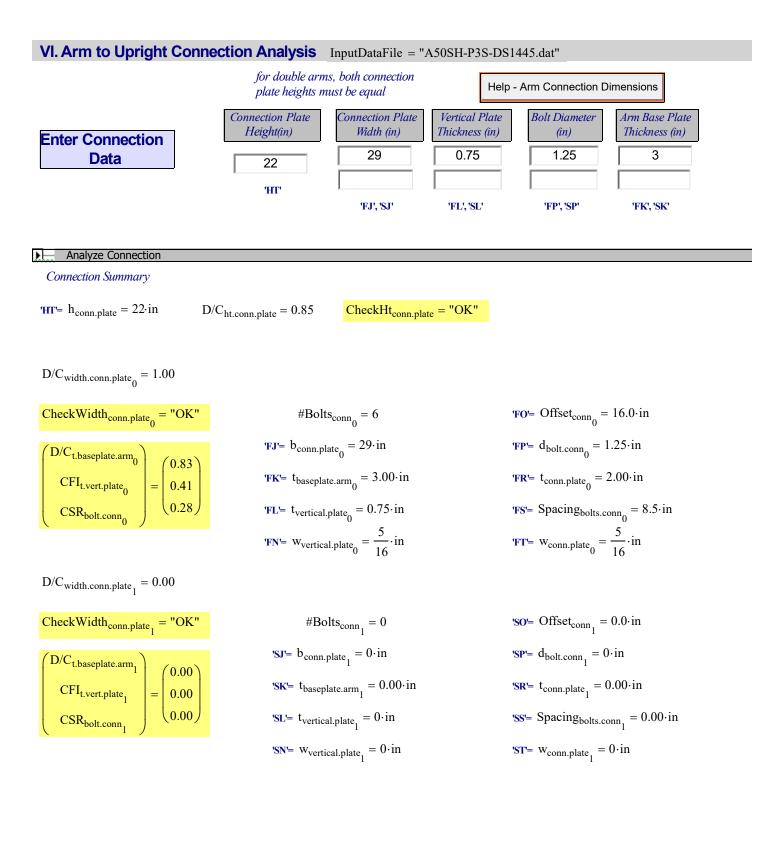
For more information see Reference.xmcd and Changes.xmcd.

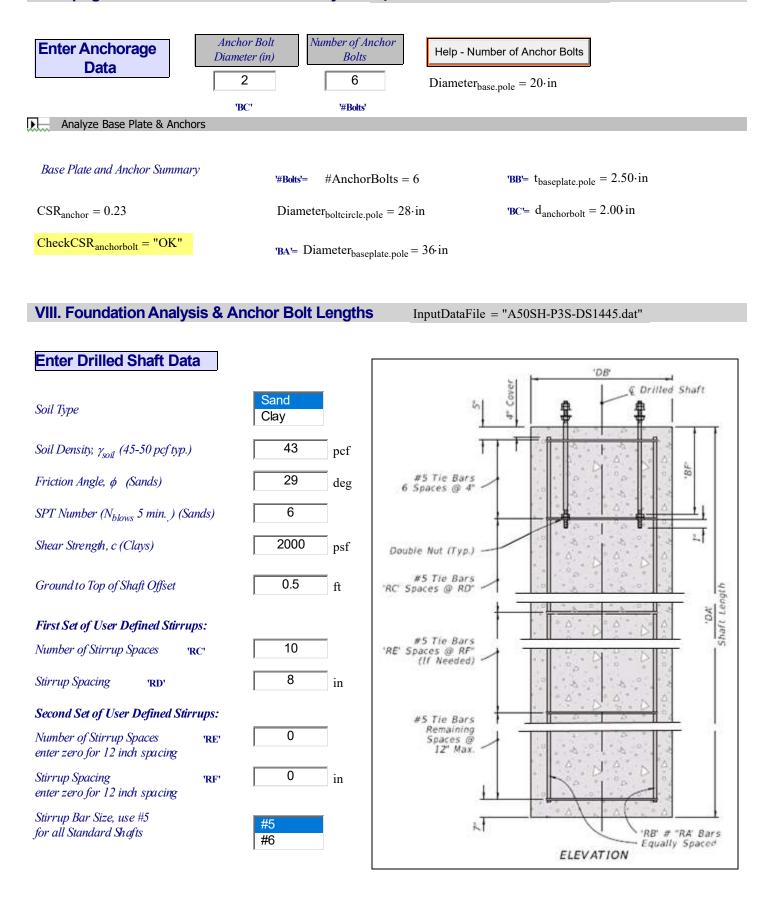

Data Files Folder Change Folder C:\Users\rtallur\Desktop\Data\

<u>Required</u> - Open Existing Data File. To save New Data Files, enter data variables at the end of Section IX.

A50SH-P3S-DS1445.dat	Refresh List
	Open File


I. General Information and Sign & Signal Data


Enter Proje	ct Informatic	on						
Project Name	Erie Rd a	nd SR 62 Im	provements	5				
ProjectNo.	850-6094	4060						
Designed by	RT			Date	5/27/2021			
Checked by				Date				
Signal Name Station/Offset	Pole 2 108+03.0	00/49.0 RT						
Enter Wind	Speed							
Design Wind Sp	peed 150	mph			Extren	1e Event Wind Sp	eed	<u>DG Wind Speeds</u> <u>by County</u>
Enter Arm	Lengths, Sig	gnal and S	ign Data					
Arm 1					Arm 2 S	et Arm 2 Length	= 0 for single c	ırm Mast Arms
Arm 1 Length	45	Reset Arr	n 1 Data		Arm 2 Length	0	Reset A	rm 2 Data
Arm1 Signal Number	Distance to Signal (ft)	Number of Heads			Arm2 Signal Number	Distance to Signal (ft)	Number of Heads]
1	8	3			1			
2	24	5			2			
3	32	3			3			
4	40	4			4			
5					5			-
6					6			T
7					7			r
8					8			
9					9			
10					10			
Arm 1 Sign Pan	els				Arm 2 Sign Po	anels		
Arm1 Sign Panel Number	Distance to Panel (ft)	Panel Area (sf)			Arm2 Sign Panel Number	Distance to Panel (ft)	Panel Area (sf)	
1	12	12			1			_
2	28	1.4			2			1
3	36	7.5			3			-


III. Arm 2 Analysis	InputDataFile = ".	A50SH-P3S-DS	1445.dat"	$V_{extreme} = 1$	50 mph		
Dist _{splice.from.base.arm} values	("Wall Thickness"	$\Delta dia = 1 \cdot in \Delta$	$\Delta dia = 2 \cdot in$	$\Delta dia = 3 \cdot in$	$\Delta dia = 4 \cdot in$	$\Delta dia = 5 \cdot in$	$\Delta dia = 6 \cdot in$
that give a base diameter	$t_{wall.arm} = 0.179 \cdot in$		17.0 ft	<i>24.2</i> ∙ft	<i>31.3</i> · ft	38.5 .ft	45.6 ∙ft
in even inches	$t_{wall.arm} = 0.25 \cdot in$	10.9 ft	<i>18.0</i> ∙ft	25.2 · ft	<i>32.3</i> · ft	39.4 ft	46.6 ∙ft)
Help - Base Diameters	elp - Arm Tip Diameter	Help - Tube Wa	ll Thickness	Help - Ai	m Lengths		to Splice
Enter Arm 2 Data	n Length (ft) (in		hickness 1 (in)	Wall Thickness . (in)	2 Distance to (ft)	Splice	
	$a_{1.arm2} = 0 \text{ ft}$						
	t, 40 ft. max. Measure · 1 piece arms to flat 's		& 2 arms ' SD '	for 2 piece arms only 's E	for 2 pie r only (La	<i>ece arms</i> arm' - 'SA')	
<u> </u>	I the second	- I				~)	
Arm 2 Analysis including	Existing Mast Arm Analysi	c					
Arm 2 Combined Force Intera							
	·						
$\max(\text{CFI}_{\text{arm2}}) = 0.00$	BackPlate = "Rigid, 6	inches wide"					
Summary - Arm 2 Geometry a	and Loading n	$\max(\Delta_{\rm arm2}) = 0.4$	0·in	2·de	$g \cdot L_{total.arm2} =$	0.in	
		rm 2: Sign and S	1	•			
10 #Signals _{arm2} = 0	$Lights2 = \begin{pmatrix} "Dist(f \\ "# Head$	t)" 0 0 0 0		$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$			
	, ,			,			
$#Panels_{arm2} = 0$	Signs2 = ("Dist(ft "Area (s)" 0 0 0 0 f)" 0 0 0 0	$\begin{pmatrix} 0\\ 0 \end{pmatrix}$				
- 10	~ ~ ~	,					0
$-(L_{total.arm2}+3\cdot n)$							0
$\max(\text{CFI}_{\text{arm2}}) = 0.00$ $\max(\Delta_{\text{arm2}}) = 0.0 \cdot \text{in}$	'SB'= 'SF'= Diameter _{ti}	$_{\text{p.arm2}} = \begin{pmatrix} 0.00\\ 0.00 \end{pmatrix}$	·in	C	Classification _a	$rm2 = \begin{pmatrix} "Comp \\ "N/A \end{pmatrix}$	pact"
$L_{total.arm2} = 0 \text{ ft}$	'SC'= 'SG'= Diameter	$r_{\text{base.arm2}} = \begin{pmatrix} 0.00\\ 0.00 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot in$	Ι	splice.provided.a	$_{\rm rm2} = 0 \cdot {\rm ft}$	
'SA'= $L_{\text{fabricated.arm2}} = \begin{pmatrix} 0.0 \\ 0.0 \end{pmatrix}$) ft 'SD'='SH'= twall.arm2 =	$\begin{pmatrix} 0.000\\ 0.000 \end{pmatrix}$ in					

IV. Luminaire Arm Analysis InputDataFile = "A50SH-P3S-DS1445.dat" $V_{extreme} = 150 \text{ mph}$

VII. Upright Base Plate & Anchor Bolt Analysis InputDataFile = "A50SH-P3S-DS1445.dat"

Analyze Foundation

inpLuminaire :	<pre>(inpYLuminaire inpXLuminaire inpLumBaseDia inpLumWallThk inpLumSlope inpLumRadius inpLumBoltDia inptLumBasePlate</pre>	outLuminaire := inpLuminaire
inpUpright :=	(inpUprightTotHeight inpUprightHtToConn inpUprightBaseDia inpUprightWallThk inpAnchorBoltDia inpNumOfAnchorBolts inpConnPlateHeight	outUpright := inpUpright

 $inpConn := \begin{pmatrix} inpArm1Gap & inpArm1VertPlateThk & inpArm1BoltDia & inpArm1BasePlateThk & inpArm1BasePlateWidth \\ inpArm2Gap & inpArm2VertPlateThk & inpArm2BoltDia & inpArm2BasePlateThk & inpArm2BasePlateWidth \end{pmatrix}$

outConn := inpConn

inpShaft :=	(num2str(inpSoilType)) inpSoilDensity inpFrictionAngle inpNumBlows inpShearStrength "0.0" "0.0" "0.0" inpShaftOffset inpNumSpacesB inpStirrupSpacingB	outShaft := inpShaft
	inpNumSpacesB inpStirrupSpacingB inpNumSpacesC inpStirrupSpacingC	
	(inpStirrupSize))

Foundation Data

SoilType := inpSoilType = 0

 $\gamma_{soil} := str2num(inpSoilDensity) \cdot pcf = 43 \cdot pcf$

```
\phi_{soil} := str2num(inpFrictionAngle) \cdot deg = 29 \cdot deg
```

 $N_{blows} := str2num(inpNumBlows) = 6$

 $c_{soil} := str2num(inpShearStrength) \cdot psf = 2000 \cdot psf$

 $Offset := str2num(inpShaftOffset) \cdot ft = 0.5 ft$

NumSpacesStirrupsB := str2num(inpNumSpacesB) = 10 $s_{v_1} := str2num(inpStirrupSpacingB) \cdot in = 8 \cdot in$ NumSpacesStirrupsC := str2num(inpNumSpacesC) = 0 $s_{v_2} := str2num(inpStirrupSpacingC) \cdot in = 0 \cdot in$ StirrupBarSize := inpStirrupSize = 5 $\gamma_{water} := 62.4 \cdot pcf = 62.4 \cdot pcf$ (not used)

Foundation Design References

LRFD = AASHTO LRFD Bridge Design Specifications <u>SDG = FDOT Structures Design Guidelines</u> ACI = ACI 318 Structural Concrete Building Code

Applied Loads

(From Arm1 Design)

<u>SM V3 = FDOT Structures Manual Volume 3</u>

<u>Spec = FDOT Standard Specifications</u>

UF Report = FDOT/University of Florida Report BD545 RPWO #54

 $V_{extreme} = 150 \cdot mph$

(from Base Plate Design)

#AnchorBolts = 6

 $d_{anchorbolt} = 2 \cdot in$

 $Diameter_{boltcircle.pole} = 28 \cdot in$

 $T_{u.anchor} = 44.5 \cdot kip$

(from Upright Design)

$$M_{x,polebase} = \begin{pmatrix} 0\\ 147.3\\ 147.3 \end{pmatrix} \cdot kip \cdot ft$$
$$M_{y,polebase} = \begin{pmatrix} 179.9\\ 0\\ 179.9 \end{pmatrix} \cdot kip \cdot ft$$

 $M_{z,polebase} = \begin{pmatrix} 0\\51\\51 \end{pmatrix} \cdot kip \cdot ft$

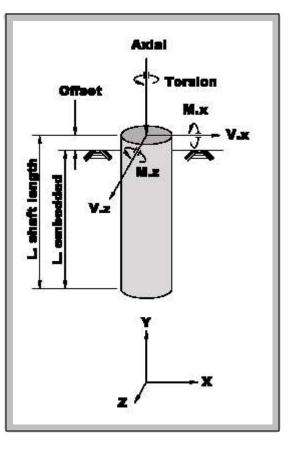
LoadCaseT = 0 LoadCaseT = 0

LoadCaseOT = 1 LoadCaseCFI = 2

$$V_{x.polebase} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \cdot kip \qquad AxialForce_{polebase} = \begin{pmatrix} 4 \\ 4 \\ 4 \end{pmatrix} \cdot kip \qquad V_{z.polebase} = \begin{pmatrix} 0 \\ 7.9 \\ 7.9 \end{pmatrix} \cdot kip$$

Foundation Diameter

 $Diameter_{shaft} := Diameter_{boltcircle.pole} + 12 \cdot in + 12 \cdot in = 4.33 \text{ ft}$


round shaft diameter up to the nearest half foot dimension to accommodate available coring equipment

Diameter_{shaft}:= Ceil
$$\left(\text{Diameter}_{\text{shaft}}, \frac{1}{2} \cdot \text{ft} \right) = 4.5 \text{ ft}$$

 $Diameter_{shaft.custom} := 4.5 \cdot ft$

 $\underbrace{\text{Diameter}_{shaft}:= if[(\text{Diameter}_{shaft.custom} > 0 \cdot ft), \text{Diameter}_{shaft.custom}, \text{Diameter}_{shaft}] = 1.4$

b:= Diameter_{shaft}

Shaft Depth Required to Resist Overturning

the following calculations are consistent with FDOT's Drilled Shaft Program V1.1


$$\phi_{ot} := 0.6$$
 SM V3 13.6 Offset = 0.5 ft vertical distance between top of foundation and ground line

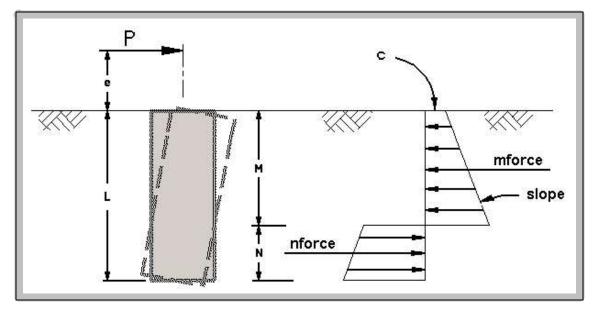
$$M_{u} := \sqrt{\left(M_{x.polebase}_{LoadCaseOT}\right)^{2} + \left(M_{z.polebase}_{LoadCaseOT}\right)^{2}} = 155.8 \cdot kip \cdot ft$$

$$P_{u} := \sqrt{\left(V_{x.polebase}_{LoadCaseOT}\right)^{2} + \left(V_{z.polebase}_{LoadCaseOT}\right)^{2}} = 7.91 \cdot kip$$

$$T_u := M_{y.polebase_{LoadCaseT}} = 179.9 \cdot kip \cdot ft$$

short free-head pile in <u>cohesionless soil</u> using Broms method

Deflection, load, shear and moment diagram for a short pile in cohesionless soil that is unrestrained against rotation.


$$\begin{split} K_{p} &\coloneqq \tan\left(45 \cdot \deg + \frac{\varphi_{soil}}{2}\right)^{2} = 2.9 \qquad e_{sand} \coloneqq \text{Offset} = 0.5 \text{ ft} \\ \\ Guess value \qquad \qquad L_{otSand} \coloneqq 8 \cdot \text{ft} \\ \\ \text{Given} \qquad P_{u} \cdot \left(e_{sand} + L_{otSand}\right) + M_{u} = \varphi_{ot} \cdot \left[\left(3 \cdot \gamma_{soil} \cdot b \cdot L_{otSand} \cdot K_{p}\right) \cdot \left(\frac{1}{2} \cdot L_{otSand}\right) \cdot \left(\frac{1}{3} \cdot L_{otSand}\right)\right] \end{split}$$

 $L_{\text{otSand}} := \text{Find}(L_{\text{otSand}}) = 11.4 \text{ ft}$

$$L_{\text{totSand}} := \operatorname{ceil}\left(\frac{L_{\text{otSand}}}{\mathrm{ft}}\right) \cdot \mathrm{ft} = 12 \ \mathrm{ft} \qquad (round up \ to \ nextfoot)$$

$$D/C_{otSand} := \frac{M_u + P_u \cdot (e_{sand} + L_{otSand})}{\frac{(\phi_{ot}) \cdot \gamma_{soil} \cdot b \cdot L_{otSand}^3 \cdot K_p}{2}} = 0.88$$

short free-head pile in <u>cohesive soil</u> using Modified Broms method for L < 3b (see reference file for derivation)

Deflection, load, shear and moment diagram for a short pile in cohesive soil that is unrestrained against rotation.

$$c_{\text{soil}} := \text{if}\left[\left(c_{\text{soil}} = 0 \cdot \text{ksf}\right), 0.1 \cdot \text{ksf}, c_{\text{soil}}\right] = 2 \cdot \text{ksf} \qquad c_{\text{soil}} = 2000 \cdot \text{psf}$$

Slope :=
$$8 \cdot \frac{c_{soil}}{3 \cdot b} = 1.2 \cdot \frac{kip}{ft^3}$$
 $e_{clay} := \frac{M_u}{P_u} + Offset = 20.2 \text{ ft}$

$$nforce(M, N) := \left[Slope \cdot (2 \cdot M + N) + 2 \cdot c_{soil} \right] \cdot N \cdot \frac{b}{2} \qquad mforce(M) := \left(2 \cdot c_{soil} + M \cdot Slope \right) \cdot M \cdot \frac{b}{2}$$

$$m_arm(M) := e_{clay} + \frac{M}{3} \cdot \frac{2 \cdot (M \cdot Slope + c_{soil}) + c_{soil}}{M \cdot Slope + 2 \cdot c_{soil}}$$

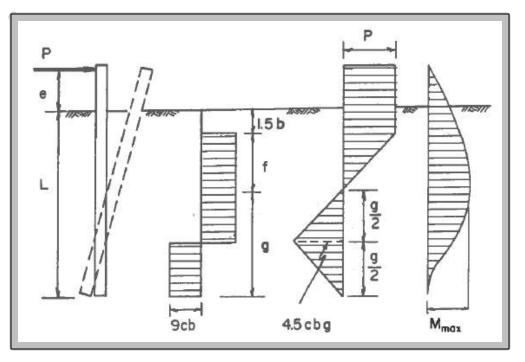
$$n_arm(M, N) \coloneqq e_{clay} + M + \frac{N}{3} \cdot \frac{2 \cdot (N \cdot Slope + M \cdot Slope + c_{soil}) + (M \cdot Slope + c_{soil})}{Slope \cdot (2 \cdot M + N) + 2 \cdot c_{soil}}$$

Guess value

 $M := 4.0 \cdot ft \qquad \qquad \underset{\ensuremath{\mathsf{N}}}{\overset{\ensuremath{\mathsf{N}}}{\underset{\ensuremath{\mathsf{N}}}}{\underset{\ensuremath{\mathsf{N}}}}{\underset{\ensuremath{\mathsf{N}}}}{\underset{\ensuremath{\mathsf{N}}}}}}}}}}}}}}}}}}}}}} } } \slighta {\ensuremath{\mathsf{N}}}{\underset{\ensuremath{\mathsf{N}}}{\underset{\ensuremath{\mathsf{N}}}}{\underset{\ensuremath{\mathsf{N}}}}{\underset{\ensuremath{\mathsf{N}}}}}}}}}}}}}}}} } \\slighta {\ensuremath{\mathsf{N}}}{\underset{\ensuremath{\mathsf{N}}}}{\underset{\ensuremath{\mathsf{N}}}}{\underset{\ensuremath{\mathsf{N}}}}{\underset{\ensuremath{\mathsf{N}}}}{\underset{\ensuremath{\mathsf{N}}}}}}}}}}}}} } } } } } \\slighta {\ensuremath{\mathsf{N}}}{\underset{\ensuremath{\mathsf{N}}}}{\underset{\ensuremath{\mathsf{N}}}}}}}}} } } \\slighta {\ensuremath{\mathsf{N}}}}{\underset{\e$

Given

 $P_u + \phi_{ot} \cdot nforce(M, N) = \phi_{ot} \cdot mforce(M)$


$$\begin{pmatrix} M \\ N \\ N \end{pmatrix} := \operatorname{Find}(M, N) \qquad \qquad L_{otlClay} := M + N = 7.2 \, \mathrm{ft}$$

MastArmV1.2.xmcd

 $mforce(M) \cdot m_arm(M) = nforce(M,N) \cdot n_arm(M,N)$

$$L_{\text{MAXWORKW}} = \operatorname{ceil}\left(\frac{L_{ot1Clay}}{ft}\right) \cdot ft = 8 \ ft \qquad (round up \ to \ nextfoot)$$

short free-head pile in <u>cohesive soil</u> using Regular Broms method for L > 3b

Deflection, load, shear and moment diagram for a short pile in cohesive soil that is unrestrained against rotation. M_{max.clay} equation is derived from the integration of the upper part of the shear diagram to the point of zero shear.

$$f := \frac{P_u}{\phi_{ot} \cdot 9 \cdot c_{soil} \cdot b} = 0.2 \, \text{ft}$$

 $M_{\text{max.clay}} := P_{u} \cdot \left(e_{\text{clay}} + 1.5 \cdot b + 0.5 \cdot f \right) = 213.8 \cdot \text{kip} \cdot \text{ft}$

$$g := \sqrt{\frac{M_{max.clay}}{2.25 \cdot \phi_{ot} \cdot c_{soil} \cdot b}} = 4.2 \text{ ft}$$

 $L_{ot2Clay} := (1.5 \cdot b + f + g) = 11.1 \text{ ft}$

$$L_{\text{vot2Class}} := \text{ceil}\left(\frac{L_{\text{ot2Clasy}}}{\text{ft}}\right) \cdot \text{ft} = 12 \text{ ft}$$

$$L_{otClay} := if[(L_{ot1Clay} < 3 \cdot b), L_{ot1Clay}, L_{ot2Clay}] = 2.4$$

 $L_{reqdOT} := if[(SoilType = 0), L_{otSand}, L_{otClay}]$

required shaft embedment depth to resist overturning

(round up to next foot)

(If $L_{ot} < 3b$, use Modified Broms method)

 $L_{reqdOT} = 12 \text{ ft}$

$\phi_{tor} := 1.0$ **<u>SM V3 13.6</u>**

short free-head pile in cohesionless soil

NOTE: ω_{fdot} *is based upon concrete soil interaction. This tors ion methodology is not to be used with permanent casing.*

 $N_{blows} = 6$ $\omega_{fdot} := if\left[\left(N_{blows} < 5\right), 0, if\left[\left(N_{blows} \ge 15\right), 1.5, 1.5, \frac{N_{blows}}{15}\right]\right] = 0.6$

load transfer ratio, If 5<N<15, ω_{fdot} is

SM Vol-3 13.6

0 - Sand

1 - Clay

reduced by a factor of
$$\frac{N_{blows}}{15}$$

Guess value

 $L_{torSand} := L_{reqdOT} = 12 \, ft$

Given
$$T_u = \phi_{tor} \cdot \left[\left(\pi \cdot b \cdot L_{torSand} \right) \cdot \left(\gamma_{soil} \cdot \frac{L_{torSand}}{2} \right) \cdot \left(\omega_{fdot} \right) \cdot \frac{b}{2} \right]$$

$$L_{torSand} := Find(L_{torSand}) = 20.9 ft$$

$$L_{\text{torSand}} := \operatorname{ceil}\left(\frac{L_{\text{torSand}}}{\operatorname{ft}}\right) \cdot \operatorname{ft} = 21 \operatorname{ft} \qquad (round up \ to \ next foot)$$

short free-head pile in cohesive soil

CohesionFactor := 0.55

 $f_{se} := CohesionFactor \cdot c_{soil} = 1.1 \cdot ksf$

Guess value

1

 $L_{torClay} := L_{reqdOT}$

Given
$$T_u = \phi_{tor} \cdot \left[f_{se} \cdot (\pi \cdot b) \cdot \left(L_{torClay} - 1.5 \cdot ft \right) \cdot \frac{b}{2} \right]$$

 $L_{torClask} = Find(L_{torClasy}) = 6.6 \, ft$

$$L_{\text{torClay}} \coloneqq \operatorname{ceil}\left(\frac{L_{\text{torClay}}}{\text{ft}}\right) \cdot \text{ft} = 7 \text{ ft} \qquad (round up to nextfoot)$$

$$L_{reqdTor} := if[(SoilType = 0), L_{torSand}, L_{torClay}] L_{reqdTor} = 21 ft$$

required shaft embedment depth to resist torsion

SoilType = 0

 $L_{embedded} := if \left[\left(L_{reqdTor} > L_{reqdOT} \right), L_{reqdTor}, L_{reqdOT} \right] = 21 \cdot ft$

 $L_{shaft} := L_{embedded} + Offset$

 $L_{shaft} = 21.5 \text{ ft}$ shaft length

Maximum Moment in Shaft

short free-head pile in cohesionless soil using Broms method

$$f_{sand} \coloneqq \sqrt{\frac{2 \cdot P_u}{3 \cdot \gamma_{soil} \cdot b \cdot K_p \cdot \varphi_{ot}}} = 4 \text{ ft}$$

 $M_{maxSand} \coloneqq P_u \cdot \left(e_{sand} + f_{sand} \right) - \frac{P_u \cdot f_{sand}}{3} + M_u = 180.7 \cdot kip \cdot ft$

short free-head pile in <u>cohesive soil</u> using Modified Broms method for L < 3b (see reference file for derivation)

Guess value $f_{mod} := 4.0 \cdot ft$

Given

$$P_{\rm u} = \frac{f_{\rm mod} \cdot b}{2} \cdot \left(2\phi_{\rm ot} \cdot c_{\rm soil} + \phi_{\rm ot} \cdot f_{\rm mod} \cdot \text{Slope} \right)$$

$$f_{mod} := Find(f_{mod}) = 1.1 \text{ ft}$$

 $M_{modBroms} := P_{u} \cdot \left(e_{clay} + f_{mod} \right) - \frac{\phi_{ot} \cdot c_{soil} \cdot b \cdot f_{mod}^{2}}{2} - \frac{\phi_{ot} \cdot b \cdot f_{mod}^{3} \cdot Slope}{6} = 164.5 \cdot kip \cdot ft$

short free-head pile in <u>cohesive soil</u> using Regular Broms method for L > 3b

 $M_{Broms} := P_u \cdot \left(e_{clay} + 1.5 \cdot b + 0.5 \cdot f \right) = 213.8 \cdot kip \cdot ft$

 $M_{maxClay} := if[(L_{ot1Clay} < 3 \cdot b), M_{modBroms}, M_{Broms}] = 164.5 \cdot kip \cdot ft \qquad (If L_{ot} < 3b, use Modified Broms method)$

 $M_{max} := if[(SoilType = 0), M_{maxSand}, M_{maxClay}] = 180.7 \cdot kip \cdot ft$

Minimum Reinforcing and Spacing

$F_{y.rebar} := 60 \cdot ksi$	reinforcing yie	ld strength
$f_c := \textbf{4.0} \cdot ksi$	concrete streng	gth <u>Spec 346-3</u>
Cover := $6 \cdot in$	cover	<u>SDG Table 1.4.2-1</u>

 $A_{long,bar} := 1.56 \cdot in^2$

longitudinal bar area

 $d_{long.bar} := 1.41 \cdot in$

longitudinal bar diameter

 $A_{v.bar} := if \left(StirrupBarSize = 5, 0.31 \cdot in^2, 0.44 \cdot in^2 \right) = 0.31 \cdot in^2 \quad stirrup \ area$ $MV3 \ 13.6.2$ $d_{v.bar} := if \left(StirrupBarSize = 5, 0.625 \cdot in, 0.75 \cdot in \right) = 0.625 \cdot in \quad stirrup \ diameter$

$$\mathbf{s}_{v} := \begin{pmatrix} 4 \cdot \mathrm{in} \\ \mathbf{s}_{v_{1}} \\ \mathbf{s}_{v_{2}} \\ 12 \cdot \mathrm{in} \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \\ 0 \\ 12 \end{pmatrix} \cdot \mathrm{in} \begin{pmatrix} "Stirrups A" \\ "Stirrups B" \\ "Stirrups B" \\ "Stirrups C" \\ "Stirrups D" \end{pmatrix} \qquad stirrup spacing defined in Index 649-031, depth = 0 ft-2 ft \\ stirrup spacing, depth = 2 ft-depth.stir \\ stirrup spacing, depth > depth.stir \\ stirrup spacing, depth > depth.stirA \end{pmatrix}$$

$$\begin{split} & \# \text{Spaces}_{\text{vbar}} := \begin{pmatrix} 6 \\ \text{NumSpacesStirrupsB} \\ \text{NumSpacesStirrupsC} \\ 1 \end{pmatrix} = \begin{pmatrix} 6 \\ 10 \\ 0 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} \text{"Stirrups A"} \\ \text{"Stirrups B"} \\ \text{"Stirrups C"} \\ \text{"Stirrups D"} \end{pmatrix} \\ & \text{s}_{v} = \begin{pmatrix} 4 \\ 8 \\ 0 \\ 12 \end{pmatrix} \cdot \text{in} \qquad \# \text{Spaces}_{v\text{bar}} = \begin{pmatrix} 6 \\ 10 \\ 0 \\ 1 \end{pmatrix} \\ & \# \text{Spaces}_{v\text{bar}_{2}} := \text{if} \begin{bmatrix} \# \text{Spaces}_{v\text{bar}_{2}} = 0, \text{floor} \begin{bmatrix} L_{\text{shaft}} - 5 \cdot \text{in} - \sum_{i=0}^{1} \left(s_{v_{i}} \cdot \# \text{Spaces}_{v\text{bar}_{i}} \right) \\ & \frac{1}{s_{v_{3}}} \end{bmatrix}, \# \text{Spaces}_{v\text{bar}_{2}} = 12 \\ & \# \text{Spaces}_{v\text{bar}_{3}} := \text{floor} \begin{bmatrix} \frac{L_{\text{shaft}} - 5 \cdot \text{in} - \sum_{i=0}^{2} \left(s_{v_{i}} \cdot \# \text{Spaces}_{v\text{bar}_{i}} \right) \\ & \frac{1}{s_{v_{3}}} \end{bmatrix} = 12 \\ & \text{L_{shaft}} = 21.5 \text{ ft} \qquad \sum_{i=0}^{3} \left(s_{v_{i}} \cdot \# \text{Spaces}_{v\text{bar}_{i}} \right) = 20.7 \text{ ft} \end{split}$$

 $b = 4.5 \, ft$ shaft diameter

#LongBars_{reqd1} :=
$$\frac{0.01}{A_{\text{long,bar}}} \cdot \frac{\pi \cdot b^2}{4} = 14.7$$
 LRFD 5.7.4.2

#LongBars_{reqd2} :=
$$\frac{0.135}{A_{long,bar} \cdot F_{y,rebar}} \cdot \left(\frac{\pi \cdot b^2}{4} \cdot f_c\right) = 13.2$$

 $\#LongBars_{prov} := ceil(max(\#LongBars_{reqd_1}, \#LongBars_{reqd_2})) = 15$ number of longitudinal bars 16

 $Dia_{bar,circle} := b - 2 \cdot Cover - 2 \cdot d_{v,bar} - d_{long,bar} = 39.3 \cdot in$

Spacing_{vert.reinf} := Dia_{bar.circle} $\cdot \frac{\pi}{\# \text{LongBars}_{\text{prov}}} = 8.2 \cdot \text{in}$ Clearance_{vert.reinf} := Spacing_{vert.reinf} - d_{long.bar} = 6.83 \cdot \text{in}

CheckReinfClearSpacing := if (Clearance_{vert.reinf} \geq 6in, "OK", "No Good")

CheckReinfClearSpacing = "OK"

<u>SDG 3.6.10</u>

Check Shear and Torsion

Shear Resistance Factor <u>LRFD 5.5.4.2.1</u>

$$V_{u} := \sqrt{\left(V_{x.polebase}_{LoadCaseOT}\right)^{2} + \left(V_{z.polebase}_{LoadCaseOT}\right)^{2}} = 7.9 \cdot kip$$

 $T_u = 179.9 \cdot kip \cdot ft$

Effective shear depth

$$D_{r} := b - 2 \cdot \left(Cover + d_{v.bar} + \frac{d_{long.bar}}{2} \right) = 3.3 \text{ ft} \qquad d_{e} := \frac{b}{2} + \frac{D_{r}}{\pi} = 3.3 \text{ ft} \qquad \underline{LRFD \ C5.8.2.9-2}$$

 $d_v := max(0.9 \cdot d_e, 0.72 \cdot b) = 3.2 \text{ ft}$

Check Shear Strength

$$V_{c} := 0.0316 \cdot (2.0) \cdot \sqrt{f_{c} \cdot ksi} \cdot (d_{v}) \cdot b = 265.4 \cdot kip \qquad \underline{\textit{LRFD Eqn 5.8.3.3-3}} \qquad \underline{\textit{LRFD 5.8.3.4.1}} \qquad \underline{\textit{ACI 11.3.3}}$$

$$V_{s} := \frac{A_{v,bar} \cdot F_{y,rebar} \cdot d_{v}}{\max(s_{v_{0}}, s_{v_{1}}, s_{v_{2}})} = 90.4 \cdot \text{kip}$$

$$\underline{LRFD \ Eqn \ 5.8.3.3-4}$$

$$D/C_{shear} := \max\left(\left(\frac{V_{u} - \phi_{v} \cdot V_{c}}{\phi_{v} \cdot V_{s}}\right)\right) = 0$$

Check Torsion Strength

$$\begin{aligned} A_{cp} &:= \pi \cdot \left(\frac{b}{2}\right)^2 = 2290.2 \cdot in^2 \\ d_{oh} &:= b - 2 \cdot \left(Cover + \frac{d_{v,bar}}{2}\right) = 41.4 \cdot in \\ A_{oh} &:= \pi \left(\frac{d_{oh}}{2}\right)^2 = 1.3 \times 10^3 \cdot in^2 \end{aligned}$$

$$\begin{aligned} P_{cp} &:= 2 \cdot \pi \cdot \left(\frac{b}{2}\right) = 169.6 \cdot in \\ P_{h} &:= \pi \cdot d_{oh} = 130 \cdot in \\ P_{h} &:= \pi \cdot d_{oh} = 130 \cdot in \end{aligned}$$

$$\begin{aligned} Diameter, perimeter and area enclosed by the centerline of the outermost closed transverse torsion reinforcement \end{aligned}$$

$$\begin{aligned} A_{oh} &:= \pi \left(\frac{d_{oh}}{2}\right)^2 = 1.3 \times 10^3 \cdot in^2 \\ T_{n.torsion_0} &:= \frac{2 \cdot A_0 \cdot A_{v,bar} \cdot F_{y,rebar}}{s_{v_0}} = 885.7 \cdot kip \cdot ft \end{aligned}$$

$$\begin{aligned} \underline{IRFD \ Eqn \ 5.8.3.6.2-1} \end{aligned}$$

 $T_{n.torsion_{1}} := \frac{2 \cdot A_{o} \cdot A_{v.bar} \cdot F_{y.rebar}}{s_{v_{1}}} = 442.8 \cdot kip \cdot ft$

 $T_{n.torsion_2} := T_{n.torsion_1}$ on error $\frac{2 \cdot A_o \cdot A_{v.bar} \cdot F_{y.rebar}}{s_{v_2}} = 442.8 \cdot kip \cdot ft$

$$\varphi_v = 0.9 \qquad \qquad T_u = 179.9 \cdot kip \cdot ft \qquad \qquad L_{reqdTor} = 21 \ ft$$

$$depth_{stir} := \begin{cases} for \ i \in 0..1 \\ depth_{i} \leftarrow \sum_{j=0}^{i} \left(s_{v_{j}} \cdot \#Spaces_{vbar_{j}} \right) \\ depth \end{cases} \qquad depth_{stir} = \begin{pmatrix} 2 \\ 8.7 \end{pmatrix} ft$$

 $T_{u.section_0} := T_u$

$$T_{u.sand_{1}} := T_{u} - if\left[\left(depth_{stir_{0}} > Offset\right), \left[\pi \cdot b \cdot \left(depth_{stir_{0}} - Offset\right) \cdot \gamma_{soil} \cdot \left(\frac{depth_{stir_{0}} - Offset}{2}\right) \cdot \left(\omega_{fdot}\right) \cdot \frac{b}{2}\right], 0 \cdot kip \cdot ft\right] = 179 \cdot kip \cdot ft$$

$$T_{u.sand_{2}} := T_{u} - if\left[\left(depth_{stir_{1}} > Offset\right), \left[\pi \cdot b \cdot \left(depth_{stir_{1}} - Offset\right) \cdot \gamma_{soil} \cdot \left(\frac{depth_{stir_{1}} - Offset}{2}\right) \cdot \left(\omega_{fdot}\right) \cdot \frac{b}{2}\right], 0 \cdot kip \cdot ft\right] = 152.6 \cdot kip \cdot ft$$

$$T_{u.clay_{1}} \coloneqq T_{u} - if \left[\left(depth_{stir_{0}} - 1.5ft > Offset \right), \left[f_{se} \cdot (\pi \cdot b) \cdot \left(depth_{stir_{0}} - Offset - 1.5 \cdot ft \right) \cdot \frac{b}{2} \right], 0 \cdot kip \cdot ft \right] = 179.9 \cdot kip \cdot ft$$

$$T_{u.clay_{2}} \coloneqq T_{u} - if \left[\left(depth_{stir_{1}} - 1.5ft > Offset \right), \left[f_{se} \cdot (\pi \cdot b) \cdot \left(depth_{stir_{1}} - Offset - 1.5 \cdot ft \right) \cdot \frac{b}{2} \right], 0 \cdot kip \cdot ft \right] = -53.3 \cdot kip \cdot ft$$

$$T_{u.section_{1}} \coloneqq if \left[(SoilType = 0), T_{u.sand_{1}}, T_{u.clay_{1}} \right] = 179 \cdot kip \cdot ft$$

$$T_{u.section_{2}} \coloneqq if \left[(SoilType = 0), T_{u.sand_{2}}, T_{u.clay_{2}} \right] = 152.6 \cdot kip \cdot ft$$

$$T_{u.section} = \begin{pmatrix} 179.9\\ 179\\ 152.6 \end{pmatrix} \cdot kip \cdot ft \qquad T_{n.torsion} = \begin{pmatrix} 885.7\\ 442.8\\ 442.8 \end{pmatrix} \cdot kip \cdot ft$$

$$D/C_{torsion} \coloneqq \frac{T_{u.section}}{\phi_{tor} \cdot T_{n.torsion}} = \begin{pmatrix} 0.2 \\ 0.4 \\ 0.34 \end{pmatrix} \qquad D/C_{max.torsion} \coloneqq max(D/C_{torsion}) = 0.40$$

$$T_{cr} := 0.125 \sqrt{\frac{f_c}{ksi}} \cdot \left(\frac{A_{cp}^2}{p_{cp} \cdot in^3}\right) \cdot kip \cdot in = 644.1 \cdot kip \cdot ft$$
LRFD Eqn 5.8.2.1-4

$$T_{u} = 179.9 \cdot kip \cdot ft \qquad 0.25 \cdot \phi_{tor} T_{cr} = 161 \cdot kip \cdot ft$$

$$D/C_{torsion,max} := if[(T_{u} \le 0.25 \cdot \phi_{tor} T_{cr}), 0, max(D/C_{torsion})] = 0.404 \qquad \underline{IRFD Eqn 5.8.2.1.3}$$

$$D/C_{shear} = 0.000 \qquad D/C_{torsion,max} = 0.404$$

$$CheckD/C_{shear,and,torsion} := if[(D/C_{shear} + D/C_{torsion,max} \le 1), "OK", "No Good"] \qquad CheckD/C_{shear,and,torsion} = "OK"$$

$$Check Maximum Spacing Transverse Reinforcement$$

$$v_{u} := \frac{V_{u}}{\phi_{v} \cdot b \cdot d_{v}} = 0.0042 \cdot ksi \qquad 0.125 \cdot f_{c} = 0.5 \cdot ksi \qquad \underline{IRFD Eqn 5.8.2.9.1}$$

$$s_{max1} := if[(0.8 \cdot d_{v} < 24 \cdot in), 0.8d_{v}, 24 \cdot in] = 24 \cdot in \qquad \underline{IRFD Eqn 5.8.2.7.1}$$

$$s_{max2} := if[(0.4 \cdot d_{v} < 12 \cdot in), 0.4d_{v}, 12 \cdot in] = 12 \cdot in \qquad \underline{IRFD Eqn 5.8.2.7.2}$$

$$s_{max} := if[(v_{u} < 0.125 \cdot f_{v}), s_{max1}, s_{max2}] = 24 \cdot in$$

$$max(s_{v}) = 12 \cdot in$$

$$CheckMaxSpacingTransvReinf := if[(max(s_{v}) \le s_{max}), "OK", "No Good"] \qquad CheckMaxSpacingTransvReinf = "OK"$$

$$M_{u} = 155.8 \cdot kip \cdot ft$$

$$V_{temp} := if \left(\frac{V_u}{\phi_v} - 0.5 \cdot V_s > 0 \cdot kip, \frac{V_u}{\phi_v} - 0.5 \cdot V_s, 0 \cdot kip \right) = 0 \cdot kip$$
$$LongReinf_{shr.tor} := \frac{\frac{M_u}{\phi_v \cdot d_v} + \sqrt{\left(V_{temp}\right)^2 + \left(\frac{0.45 \cdot p_h \cdot T_u}{2 \cdot A_o \cdot \phi_v}\right)^2}}{F_{y.rebar}} = 1.91 \cdot in^2$$

$$\#LongBars_{prov} \cdot A_{long.bar} = 23.4 \cdot in^2$$

Anchor Bolt Embedment

$$CheckLongReinf_{shr.tor} := if[(\#LongBars_{prov} \cdot A_{long.bar} \ge LongReinf_{shr.tor}), "OK", "No Good"]$$

CheckLongReinf_{shr.tor} = "OK"

19

<u>LRFD 5.8.3.4.1</u>

 $T_{u.anchor} = 44.5 \cdot kip$

tension force in anchor

 $Dia_{bar.circle} = 39.3 \cdot in$

 $Dia_{anchor.circle} := Diameter_{boltcircle.pole} = 28 \cdot in$

center-to-center distance

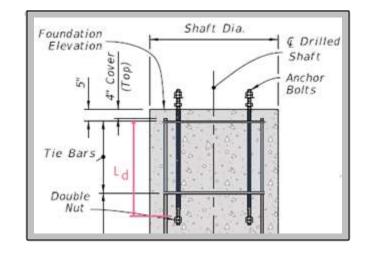
 $\text{Dist}_{\text{bar.to.bolt}} := \frac{\text{Dia}_{\text{bar.circle}} - \text{Dia}_{\text{anchor.circle}}}{2} = 5.7 \cdot \text{in}$

Num_{bars.per.anchor} := min
$$\left(\frac{\#LongBars_{prov}}{\#AnchorBolts}, 3\right) = 2.5$$

$$Num_{bars.reqd.per.anchor} := \frac{T_{u.anchor}}{A_{long.bar} \cdot (\phi \cdot F_{y.rebar})} \cdot \frac{Dia_{anchor.circle}}{Dia_{bar.circle}} = 0.38$$

AreaRatio :=
$$min\left(\frac{Num_{bars.reqd.per.anchor}}{Num_{bars.per.anchor}}, 1\right) = 0.15$$

2015 AASHTO Development Length of Deformed Bars in Tension 5.11.2.1


 $Cover = 6 \cdot in$

 $c_b =$ the smaller of the distance from center of bar or wire being developed to the nearest concrete surface and one half the center-to-center spacing of the bars or wires being developed

$$c_{b} := \min\left(\begin{pmatrix} Cover + d_{v.bar} + \frac{d_{long.bar}}{2} \\ \frac{Spacing_{vert.reinf}}{2} \end{pmatrix} \right) = 4.1 \cdot in$$

$$k_{tr} := 0 \cdot in$$
 assume no transverse bars:

$$\begin{split} \lambda_{\rm rc} &\coloneqq \min \left[\begin{array}{c} 1.0 \\ max \left(\begin{pmatrix} 0.4 \\ \frac{d_{\rm long.bar}}{c_{\rm b} + k_{\rm tr}} \end{pmatrix} \right) \right] = 0.4 \\ L_{\rm d.bar} &\coloneqq \max \left(\begin{pmatrix} 12 \cdot \ln \\ \lambda_{\rm rc} \cdot 2.4 \cdot d_{\rm long.bar} \cdot \frac{F_{\rm y.rebar}}{\sqrt{f_{\rm c} \cdot {\rm ksi}}} \right) \right) = 40.6 \cdot \ln \\ \end{split}$$
 tension development length LRFD Eqn 5.11.2.1.1-2

$$\begin{aligned} &\text{SpacingFactor} \coloneqq \max \left[\begin{pmatrix} 0.5 \\ \text{Num}_{\text{bars.per.anchor}} \cdot 0.5 - 0.5 \end{pmatrix} \right] = 0.8 \\ &\text{L}_{\text{embedment.added}} \coloneqq \sqrt{\left(\text{Clearance}_{\text{vert.reinf}} \cdot \text{SpacingFactor}\right)^2 + \text{Dist}_{\text{bar.to.bolt}}^2} = 7.6 \cdot \text{in} \\ &\text{L}_{\text{embedment.anchor}} \coloneqq \max \left[\begin{bmatrix} \text{L}_{\text{d.bar}} \cdot (\text{AreaRatio}) + 12 \cdot \text{in} + \text{L}_{\text{embedment.added}} \\ 20 \cdot \text{d}_{\text{anchorbolt}} \end{bmatrix} \right] = 40 \cdot \text{in} \\ &\text{Sin} \\ \text{L}_{\text{anchor.bolt.exposed}} \coloneqq \max \left(\begin{pmatrix} 8 \cdot \text{in} \\ 2 \cdot \text{d}_{\text{anchorbolt}} + t_{\text{baseplate.pole}} + 2 \cdot \text{d}_{\text{anchorbolt}} + 2 \cdot \text{in} \end{pmatrix} \right) = 12.5 \cdot \text{in} \\ &\text{L}_{\text{anchor.bolt}} \coloneqq \text{Ceil} \left(\text{L}_{\text{embedment.anchor}} + \text{L}_{\text{anchor.bolt.exposed}}, \text{in} \right) = 53 \cdot \text{in} \\ &\text{L}_{\text{anchor.bolt}} = 53 \cdot \text{in} \end{aligned}$$

Anchor Bolt Shear Break-Out Strength

```
References:
ACI 318-05 Appendix D.
FDOT/University of Florida Report BD545 RPWO #54,
Anchor Embedment Requirements for Signal/Sign Structures, July 2007.
```

#AnchorBolts = 6	number of anchor bolts	
$d_{anchorbolt} = 2 \cdot in$	anchor bolt diameter	
$Diameter_{boltcircle.pole} = 28 \cdot in$	anchor bolt circle diameter	
$L_{embedment.anchor} = 40 \cdot in$	anchor bolt embedment	
$b = 54 \cdot in$	shaft diameter	

$$r_b := \frac{\text{Dia}_{\text{anchor.circle}}}{2} = 14 \cdot \text{in}$$

$$r := \frac{b}{2} = 27 \cdot in$$

$$c_{a1} := \frac{\sqrt{r_b^2 + 3.25 \cdot (r^2 - r_b^2)} - r_b}{3.25} = 9.2 \cdot in$$

$$L_e := \min \begin{pmatrix} 8 \cdot d_{anchorbolt} \\ L_{embedment.anchor} \end{pmatrix} = 16 \cdot in$$

adjusted cover

$$\min\left(\begin{pmatrix}8\cdot d_{\text{anchorbolt}}\\L_{\text{embedment.anchor}}\end{pmatrix}\right) = 16\cdot\text{in}$$

load bearing length of anchor for shear

ACI D.6.2.2

 $V_{b} := 13 \cdot \left(\frac{L_{e}}{d_{anchorbolt}}\right)^{0.2} \cdot \sqrt{\frac{d_{anchorbolt}}{in}} \cdot \sqrt{\frac{f_{c}}{psi}} \left(\frac{c_{a1}}{in}\right)^{1.5} \cdot lbf = 49.2 \cdot kip$ *shear break-out strength (single anchor) UF Report Eqn 2-11*

MastArmV1.2.xmcd

 $A_{bolt,sector} := \frac{(360 \cdot deg)}{\#AnchorBolts} = 60 \cdot deg$

UF Report Fig 3-7

$$\alpha_{\text{cone}} := 2 \operatorname{asin}\left[\frac{\left(1.5 \cdot \mathbf{c}_{a1}\right)}{r}\right] = 61.5 \cdot \operatorname{deg}$$

 $OverlapTest := if (A_{bolt,sector} \le \alpha_{cone}, "Overlap of Failure Cones", "No Overlap of Failure Cones") = "Overlap of Failure Cones"$

chord :=
$$2 \cdot r \cdot sin\left(\frac{A_{bolt.sector}}{2}\right) = 27 \cdot in$$
 UF Report Fig 3-7

 $A_{Vco} := 4.5 \cdot c_{a1}^2 = 381.2 \cdot in^2$

projected concrete failure area (single anchor) ACI Eqn D-23

 $A_{Vc} := chord \cdot 1.5 \cdot c_{a1} = 372.7 \cdot in^2$

projected concrete failure area (group)

ACI D.6.2.1

 $A_{Vco} := if \left[\left(A_{Vc} > A_{Vco} \right), A_{Vco}, A_{Vc} \right] = 372.7 \cdot in^{2}$

$\psi_{ecV} \coloneqq \textbf{1.0}$	eccentric load modifier	ACI D.6.2.5	
$\psi_{edV} \coloneqq \textbf{1.0}$	edge effect modifier	ACI D.6.2.6	
$\psi_{cV} \coloneqq \textbf{1.0}$	cracked section modifier	ACI D.6.2.7	(stirrup spacing <= 4")
$\psi_{hV} \coloneqq \textbf{1.0}$	member thickness modifier	ACI D.6.2.8	
$\phi_{breakout} := 0.75$	strength reduction factor	ACI D.4.4.c.i	(shear breakout, condition A)

 $V_{cbg} := #AnchorBolts \cdot \left(\frac{A_{Vc}}{A_{Vco}}\right) \cdot \left(\psi_{ecV} \cdot \psi_{edV} \cdot \psi_{cV} \cdot \psi_{hV}\right) \cdot V_b = 288.7 \cdot kip$

concrete breakout strength - shear **ACI Eqn D-22** Shear force \perp to edge

 $V_{cbg_parallel} := 2 \cdot V_{cbg} = 577.4 \cdot kip$ ACI D.6.2.1.c Shear force || to edge

 $T_{n.breakout} := V_{cbg_parallel} \cdot r_b = 673.7 \cdot kip \cdot ft$ concrete breakout strength - torsion

 $\varphi_{breakout}{\cdot}T_{n.breakout}=505.3{\cdot}kip{\cdot}ft$

 $T_u = 179.9 \cdot kip \cdot ft$

BreakoutTest := $if[(\phi_{breakout} \cdot T_{n.breakout} \ge T_u), "OK", "No Good"]$

BreakoutTest = "OK"

OverlapDesign := if $[(A_{bolt,sector} \le \alpha_{cone}), "Based on Overlap of Failure Cones", "Based on No Overlap of Failure Cones"]$ OverlapDesign = "Based on Overlap of Failure Cones"

Clearance Between Vertical Reinforcement and Anchor Bolt Nut

 $Dist_{bar.to.bolt} = 5.7 \cdot in$ center-to-center distance

 $d_{anchor.nut} := 1.85 \cdot d_{anchorbolt} = 3.7 \cdot ir use$ an .to account for anchor nut

Clearance_{bar.to.nut} := Dist_{bar.to.bolt} - $\left(\frac{d_{anchor.nut} + d_{long.bar}}{2}\right) = 3.1 \cdot in$

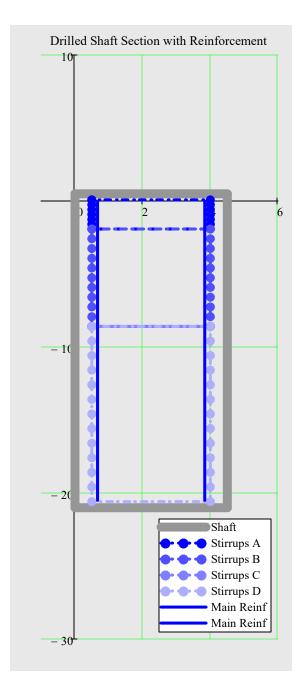
CheckAnchorageClearance = "OK"

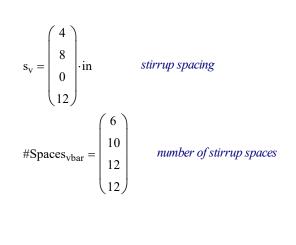
CSL tubes can be relocated plus/minus 2 inches from planned position (see Specifications)

 $d_{csl.tube} := 2 \cdot in$

Draw Drilled Shaft Section with Reinforcement

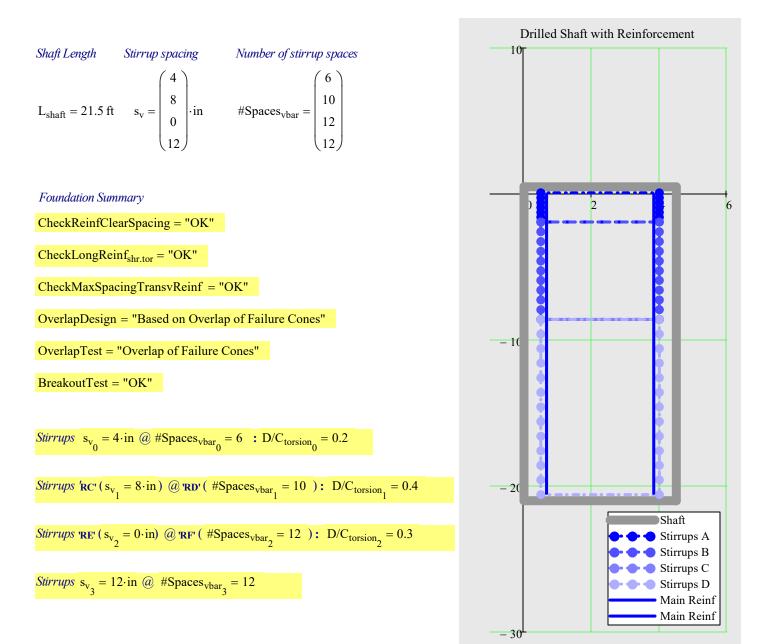
$$\label{eq:coord_0,0} \begin{split} \text{fDrawStirrups(spacing, \#spaces, inix, iniy)} &\coloneqq & \text{coord}_{0,0} \leftarrow \text{inix} \\ & \text{coord}_{0,1} \leftarrow \text{iniy} \\ \text{for } i \in 1 ..\# \text{spaces} \\ & \left\lfloor \begin{array}{c} \text{coord}_{i,0} \leftarrow \text{coord}_{0,0} \\ \text{coord}_{i,1} \leftarrow \text{coord}_{i-1,1} - \text{spacing} \\ \text{index} \leftarrow 1 \\ \text{for } i \in \# \text{spaces} + 1 .. 2 .\# \text{spaces} + 1 \\ & \left\lfloor \begin{array}{c} \text{coord}_{i,0} \leftarrow \text{b} - \text{inix} \\ \text{coord}_{i,0} \leftarrow \text{b} - \text{inix} \\ \text{coord}_{i,1} \leftarrow \text{coord}_{i-\text{index},1} \\ & \text{index} \leftarrow \text{index} + 2 \\ & \text{coord}_{2 .\# \text{spaces} + 2, 0} \leftarrow \text{inix} \\ & \text{coord}_{2 .\# \text{spaces} + 2, 1} \leftarrow \text{iniy} \\ & \text{coord} \\ \end{split} \end{split}$$


$$\begin{split} & \text{StirrupsA} \coloneqq \text{fDrawStirrups} \Big(s_{v_0}, \#\text{Spaces}_{vbar_0}, \text{Cover}, \text{Offset} - 5 \cdot \text{in} \Big) \\ & \text{StirrupsB} \coloneqq \text{fDrawStirrups} \Big(s_{v_1}, \#\text{Spaces}_{vbar_1}, \text{Cover}, \min\left(\text{StirrupsA}^{\langle 1 \rangle}\right) \Big) \\ & \text{StirrupsC} \coloneqq \text{fDrawStirrups} \Big(s_{v_2}, \#\text{Spaces}_{vbar_2}, \text{Cover}, \min\left(\text{StirrupsB}^{\langle 1 \rangle}\right) \Big) \end{split}$$


StirrupsD :=
$$\operatorname{coord} \leftarrow \begin{pmatrix} \operatorname{Cover} & \min(\operatorname{StirrupsC}) \\ b - \operatorname{Cover} & \min(\operatorname{StirrupsC}) \end{pmatrix}$$

 $\operatorname{coord} \leftarrow \operatorname{fDrawStirrups}\left(s_{v_3}, \#\operatorname{Spaces}_{vbar_3}, \operatorname{Cover}, \min\left(\operatorname{StirrupsC}^{\langle 1 \rangle}\right)\right)$ if $\min(\operatorname{StirrupsC}) > -L_{\operatorname{shaft}} + \operatorname{Cover} + 6 \cdot \operatorname{in} \operatorname{coord}$

Shaft :=
$$\begin{pmatrix} 0 \cdot \text{in} & \text{Offset} \\ b & \text{Offset} \\ b & -L_{\text{shaft}} + \text{Offset} \\ 0 \cdot \text{in} & -L_{\text{shaft}} + \text{Offset} \\ 0 \cdot \text{in} & \text{Offset} \end{pmatrix} = \begin{pmatrix} 0 & 0.5 \\ 4.5 & 0.5 \\ 4.5 & -21 \\ 0 & -21 \\ 0 & 0.5 \end{pmatrix} \text{ft}$$


$$\operatorname{Rebar} := \begin{bmatrix} (\operatorname{Cover} + 2 \cdot \operatorname{in}) & -\operatorname{Cover} + \operatorname{Offset} & (b - \operatorname{Cover} - 2 \cdot \operatorname{in}) \\ (\operatorname{Cover} + 2 \cdot \operatorname{in}) & (-L_{\operatorname{shaft}} + \operatorname{Cover} + \operatorname{Offset}) & (b - \operatorname{Cover} - 2 \cdot \operatorname{in}) \end{bmatrix} = \begin{pmatrix} 8 & 1.1 \times 10^{-15} & 46 \\ 8 & -246 & 46 \end{pmatrix} \cdot \operatorname{ind} \frac{10}{2} + \frac{10}{2}$$

MastArmV1.2.xmcd

Analyze Foundation

$$Use 22$$
Offset = 0.5 ft
$$DA^{L} = L_{shaft} = 21/5 \cdot ft$$

$$RA^{L} = round \left(\frac{d_{long,bar}}{0.125n}\right) = 11$$

$$\#Spaces_{vbar_0} = 6$$

$$s_{v_0} = 4 \cdot in$$

$$RB^{L} = \#LongBars_{prov} = 15 Use 16$$

$$RC^{L} = \#Spaces_{vbar_1} = 10$$

$$RD^{L} = 53 \cdot in$$

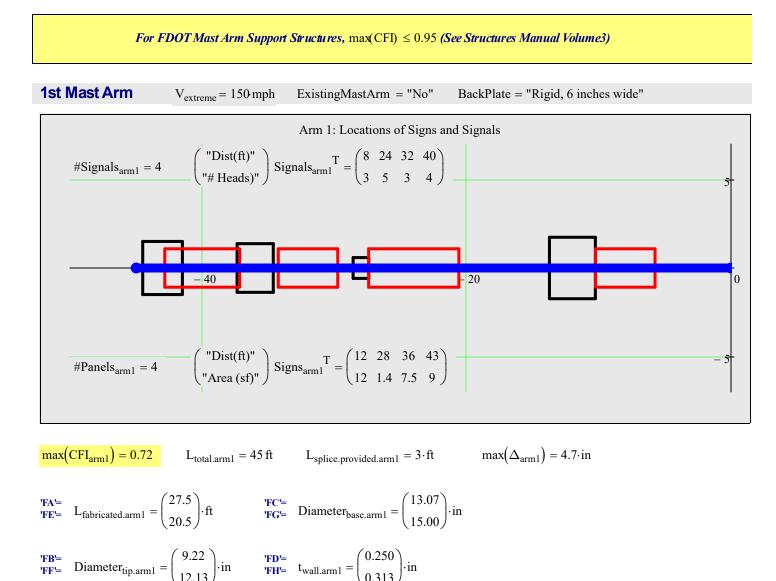
$$RE^{L} = \#Spaces_{vbar_2} = 12$$

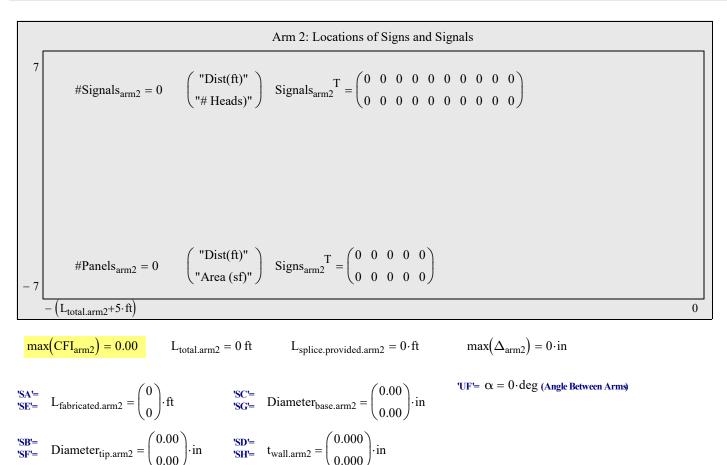
$$RF^{L} = s_{v_2} = 0 \cdot in$$

$$\#Spaces_{vbar_3} = 12$$

$$s_{v_3} = 12 \cdot in$$

IX. Fatigue Analysis InputDataFile = "A50SH-P3S-DS1445.dat"							
FatigueCategory _{galloping} := 2	FatigueCategory _{natural.wind} := 2	<u>SM V3 11.6</u>					
Analyze Structure for Fatigu	le						
Fatigue Summary							
Arm and Pole Welds	K1 values within 2% of LTS thresholds	s of 3.0 and 4.0 may use next higher CAFT values					
Check _{galloping.arm1} = "OK"	$f_{galloping.arm1} = 6.2 \cdot ksi$	$CAFT_{fullpengroove.weld.arm1} = 7 \cdot ksi$					
Check _{galloping.arm2} = "NA"	$f_{galloping.arm2} = 0.0 \cdot ksi$	$CAFT_{fullpengroove.weld.arm2} = "NA" \cdot ksi$					
Check _{galloping.pole} = "OK"	$f_{galloping.pole} = 2.9 \cdot ksi$	$CAFT_{fullpengroove.weld.pole} = 4.5 \cdot ksi$					
Check _{nwg.arm1} = "OK"	$f_{nwg.arm1} = 3.3 \cdot ksi$	$CAFT_{fullpengroove.weld.arm1} = 7 \cdot ksi$					
Check _{nwg.arm2} = "NA"	$f_{nwg.arm2} = 0.0 \cdot ksi$	$CAFT_{fullpengroove.weld.arm2} = "NA" \cdot ksi$					
Check _{nwg.pole} = "OK"	$f_{nwg.pole} = 1.9 \cdot ksi$	$CAFT_{fullpengroove.weld.pole} = 4.5 \cdot ksi$					
CheckK1Values = "K1 is ou	tside of 2% of K1 thresholds" tside of 2% of K1 thresholds" tside of 2% of K1 thresholds"	$ \begin{pmatrix} K_{\text{Larm1}} \\ K_{\text{Larm2}} \\ K_{\text{Lpole}} \end{pmatrix} = \begin{pmatrix} 3.235 \\ 100.000 \\ 6.307 \end{pmatrix} \begin{pmatrix} \text{"Arm 1 Base Weld"} \\ \text{"Arm 2 Base Weld"} \\ \text{"Upright Base Weld"} \end{pmatrix} $					
A325 Connection Bolts							
$Check_{g.conn.bolt} = \begin{pmatrix} "OK" \\ "OK" \end{pmatrix}$	$\mathbf{f}_{\text{t.g.bolt}} = \begin{pmatrix} 5.8\\ 0.0 \end{pmatrix} \cdot \mathbf{ksi}$	$CAFT_{conn.bolt} = 16 \cdot ksi$					
$Check_{nwg,conn.bolt} = \begin{pmatrix} "OK" \\ "OK" \end{pmatrix}$	$f_{t.nwg.bolt} = \begin{pmatrix} 3.0\\ 0.0 \end{pmatrix} \cdot ksi$						
Anchor Bolts							
Check _{g.anchor} = "OK"	$f_{t.g.anchor} = 2.6 \cdot ksi$	$CAFT_{anchor.bolts} = 7 \cdot ksi$					
Check _{nwg.anchor} = "OK"	$f_{t.nwg.anchor} = 1.7 \cdot ksi$						
Save Data File (optional)							
✓ Use current input file							
File Name A50SH-P3S-DS	51445.dat						
Note: Select an ou	tput folder by using the "Change Folder" op	ption above.					
A30/D/H - Arr	n 70 feet long, Double Arm n 30 feet long, Double Arm, Heavy Duty	Save Data					
	le 5 , Double Arm, with Luminaire illed Shaft 16 ft deep, 5 foot diameter						
D0/10/0 - DI	anca shuji 10 ji ucep, 5 jool alamaa						


X. Mast Arm Design and Analysis Summary InputDataFile = "A50SH-P3S-DS1445.dat"


If comparing results to Standard Index 649-030, some values in the index have been increased to reduce the number of variations.

 Subject
 = "Erie Rd and SR 62 Improvements"
 DesignedBy
 = "RT"
 PoleLocation
 = "108+03.00/49.0 RT"

 ProjectNo
 = "850-6094060"
 CheckedBy
 = ""
 Date
 = "5 / 27 / 2021"

ExistingMastArm = "No"

Luminaire Arm and Connection (use MC10x33.6 channel for connection)

(CFI _{base.lumarm})		$\mathbf{TA'} = \mathbf{Y}_{luminaire} = 0 \mathrm{ft}$	'LF'= $r_{lumarm} = 0$ ft
CSR _{bolt.lum} D/C _{baseplate.lum} =	$\begin{bmatrix} 7.17 \times 10^{-9} \\ 0.00 \end{bmatrix}$	$\mathbf{LB} = X_{\text{luminaire}} = 0 \text{ ft}$	'LG'= $d_{bolt.lum} = 0 \cdot in$
D/C _{conn.plate.lum}	0.00	'LC'= Diameter _{base.lumarm} = $0 \cdot in$	'LH'= $t_{\text{baseplate.lum}} = 0 \cdot in$
		'LD' = $t_{wall.lumarm} = 0 \cdot in$	'LJ'= $w_{base.lum} = 0 \cdot in$
		'LE'= $Slope_{lumarm} = 0$	-0 in

Upright		
$\max(CFI_{pole}) = 0.45$	Check _{deflection} = "OK" Check _{slope} = "OK"	
$''UA' = Y_{pole} = 22.75 ft$	'UC'= Diameter _{tip.pole} = 16.8·in	$UE'= t_{wall.pole} = 0.375 in$
$UB'= Y_{arm.conn} = 19.75 \text{ft}$	'UD' = Diameter _{base.pole} = 20 in	$UF = \alpha = 0 \cdot \deg$
		$\mathbf{UG} = \mathbf{Y}_{\text{lum.conn}} = 0 \text{ ft}$

'LK'= $w_{channel.lum} = 0 \cdot in$

1st Arm to Upright Connection

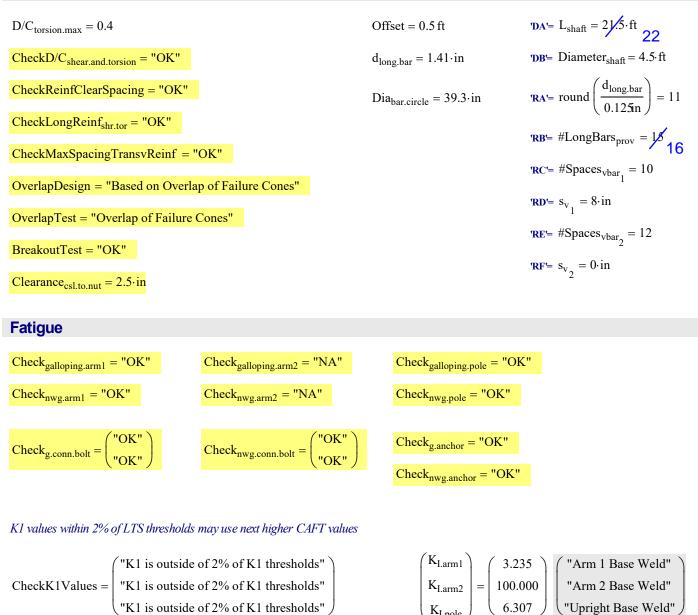
'HT'= $h_{conn.plate} = 22 \cdot in$ $D/C_{ht.conn.plate} = 0.85$ CheckHt_{conn.plate} = "OK" **'FO'=** Offset_{conn₀} = $16.0 \cdot in$ $\#Bolts_{conn_0} = 6$ **'FJ'=** $b_{\text{conn.plate}_0} = 29 \cdot \text{in}$ **'FP'=** $d_{bolt.conn_0} = 1.25 \cdot in$ $D/C_{width.conn.plate_0} = 1.00$ $CheckWidth_{conn.plate_0} = "OK"$ **'FK'=** $t_{\text{baseplate.arm}_0} = 3 \cdot \text{in}$ **'FR'**= $t_{\text{conn.plate}_0} = 2 \cdot \text{in}$ D/C_{t.baseplate.arm}0 **'FL'=** $t_{vertical.plate_0} = 0.75 \cdot in$ **'FS'=** Spacing_{bolts.conn₀} = $8.5 \cdot in$ 0.83 **'FN'=** $w_{\text{vertical.plate}_0} = \frac{5}{16} \cdot \text{in}$ **'FT'=** $W_{\text{conn.plate}_0} = \frac{5}{16} \cdot \text{in}$ CFI_{t.vert.plate0} 0.41 = 0.28 CSR_{bolt.conn}0

2nd Arm to Upright Connection

$D/C_{width.conn.plate_1} = 0.00$	HT $h_{\text{conn.plate}} = 22 \cdot \text{in}$
$CheckWidth_{conn.plate_1} = "OK"$	$#Bolts_{conn_1} = 0$
$\begin{pmatrix} D/C_{t,baseplate,arm_1} \\ CFI_{t,vert,plate_1} \\ CSR_{bolt,conn_1} \end{pmatrix} = \begin{pmatrix} 0.00 \\ 0.00 \\ 0.00 \end{pmatrix}$	$sJ'= b_{conn.plate_1} = 0 \cdot in$ $sK'= t_{baseplate.arm_1} = 0 \cdot in$ $sL'= t_{vertical.plate_1} = 0 \cdot in$
	$\mathbf{SN} = \mathbf{w}_{vertical.plate_1} = 0 \cdot in$

Pole Base Plate		
$CSR_{anchor} = 0.23$	'#Bolts'= #AnchorBolts = 6	'BA'= Diameter _{baseplate.pole} = 36 in
CheckCSR _{anchorbolt} = "OK"	$Diameter_{boltcircle.pole} = 28 \cdot in$	'BB'= $t_{baseplate,pole} = 2.5 \cdot in$
		'BC'= $d_{anchorbolt} = 2.00$ in
		$^{\rm BF'=}$ L _{embedment.anchor} = 40·in
		$L_{anchor.bolt} = 53 \cdot in$

'SO'= Offset_{conn₁} = $0.0 \cdot in$


'SP'= $d_{bolt.conn_1} = 0 \cdot in$

'SR'= $t_{\text{conn.plate}_1} = 0 \cdot \text{in}$

'ST'= $w_{\text{conn.plate}_1} = 0 \cdot \text{in}$

'SS'= Spacing_{bolts.conn₁} = $0 \cdot in$

Foundation

WRITEPRN to Line 1-2-3 for Mast Arm Data Table

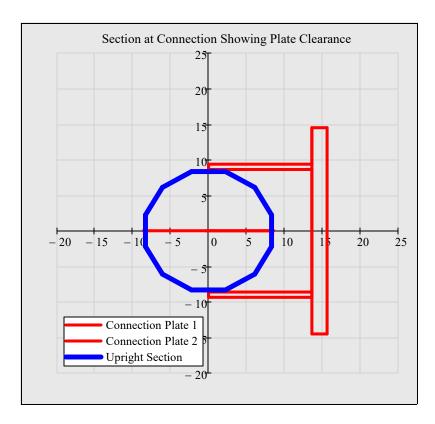
Mast Arm Tip Deflection

Compare Mast Arm deflection of each arm to a proposed camber

$$\begin{aligned} & \text{Camber}_{arm1} \coloneqq \mathbf{2} \cdot \text{deg} \\ & \text{Deflection}_{arm1} \coloneqq \text{Slope}_{x} \cdot \text{L}_{\text{total.arm1}} + \max(\Delta_{arm1}) = 7.6 \cdot \text{in} \\ & \text{CamberArm1}_{upward} \coloneqq \sin(\text{Camber}_{arm1}) \cdot \text{L}_{\text{total.arm1}} = 18.8 \cdot \text{in} \\ & \text{Deflection}_{arm2} \coloneqq \left[\text{Slope}_{z} \cdot \text{L}_{\text{total.arm2}} \cdot (\sin(\alpha)) \right] + \text{Slope}_{x} \cdot \text{L}_{\text{total.arm2}} \cdot \cos(\alpha) + \max(\Delta_{arm2}) \right] \\ & \text{CamberArm2}_{upward} \coloneqq \sin(\text{Camber}_{arm2}) \cdot \text{L}_{\text{total.arm2}} = 0 \cdot \text{in} \end{aligned}$$

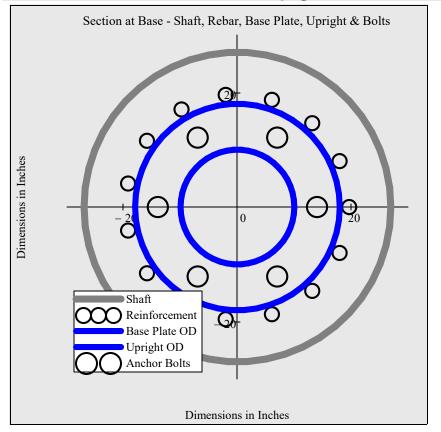
MastArmV1.2.xmcd

 $= 0 \cdot in$


Check Clearance Between Connection Plates (for Two Arm Structures only)

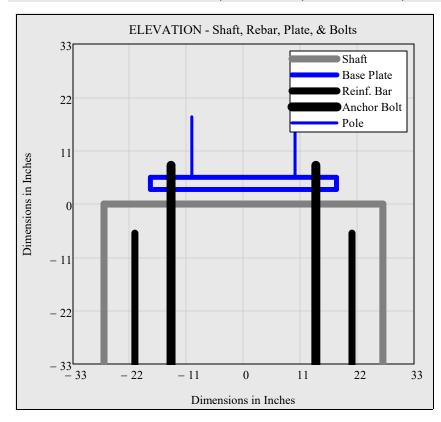
$\alpha = 0 \cdot \deg$ $\alpha := if$	$[(\alpha > 180 \cdot \deg), (360 \cdot \deg - \alpha)]$	$, \alpha]$	
$Offset_{conn_0} = 16 \cdot in$	$b_{\text{conn.plate}_0} = 29 \cdot \text{in}$	$h_{conn.plate} = 22 \cdot ir$	$\alpha = 0 \cdot \deg$
1	$b_{\text{conn.plate}_1} = 0 \cdot \text{in}$		
x1 := $Offset_{conn_0} - t_{conn.plate_0}$	$-h_{conn.plate} \cdot \frac{sin(Camber_{arm1})}{2}$	= 13.6·in y1 :=	$\frac{b_{\text{conn.plate}_0}}{2} = 14.5 \cdot \text{in}$
$x2 := \left(Offset_{conn_1} - t_{conn.plate} \right)$	$\frac{1}{1} - h_{\text{conn.plate}} \cdot \frac{\sin(\text{Camber}_{\text{arm2}})}{2}$	\cdot) $\cdot \cos(\alpha) + \frac{b_{\text{conn.plate}}}{2}$	$\frac{c_1}{\sin(\alpha)} = -0.4 \cdot in$
y2 := $\left(Offset_{conn_1} - t_{conn.plate} \right)$	$\frac{1}{1} - h_{\text{conn.plate}} \cdot \frac{\sin(\text{Camber}_{\text{arm2}})}{2}$	\cdot) \cdot sin(α) - $\frac{b_{conn.plate}}{2}$	$\frac{1}{1} \cdot \cos(\alpha) = 0 \cdot in$
$Clearance_{plate.to.plate} := if [(x1)]$	$> x2) \cdot (y2 > y1), \sqrt{(x1 - x2)^2}$	$\overline{+(y1-y2)^2}, 0 \cdot in =$	0·in

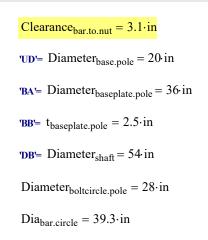
(if Clearance < 2 inches, a redesign is required.


Coordinates for Drawings

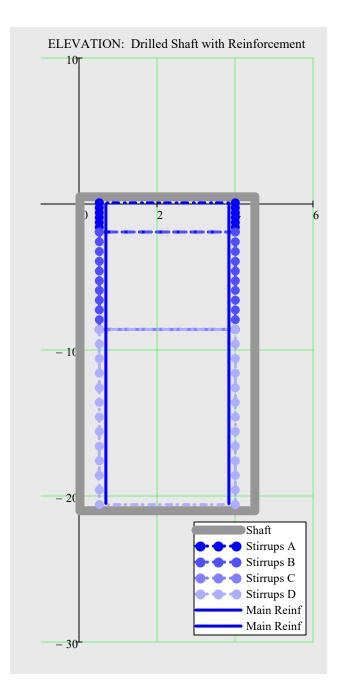
Plan View - Connection Plate Clearance for Two Arm Connections

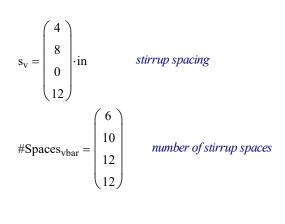
Clearance_{plate.to.plate} = $0 \cdot in$ Diameter_{conn.pole} = $17.3 \cdot in$ **'FR'=** $t_{conn.plate_0} = 2 \cdot in$ **'FJ'=** $b_{conn.plate_0} = 29 \cdot in$ **'FL'=** $t_{vertical.plate_0} = 0.75 \cdot in$ **'FO'=** Offset_{conn_0} = $16.0 \cdot in$ Gap₀ = $7.4 \cdot in$ **'SR'=** $t_{conn.plate_1} = 0 \cdot in$ **'SL'=** $t_{vertical.plate_1} = 0 \cdot in$ **'SC'=** Offset_{conn_1} = $0 \cdot in$ **'SO'=** Offset_{conn_1} = $0.0 \cdot in$ Gap₁ = $0 \cdot in$

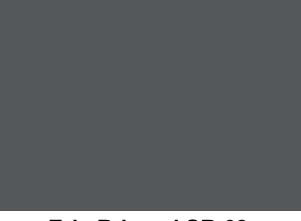

Plan View - Drilled Shaft, Base Plate, Upright, Anchor Bolts, & Reinforcing Steel



Clearance_{bar.to.nut} = $3.1 \cdot in$ "UD'= Diameter_{base.pole} = $20 \cdot in$ "BA'= Diameter_{baseplate.pole} = $36 \cdot in$ "DB'= Diameter_{shaft} = $54 \cdot in$ Diameter_{boltcircle.pole} = $28 \cdot in$ Dia_{bar.circle} = $39.3 \cdot in$ #AnchorBolts = 6#LongBars_{prov} = 15^{\prime} 16


Note: The Plan and Elevation Views do not show the 4 or 5 1.9" O.D. Nondestructive Integrity Testing Access Tubes that are tied to the inside of the reinforcing cage (see FDOT Spec 455-16.4).


Elevation View - Drilled Shaft, Base Plate, Anchor Bolts, & Reinforcing Steel



Elevation View - Drilled Shaft with Main Reinforcement and Stirrups

Erie Rd. and SR 62 Improvements

HDR Project Number: 10151274

Miscellaneous Structures

1.6 Pole 3

For: Manatee County Public Works

Erie Rd. and SR 62 Improvements

HDR Project Number: 10151274

Miscellaneous Structures

1.6 Pole 3

1.6.1 Geometry and Loading

For: Manatee County Public Works

FD

Project:	Erie Rd. and SR 62 Improvements	Computed:	RT	Date:
Subject:	Misc. Structures	Checked:	Date:	
Task:	Pole 3	Page:	1	of:
Job#:	850-6094060	No:		

General Input

ineral input		
Pole No.	3	
Station	106+71.00	
Offset	52.5' RT	
County	Manatee	
Wind speed	150	m
Luminaire Orientation	N	
Signal Orientation (V or H)	V	
Arm 2 Orientation	270	de
Backplates (Y or N)	Y	
Elevation below Arm 1 tip	43.87	ft
Elevation below Arm 2 tip	43.51	ft
Elevation at top of foundation	44.10	ft
Arm center to signal / sign bottom	2.83	ft
Arm connection height (min)	19.88	ft
Arm connection height	20.25	ft
Arm connection height (max)	21.02	ft
Arm 1 length	67	ft
Arm 2 length	60	ft
Soil type	1	
Effective soil weight	43	рс
Phi	28	de
N-blowcount	11	
Foundation offset	0.5	ft

mph

deg.

> pcf deg.

Choose "County" from drop-down list
Basic wind speed for Manatee County is 150 per FDOT SDG, Jan. 2018, Table 2.4.1-1
Enter N for no luminaire, otherwise enter angle measured CCW from arm 1 (0, 45, 90)
V for vertical, H for horizontal
Enter N for no arm 2, otherwise enter angle between dual arms
Used in determining arm con. ht. (FDM 232 req. the use of backplates on Mast Arms)
Enter N for no arm 2
Tabulated based on input for Arm 1 & Arm 2 Signals and Signs
Based on 17.5 ft clearance
Dimension 'UB'; Use 0.25 ft increments
Based on 19.0 ft clearance
Arm 1 is the longer arm.
Enter N for no arm 2.
0 for clay (cohesive soil), 1 for sand (cohesionless soil)

Enter initial value from 'Average N-count V2.0.xls' or as directed by geotech Distance from finish ground to top of shaft

Arm 1 Signals and Signs - Vertical Geometry Check

Signal Head	1/2 Signal	Height of	Width of	Sign	Sign	Sign Area	Sign Location	1/2 Sign
Туре	Height (ft.)	Sign Dim. (ft.)	Sign Dim. (ft).	Attachment	Location	Check	Check	Height (ft.)
5-Doghouse	2.25	2.00	6.00	n/a	over roadway	n/a	n/a	1
4	2.83	3.00	2.50	n/a	over roadway	n/a	n/a	1.5
3	2.25	0.00	0.00	n/a	n/a	n/a	n/a	0
n/a	0.00	0.00	0.00	n/a	n/a	n/a	n/a	0
n/a	0.00	0.00	0.00	n/a	n/a	n/a	n/a	0

Arm 2 Signals and Signs - Vertical Geometry Check

Signal I	Head	1/2 Signal	Height of	Width of	Sign	Sign	Sign Area	Sign Location	1/2 Sign
Тур	е	Height (ft.)	Sign Dim. (ft.)	Sign Dim. (ft).	Attachment	Location	Check	Check	Height (ft.)
4		2.83	2.00	7.00	n/a	over roadway	n/a	n/a	1
3		2.25	3.00	3.00	n/a	over roadway	n/a	n/a	1.5
n/a	1	0.00	3.00	2.50	n/a	over roadway	n/a	n/a	1.5
n/a	1	0.00	0.00	0.00	n/a	n/a	n/a	n/a	0
n/a	1	0.00	0.00	0.00	n/a	n/a	n/a	n/a	0

Due to proposed loading the arm size for Arm 2 is increased to meet the fatigue stress range for galloping based on Mathcad Analysis. Information for Standard Mast Arm Assemblies Data Table

Analysis Requirement					andard Mast Arn		ta Table
Mathcad Analysis Required =	Yes			Arm 1 Type =	Regular	Arm 2 Type =	Regular
The following criteria are not satisfied:	1 Effective soil w	eight < 50 pcf		Designation	A70/D - A60/D	- P6/D	A70/D-A70/D-P6/D
	2 Friction angle <	30 deg		Arm 1 ID	A70/D		
	3 N-value < 15			FAA (ft)	35		
				Arm 2 ID	A60/D		A70/D
				SAA (ft)	28		
				UF (deg)	270		
				LL (deg)		Leave blank in d	ata table
				Pole ID	P6/D		
Pay Item Number				UAA (ft)	23.25		
649-2A-BB Steel Mast Arm Assembly	y			UB (ft)	20.25		
Operation =	(Furnish & Install)	Choose correct "O	peration" from dr	op-down list		
AA =	1		_				
Arm 1 =	70	Arm length us	ed to determine Pay	Item Number, Se	e SPI for Arm Co	mbinations	
Arm 2 =	60						
BB =	19						
Pay Item Number is	649-21-19	Provide to Sig	nal Designer for veri	fication	Arm 2 remains a	at 60' length-No	change to pay Item.

Project	Erie Rd. and SR 62 Improvements	Computed: RT	Date: 05/26/2021
Subject	Misc. Structures - Pole 1	Checked:	Date:
Task:	Design Approach	Page:	of:
Job #:	850-6094060	No:	

Sign		suito:
Siuli	ainn	Juis.

The design accounts for MVDS devices as a 14" X 14" sign.

FDOT's 'mastarm-index-649-030-v1-4.xlsx' program limits the total number of signal / sign inputs to 10, and does not have an option for 1-section signal head; so the devices are accounted for by using a 14" X 14" sign.

FDOT's 'MastArmV1.2.xmcd' limits the number of sign inputs to 5, and does not have an option for 1-section signal head; so the the devices are accounted for by using a 14" X 14" sign.

Based on the inputs being limited to 5 signs in FDOT's 'MastArmV1.2.xmcd', for Arm 2, the MVDS at some locations are combined with other signs or other MVDS and entered as a single location using the centroid as the offset distance from the pole upright. The following changes are made:

1. Sign B; Area=9sf; Distance=27ft is combined with MVDS Location 1 Area=1.4 sf; Distance=31ft. The combined sign Area = 10.4sf; Distance = 28ft (Weighted Average rounded up).

2. MVDS Location 2; Area=1.4sf; Distance=38ft is combined with MVDS Location 3 Area=1.4 sf; Distance=42ft. The combined sign Area = 2.8sf; Distance = 40ft (Weighted Average).

Analysis:

1. FDOT's 'MastArmV1.2.xmcd' is used only to perform the foundation analysis. Other design sections are collapsed as individual components of the Mast Arm do not require detailed design based on the results from FDOT's 'mastarm-index-649-030-v1-4.xlsx'.

2. The signal and sign configuration for "Future Scenario" is chosen for foundation design to account for the higher moment demand due to the addition of Sign B at 27'.

									•	
	Design	Aid for FD	OT Standaro	l Mast Arm	Assemblies ((Standard P	lans Index 6	49-030)	J	
Mast Arm Assembly Information		Arm 1 Length, Signal/Sign Location and Size								
Wind Speed	Signal\Sign	Signal\Sign	Signal\Sign	Signal\Sign	Signal\Sign	Signal\Sign	Signal\Sign	Signal\Sign	Signal\Sign	Signal\Sign
○ 130 mph ● 150 mph ○ 170 mph	#10	#9	#8	#7	#6	#5	#4	#3	#2	#1
Dist from Pole (ft.)	75	68	65	58	49	12	63	54	45	35
Signal Orientation Vertical Horizontal Back Plates? Ves No	None B Head Head Head Sign	None Head Head Head Gign	None Head Head Head Jign	None B Head Head Head G Head G Jign	None Head Head Head Sign	None Head Head Head Sign	None Head Head Head Gign	None () Head () Head () Head () Head () Jign	None → Head → Head → Head → Head → Sign	None Head Head Head Sign
Luminaire? Sign Width (in.)				14	30	72			1	
Sign Height (in.)				14	36	24				
Area (SF)	0.0	0.0	0.0	1.4	7.5	12.0	14.8	9.8	12.3	9.8
M _{wl} . (kip*ft)	0	0	0	5	25	10	62	35	37	23
80 75 70 65		5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	45	40 35			20 15	+ 10	- · - · - · - 5 (-5
Arm 1 Longth (6)			Sign 4 Sign	nal/Sign 9	Signal/Sign 2 💻	Signal/Sign 1			n Assembly D	
Arm 1 Length (ft) Design Standard Index 17743		Heavy Duty		m M _{dl} (kip*ft)	Regular 94	Heavy Duty 110			n Assembly D wo Arm Assem	<u> </u>
Dia. at Arm Base (in)	17	18		m M _{wl} (kip*ft)	94	10			A60/D/H-P6/D	· ·
Wall Thickness (in)	0.3750	0.3750		nal M _{dl} (kip*ft)		.6				
Resistance (M _r = ϕ M _n) (kip*ft)		422		al M _{wl} (kip*ft)		97	And	alysis require	s A70/D-A70	
······································	500									VD-P6/D
			Total Morr	nent (M _{extreme})	312	326			57776727776	<u>/D-P6/D</u>

Notes:

Run the FDOT Mast Arm Mathcad Program for more accurate results.

For new designs, always design with backplates.

Mast Arm Assembly ID consists of three parts for a single arm and 4 parts for a double Arm. Each part is separated by "-".

Part 1 is Arm 1: Axx/y/z, where xx is the arm length, y is "S" for single arm or "D" for double arms and z is "H" for heavy duty arm or blank for regular arm.

Part 2 is Arm 2 and has the same nomenclature as the 1st arm. For single arm assemblies, Part 2 is omitted.

Part 3 is the Pole: Px/y/z where x is the pole ID, y is "S" for single arm or "D" for double arms and z is "L" for luminaire or blank for no luminaire.

Part 4 is the Drilled Shaft: DS/xx/y where xx is the shaft length and y is the shaft diameter.

Arm to pole connection is at 22 ft.

No foundation offset is considered. If the top of drilled shaft > 2 feet above ground, run the Mathcad Mast Arm Program.

		Destau		OT 64	1 M 4 A	A	(Standard D		40.020)		
		Design	Aid for FDO	JI Standard	1 Mast Arm	Assemblies	Standard P	lans index o	49-030)		
Mast Arm Asse	embly Information		Arm 2 Length, Signal/Sign Location and Size								
		Signal\Sign	Signal\Sign	Signal\Sign	Signal\Sign	Signal\Sign	Signal\Sign	Signal\Sign	Signal\Sign	Signal\Sign	Signal\Sign
		#10	#9	#8	#7	#6	#5	#4	#3	#2	#1
	Dist from Pole (ft.)		54	50	40	28	12	58	56	46	34
Wind Speed = 150 mph Luminaire = No	Arm 2 Length None 30 40 50 [6070	None B Head Head Head	None Head Head Head	None Head ()4 Head ()4 Head	None B Head Head Head	None Head Head Head	None Head Head	None Head Head	None Head Head Head	None S Head Head Head Head	None Head Head Head
	78	Sign	Sign	O sign	O sign	O sign	O sign	Sign	Sign	Sign	Sign
Vortical Signal	Sign Width (in.)		30	36	20	42	84				
Vertical Signal Orientation with	Sign Height (in.)		36	36	20	36	24				
Backplates.	Area (SF)	0.0	7.5	9.0	2.8	10.4	14.0	12.3	9.8	9.8	9.8
Backplates.	M _{wl} . (kip*ft)	0	27	30	7	19	11	48	37	30	22
80 75	M _{wl} . (kip*ft)		5	45	40 ····	30	25	20 15		30 	22
	+ 70 65	- Co	5	45 Sign 10 Sigr	al/Sign 3	Signal/Sign 2	25 Signal/Sign 7 Signal/Sign 1	20 15 Signal/Sig	n 6	- · - · - · - 5	-j
80 75	- • + • - • • - • - • - • - • - • - • • - • • - • • - • • - • • - • • - • • - • • - •	- C - C - C - C - C - C - C - C - C - C	Signal/S	Sign 10 Sigr Sign 4 Sigr	al/Sign 9	Signal/Sign 8 - Signal/Sign 2 - Regular	25 Signal/Sign 7 Signal/Sign 1 Heavy Duty	20 15 Signal/Sig	n 6 Mast Arm	5 5 n Assembly D	-5 esignation
80 75 Design St	+ 70 65	- C - C - C - C - C - C - C - C - C - C	5 50 Signal/s	Sign 10 Sigr Sign 4 Sigr Arm 2 1.1*Ar	al/Sign 9 al/Sign 3 Loads m M _{dl} (kip*ft)	Signal/Sign 2	25 Signal/Sign 7 Signal/Sign 1	20 15 Signal/Sig	n 6 Mast Arm	- · - · - · - 5	esignation
80 75 Design St	- · + · - · - · ⊢ · - · 70 65 Arm 2 Length (ft) tandard Index 17743	Arm 60 60 60 80 60 80 80 80 80 80 80 80 80 80 80 80 80 80	Signal/S Signal/S Heavy Duty	Sign 10 Sign Sign 4 Sign Arm 2 1.1*Ar	al/Sign 9	Signal/Sign 8 - Signal/Sign 2 - Regular 62 64	Signal/Sign 7 Signal/Sign 1 Heavy Duty 68	20 15 Signal/Sig	n 6 Mast Arm	5 5 n Assembly Do	esignation
80 75 B0 75 Design St	- · + · - · - · ⊢ · - · ⊢ · - · − · 70 65 Arm 2 Length (ft) tandard Index 17743 ia. at Arm Base (in)	Arm 60 Arm 60 Regular 15	Signal/S Signal/S Heavy Duty 16	Sign 10 Sign Sign 4 Sign Arm 2 1.1*Ar Arn 1.1*Sign/Sign	al/Sign 9 tal/Sign 3 Loads m M _{dl} (kip*ft) m M _{wl} (kip*ft)	Signal/Sign 8 Signal/Sign 2 Regular 62 64	Signal/Sign 7 Signal/Sign 1 Heavy Duty 68 71	20 20 Signal/Sig Pole	n 6 Mast Arm	n Assembly Di	esignation aly DS/18/S

N	0	te	es	:
N	U	ιc	:5	•

Run the FDOT Mast Arm Mathcad Program for more accurate results.

For new designs, always design with backplates.

Mast Arm Assembly ID consists of three parts for a single arm and 4 parts for a double Arm. Each part is separated by "-".

Part 1 is Arm 1: Axx/y/z, where xx is the arm length, y is "S" for single arm or "D" for double arms and z is "H" for heavy duty arm or blank for regular arm.

Part 2 is Arm 2 and has the same nomenclature as the 1st arm. For single arm assemblies, Part 2 is omitted.

Part 3 is the Pole: Px/y/z where x is the pole ID, y is "S" for single arm or "D" for double arms and z is "L" for luminaire or blank for no luminaire.

Part 4 is the Drilled Shaft: DS/xx/y where xx is the shaft length and y is the shaft diameter.

Arm to pole connection is at 22 ft.

No foundation offset is considered. If the top of drilled shaft > 2 feet above ground, run the Mathcad Mast Arm Program.

Erie Rd. and SR 62 Improvements

HDR Project Number: 10151274

Miscellaneous Structures

1.6 Pole 3

1.6.2 Average N-count

For: Manatee County Public Works

Project: Erie Rd and SR-62 Improvement	Computed:	RT	Date: 5/27/2021
Subject: Misc. Structures	Checked:		Date:
Task: Average N Count	Page:	1	of: 1
Job #: 850-6094060			

Boring Details				
Dept	Nicount			
Total	Step	N-count		
6	6	5		
8	2	3		
10	2	7		
12.5	2.5	4		
15	2.5	5		
17.5	2.5	29		
20	2.5	23		
22.5	2.5	19		
25	2.5	30		
27.5	2.5	14		
30	2.5	3		
Average	N-count	12.25		
Initial De	sign N _{AVG}	15.00		

Pole #	Pole 3
Boring #	B-1
Station	106+71.00/52.5 RT
N-multiplier	1.2
*Automatic Hammer Used: therefore N-multipl	ier = 1 24

Notes: (Calculate N-value for drilled shaft)

1- Automatic hammer N value multiplier and Boring details (soil layers thicknesses and number of counts) should be entered as inputs.

2- Initial design \dot{Nvalue} from "Boring Details" table is used to determine drilled shaft lengths in Mathcad.

3- Drilled shaft length output from the Mathcad file should be entered in the table below.
4- Final design N value for each shaft based on the average of layers where drilled shaft is surrounded with will be calculated in the "Drilled Shaft Details" table.

5- If New N value is smaller than original value, Mathcad file should be updated with new N value to calculate final drilled shaft length.

Drilled Shaft Length After Initial Analysis
19.5

Drilled Shaft Details				
Dept	Depth (ft)			
Total	Step	N-count		
6	6	5		
8	2	3		
10	2	7		
12.5	2.5	4		
15	2.5	5		
17.5	2.5	29		
20	2.5	23		
-	-	-		
-	-	-		
-	-	-		
-				
Average	10.13			
Final Des	Final Design N _{AVG}			
Update N	_{AVG} ? (Y/N)	YES		

(Mathcad First Output)

Final Drilled Shaft Length	
22	(Mathcad Final Output)

Erie Rd. and SR 62 Improvements

HDR Project Number: 10151274

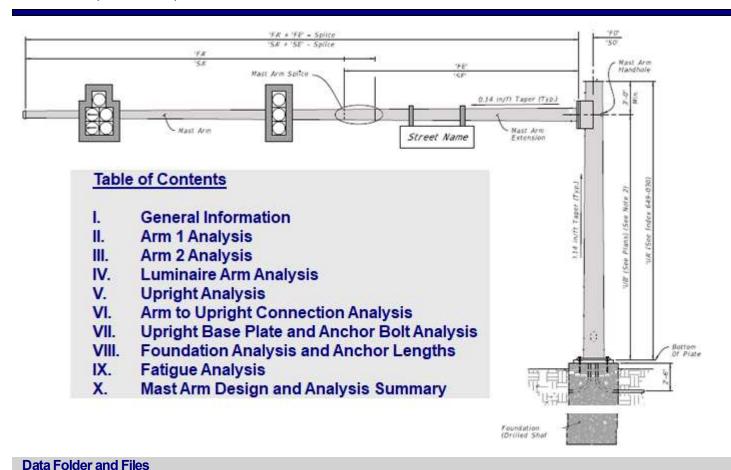
Miscellaneous Structures

1.6 Pole 3

1.6.3 Foundation Analysis

For: Manatee County Public Works

FDOT Mast Arm Traffic Signal Support Analysis Program V1.2

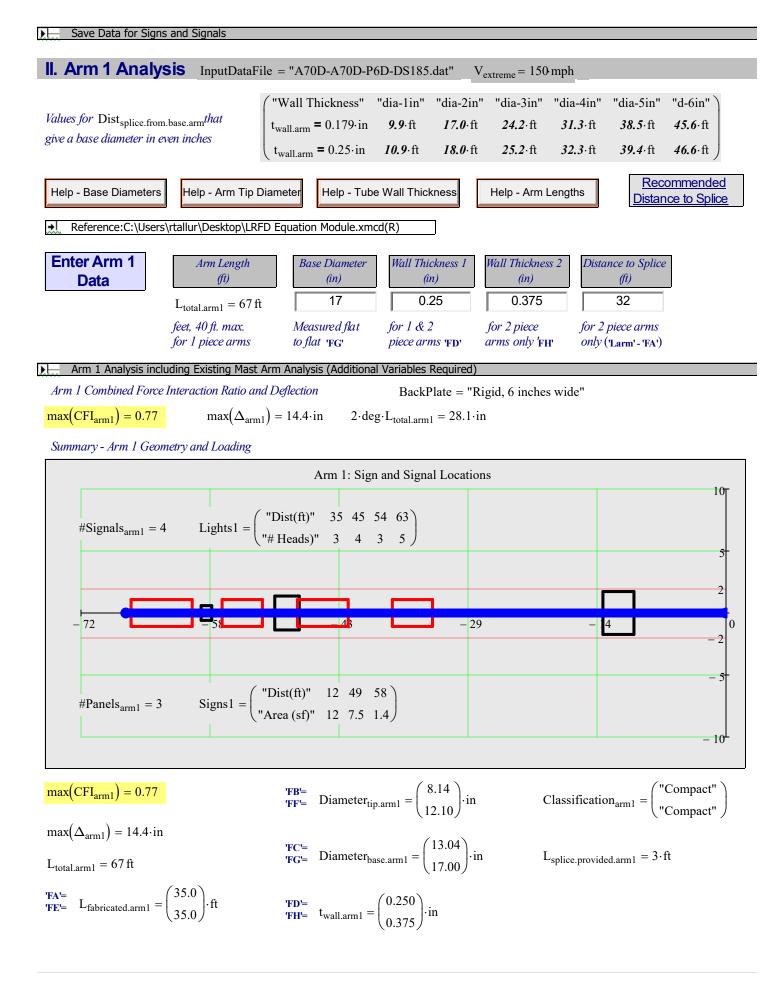

This program works in conjunction with FDOT Mast Arm Standard Plans 649-030 & 649-031.

References: AASHTO LRFD Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals (LRFDLTS). FDOT Structures Manual Volume 3 (SM V3). AISC Steel Construction Manual

© 2020 Florida Department of Transportation

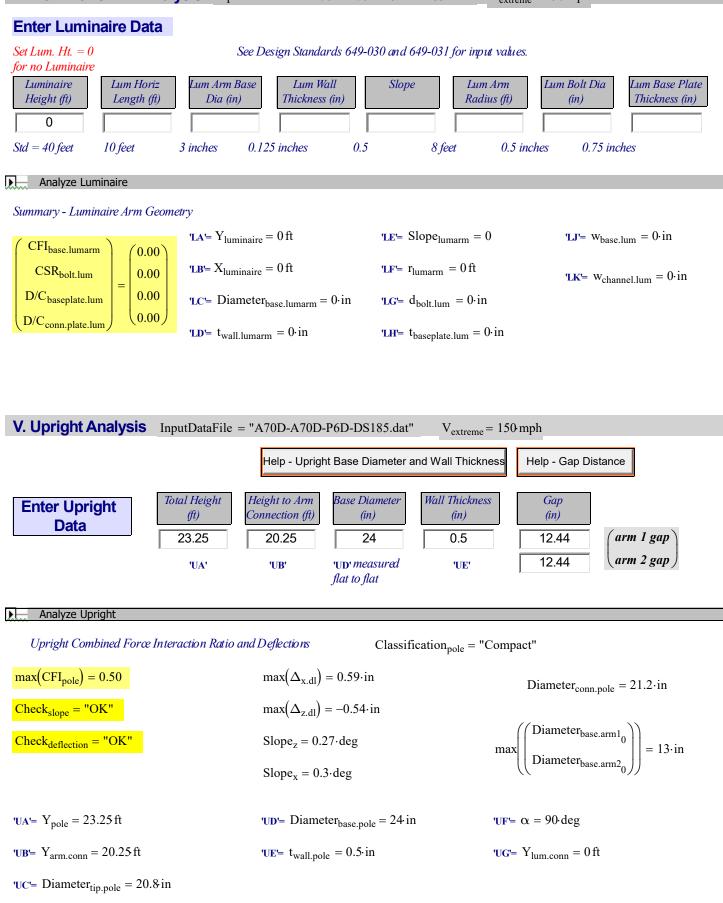
For more information see Reference.xmcd and Changes.xmcd.

Data Files Folder Change Folder C:\Users\rtallur\Desktop\Data\ Change Folder

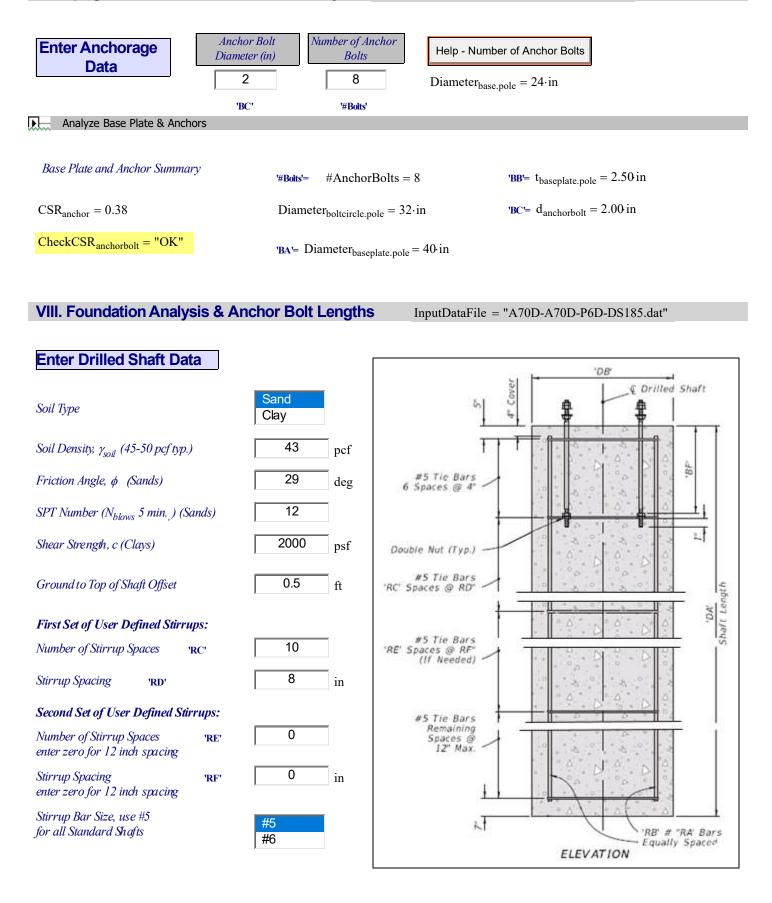

<u>Required</u> - Open Existing Data File. To save New Data Files, enter data variables at the end of Section IX.

A70D-A70D-P6D-DS185.dat	Refresh List
	Open File

I. General Information and Sign & Signal Data


Enter Proje	ct Informatio	on					
Project Name	Erie Rd a	and SR 62 Im	provements				
Project No.	850-6094	4060					
Designed by	RT		Date	5/27/2021			
Checked by			Date				
Signal Name	Pole 3						
Station/Offset	106+71.0	00/52.5 RT					
Enter Wind	Speed						
		_					
Design Wind Sp	peed 150	mph		Extrem	ie Event Wind Sp	eed S	DG Wind Speeds by County
Enter Arm	Lengths, Sig	onal and S	ign Data			L	<u>by County</u>
		.	<u> </u>	1		0.6 . 1	
Arm 1				Arm 2 So	et Arm 2 Length	= 0 for single a	rm Mast Arms
Arm 1 Length	67	Reset Arr	n 1 Data	Arm 2 Length	60	Reset Ar	m 2 Data
Arm1 Signal Number	Distance to Signal	Number of		Arm2 Signal Number	Distance to Signal	Number of	
Signal Hamber	(ft)	Heads		Signal Humber	(ft)	Heads	ļ
1	35	3		1	34	3	
2	45	4		2	46	3	
3	54	3		3	56	3	
4	63	5		4	58	4	
5				5			
6				6			
7				7			
8				8			
9				9			
10				10			
Arm 1 Sign Pan	els			Arm 2 Sign Pa	inels		
Arml	Distance to	Panel		Arm2	Distance to	Panel	
Sign Panel Number	Panel (ft)	Area (sf)		Sign Panel Number	Panel (ft)	Area (sf)	
1	12	12		1	12	14	
2	49	7.5		2	28	10.4	
3	58	1.4		3	40	2.8	

7.5


III. Arm 2 Analysis	InputDataFile = "A	A70D-A70D-P	6D-DS185.d	at" V _{extrem}	e = 150 mph		
Dist _{splice.from.base.arm} values	("Wall Thickness"	$\Delta dia = 1 \cdot in$	$\Delta dia = 2 \cdot in$	$\Delta dia = 3 \cdot in$	$\Delta dia = 4 \cdot in$	$\Delta dia = 5 \cdot in$	$\Delta dia = 6 \cdot in$
that give a base diameter	, wantanin	9.9 ft	<i>17.0</i> ft	24.2 .ft	31.3 ft	38.5 ft	45.6 ft
in even inches	$t_{wall.arm} = 0.25 \cdot in$	10.9 ft	18.0 . ft	25.2 ∙ft	32.3 ft	39.4 ft	46.6 ⋅ ft)
Enter Arm 2 Data	- Arm Tip Diameter Length f_t Base Dia f_t (in f_{t-1} 1 f_{t-1} Measure)	Thickness 1 (in) 0.25 1 & 2	Wall Thickness . (in) 0.375 for 2 piece	(ft) 32 for 2 piec	Distance Splice ce arms	nmended e to Splice
Arm 2 Analysis including Ex Arm 2 Combined Force Interacti		1	e arms 'SD'	arms only 'SH	r only ("La	rm - 5A)	
$\max(\text{CFI}_{\text{arm2}}) = 0.81$ B	ackPlate = "Rigid, 6	inches wide"					
Summary - Arm 2 Geometry and	l Loading m	$\max(\Delta_{arm2}) = 1$	0.1 · in	2∙de	$g \cdot L_{total.arm2} =$	25.1·in	
	А	rm 2: Sign and	l Signal Loca	tions			
#Signals _{arm2} = 4	Lights2 = $\begin{pmatrix} "Dist(f) \\ "# Head$	t)" 34 46 5 s)" 3 3	$\begin{pmatrix} 56 & 58 \\ 3 & 4 \end{pmatrix}$				10
- 65	2	39		26	- 13]	- 5
#Panels _{arm2} = 5	Signs2 = $\begin{pmatrix} "Dist(ft) \\ "Area (st) \end{pmatrix}$)" 12 28 f)" 14 10.4	40 50 54 2.8 9 7.5)			10
							- 10 ^L
$\frac{\max(\text{CFI}_{\text{arm2}}) = 0.81}{\max(\Delta_{\text{arm2}}) = 10.1 \cdot \text{in}}$	' <mark>SB'=</mark> 'SF'= Diameter _{tij}	$_{0.\text{arm2}} = \begin{pmatrix} 9.12\\ 12.10 \end{pmatrix}$))·in	C	Classification _{ar}	$m_{m2} = \begin{pmatrix} "Comp} \\ "Comp \end{pmatrix}$	pact")
$L_{total.arm2} = 60 ft$	'SC'= 'SG'= Diameter	base.arm2 = $\begin{pmatrix} 13\\17 \end{pmatrix}$	(0.04) (0.00) \cdot in	L	splice.provided.ar	$rm_2 = 3 \cdot ft$	
${}^{'SA'=}_{'SE'=} L_{fabricated.arm2} = \begin{pmatrix} 28.0\\ 35.0 \end{pmatrix}$	\cdot ft 'SD'= $t_{wall.arm2} =$	$\binom{0.250}{0.375}$ ·in					

IV. Luminaire Arm Analysis InputDataFile = "A70D-A70D-P6D-DS185.dat" V_{extreme} = 150 mph

/I. Arm to Upright Conne	ction Analysis InputDataFile = "A70D-	A70D-P6D-DS185.dat"
	for double arms, both connection plate heights must be equal	Help - Arm Connection Dimensions
inter Connection Data	Height(in) Width (in) Thick 30 36 0 'HI' 36 0	ical Plate (in)Bolt Diameter (in)Arm Base Plate Thickness (in)0.751.530.751.530.751.530.751.55
Analyze Connection		
Connection Summary		
$r = h_{\text{conn.plate}} = 30 \text{ in } D/C$	$C_{\text{ht.conn.plate}} = 0.75$ CheckHt _{conn.plate} = "C	OK"
$C_{\text{width.conn.plate}_0} = 0.97$		
$heckWidth_{conn.plate_0} = "OK"$	$#Bolts_{conn_0} = 6$	'FO'= Offset _{conn₀} = 23.0 in
$D/C_{t.baseplate.arm_0}$	'FJ'= $b_{\text{conn.plate}_0} = 36 \text{ in}$	TFP'= $d_{bolt.conn_0} = 1.5$ in
$CFI_{t.vert.plate_0} = \begin{pmatrix} 0.83\\ 0.52 \end{pmatrix}$	'FK'= $t_{\text{baseplate.arm}_0} = 3.00 \text{ in}$	TFR'= $t_{\text{conn.plate}_0} = 2.50 \text{ in}$
$\begin{bmatrix} D/C_{t,baseplate,arm_0} \\ CFI_{t,vert,plate_0} \\ CSR_{bolt,conn_0} \end{bmatrix} = \begin{pmatrix} 0.83 \\ 0.52 \\ 0.31 \end{pmatrix}$	'FL'= $t_{vertical.plate_0} = 0.75 in$	FS Spacing _{bolts.conn} = $12 \cdot in$
、 0)	'FN'= $W_{vertical.plate_0} = \frac{3}{8} \cdot in$	TF $w_{\text{conn.plate}_0} = \frac{3}{8} \cdot in$
	1 0 8	1 0 8
$D/C_{width.conn.plate_1} = 0.97$		
CheckWidth _{conn.plate1} = "OK"	$#Bolts_{conn_1} = 6$	'SO'= Offset _{conn₁} = 23.0 in
D/Ct hasenlate arm	$s_{J} = b_{conn.plate_1} = 36 in$	$^{\rm SP=}$ d _{bolt.conn} = 1.5 in
$(D/C_{t.baseplate.arm_1})$ (0.83)	'SK'= $t_{\text{baseplate.arm}} = 3.00 \text{ in}$	'SR'= $t_{\text{conn.plate}_1} = 2.50 \text{ in}$
~ 1 t.vert.plate $ = 0.54 $	-	$SS = Spacing_{bolts.conn_1} = 12.00 \text{ in}$
CSR_{1} $\left(0.31\right)$	$SL = V_{vertical plate} - U_{v}/J^{*}III$	
$\begin{array}{c} D/C_{t,baseplate,arm_{1}}\\ CFI_{t,vert,plate_{1}}\\ CSR_{bolt,conn_{1}} \end{array} = \begin{pmatrix} 0.83\\ 0.54\\ 0.31 \end{pmatrix}$	$\mathbf{SL'= t_{vertical.plate_{l}} = 0.75 \text{ in}}$ $\mathbf{SN'= w_{vertical.plate_{l}} = \frac{3}{8} \cdot \text{in}}$	$\mathbf{ST} = \mathbf{W}_{\text{conn.plate}_1} = \frac{3}{8} \cdot \mathbf{in}$

VII. Upright Base Plate & Anchor Bolt Analysis InputDataFile = "A70D-A70D-P6D-DS185.dat"

Analyze Foundation

inpLuminaire :	<pre>(inpYLuminaire inpXLuminaire inpLumBaseDia inpLumWallThk inpLumSlope inpLumRadius inpLumBoltDia inptLumBasePlate</pre>	outLuminaire := inpLuminaire
inpUpright :=	(inpUprightTotHeight inpUprightHtToConn inpUprightBaseDia inpUprightWallThk inpAnchorBoltDia inpNumOfAnchorBolts inpConnPlateHeight	outUpright := inpUpright

 $inpConn := \begin{pmatrix} inpArm1Gap & inpArm1VertPlateThk & inpArm1BoltDia & inpArm1BasePlateThk & inpArm1BasePlateWidth \\ inpArm2Gap & inpArm2VertPlateThk & inpArm2BoltDia & inpArm2BasePlateThk & inpArm2BasePlateWidth \end{pmatrix}$

outConn := inpConn

inpShaft :=	(num2str(inpSoilType) inpSoilDensity inpFrictionAngle inpNumBlows inpShearStrength "0.0" "0.0" "0.0" inpShaftOffset inpNumSpacesB inpStirrupSpacingB	outShaft := inpShaft

Foundation Data

SoilType := inpSoilType = 0

 $\gamma_{soil} := str2num(inpSoilDensity) \cdot pcf = 43 \cdot pcf$

```
\varphi_{soil} \coloneqq str2num(inpFrictionAngle) \cdot deg = 29 \cdot deg
```

 $N_{blows} := str2num(inpNumBlows) = 12$

 $c_{soil} := str2num(inpShearStrength) \cdot psf = 2000 \cdot psf$

 $Offset := str2num(inpShaftOffset) \cdot ft = 0.5 ft$

NumSpacesStirrupsB := str2num(inpNumSpacesB) = 10 $s_{v_1} := str2num(inpStirrupSpacingB) \cdot in = 8 \cdot in$ NumSpacesStirrupsC := str2num(inpNumSpacesC) = 0 $s_{v_2} := str2num(inpStirrupSpacingC) \cdot in = 0 \cdot in$ StirrupBarSize := inpStirrupSize = 5 $\gamma_{water} := 62.4 \cdot pcf = 62.4 \cdot pcf$ (not used)

Foundation Design References

LRFD = AASHTO LRFD Bridge Design Specifications <u>SDG = FDOT Structures Design Guidelines</u> ACI = ACI 318 Structural Concrete Building Code

Applied Loads

(From Arm1 Design)

<u>SM V3 = FDOT Structures Manual Volume 3</u>

<u>Spec = FDOT Standard Specifications</u>

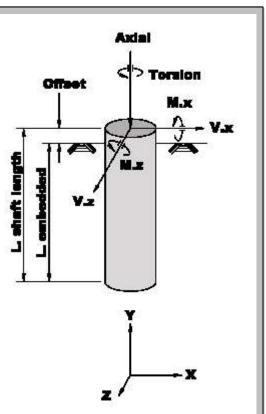
UF Report = FDOT/University of Florida Report BD545 RPWO #54

 $V_{extreme} = 150 \cdot mph$

(from Base Plate Design)

#AnchorBolts = 8

 $d_{anchorbolt} = 2 \cdot in$


 $Diameter_{boltcircle.pole} = 32 \cdot in$

 $T_{u.anchor} = 45.2 \cdot kip$

(from Upright Design)

$$M_{x,polebase} = \begin{pmatrix} 0\\ 265.9\\ 13.6 \end{pmatrix} \cdot kip \cdot ft$$
$$M_{y,polebase} = \begin{pmatrix} 421.5\\ 0\\ 421.5 \end{pmatrix} \cdot kip \cdot ft$$
$$\begin{pmatrix} 0\\ \end{pmatrix}$$

$$M_{z.polebase} = \begin{pmatrix} 0 \\ 112 \\ 240.8 \end{pmatrix} \cdot kip \cdot ft$$

$$V_{x.polebase} = \begin{pmatrix} 0 \\ 1.3 \times 10^{-15} \\ 6.8 \end{pmatrix} \cdot 1 \text{ AxialForce}_{polebase} = \begin{pmatrix} 10 \\ 10 \\ 10 \end{pmatrix} \cdot \text{kip} \qquad V_{z.polebase} = \begin{pmatrix} 0 \\ 8.6 \\ 6.1 \end{pmatrix} \cdot \text{kip}$$

Foundation Diameter

 $Diameter_{shaft} := Diameter_{boltcircle.pole} + 12 \cdot in + 12 \cdot in = 4.67 \text{ ft}$

round shaft diameter up to the nearest half foot dimension to accommodate available coring equipment

Diameter_{shaft}:= Ceil
$$\left(\text{Diameter}_{\text{shaft}}, \frac{1}{2} \cdot \text{ft}\right)$$
 = 5 ft
Diameter_{shaft.custom} := 0 · ft

 $\underbrace{\text{Diameter}_{shaft}:= if[(\text{Diameter}_{shaft.custom} > 0 \cdot ft), \text{Diameter}_{shaft.custom}, \text{Diameter}_{shaft}] = 1.5$

b:= Diameter_{shaft}

Shaft Depth Required to Resist Overturning

the following calculations are consistent with FDOT's Drilled Shaft Program V1.1


$$\phi_{ot} := 0.6$$
 SM V3 13.6 Offset = 0.5 ft vertical distance between top of foundation and ground line

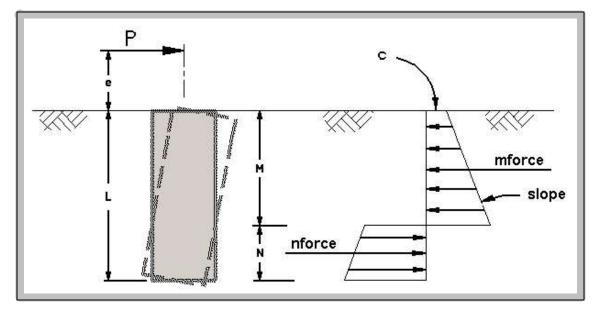
$$M_{u} := \sqrt{\left(M_{x.polebase}_{LoadCaseOT}\right)^{2} + \left(M_{z.polebase}_{LoadCaseOT}\right)^{2}} = 288.6 \cdot kip \cdot ft$$

$$P_{u} := \sqrt{\left(V_{x.polebase}_{LoadCaseOT}\right)^{2} + \left(V_{z.polebase}_{LoadCaseOT}\right)^{2}} = 8.65 \cdot kip$$

$$T_u := M_{y.polebase_{LoadCaseT}} = 421.5 \cdot kip \cdot ft$$

short free-head pile in cohesionless soil using Broms method

Deflection, load, shear and moment diagram for a short pile in cohesionless soil that is unrestrained against rotation.


$$K_p := tan \left(45 \cdot deg + \frac{\Phi_{soil}}{2}\right)^2 = 2.9$$
 $e_{sand} := Offset = 0.5 ft$

Guess value $L_{otSand} := 8 \cdot ft$ Given $P_u \cdot (e_{sand} + L_{otSand}) + M_u = \phi_{ot} \cdot \left[(3 \cdot \gamma_{soil} \cdot b \cdot L_{otSand} \cdot K_p) \cdot (\frac{1}{2} \cdot L_{otSand}) \cdot (\frac{1}{3} \cdot L_{otSand}) \right]$ $L_{wotSand} := Find(L_{otSand}) = 13 ft$

$$L_{\text{wetSand}} := \operatorname{ceil}\left(\frac{L_{\text{otSand}}}{\mathrm{ft}}\right) \cdot \mathrm{ft} = 13 \, \mathrm{ft} \qquad (round up to nextfoot)$$

$$D/C_{otSand} := \frac{M_u + P_u \cdot (e_{sand} + L_{otSand})}{\frac{(\phi_{ot}) \cdot \gamma_{soil} \cdot b \cdot L_{otSand}^3 \cdot K_p}{2}} = 0.99$$

short free-head pile in <u>cohesive soil</u> using Modified Broms method for L < 3b (see reference file for derivation)

Deflection, load, shear and moment diagram for a short pile in cohesive soil that is unrestrained against rotation.

$$c_{\text{soil}} := \text{if}\left[\left(c_{\text{soil}} = 0 \cdot \text{ksf}\right), 0.1 \cdot \text{ksf}, c_{\text{soil}}\right] = 2 \cdot \text{ksf} \qquad c_{\text{soil}} = 2000 \cdot \text{psf}$$

Slope:
$$8 \cdot \frac{c_{soil}}{3 \cdot b} = 1.1 \cdot \frac{kip}{ft^3}$$
 $e_{clay} := \frac{M_u}{P_u} + Offset = 33.9 \text{ ft}$

 $nforce(M, N) := \left[Slope \cdot (2 \cdot M + N) + 2 \cdot c_{soil} \right] \cdot N \cdot \frac{b}{2} \qquad mforce(M) := \left(2 \cdot c_{soil} + M \cdot Slope \right) \cdot M \cdot \frac{b}{2}$

$$m_arm(M) := e_{clay} + \frac{M}{3} \cdot \frac{2 \cdot (M \cdot Slope + c_{soil}) + c_{soil}}{M \cdot Slope + 2 \cdot c_{soil}}$$

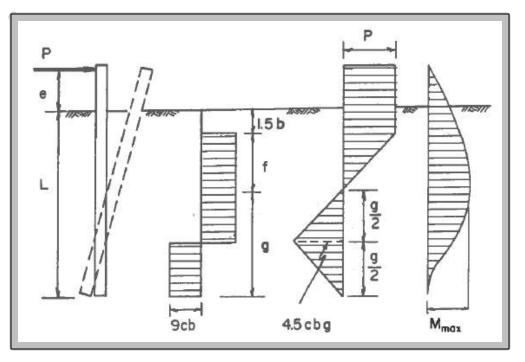
$$n_{arm}(M,N) := e_{clay} + M + \frac{N}{3} \cdot \frac{2 \cdot (N \cdot Slope + M \cdot Slope + c_{soil}) + (M \cdot Slope + c_{soil})}{Slope \cdot (2 \cdot M + N) + 2 \cdot c_{soil}}$$

Guess value

 $M := 4.0 \cdot ft \qquad \qquad \underset{\text{M}}{\text{N}} := 4.0 \cdot ft$

Given

 $P_u + \phi_{ot} \cdot nforce(M, N) = \phi_{ot} \cdot mforce(M)$


$$\begin{pmatrix} M \\ N \\ N \end{pmatrix} := Find(M, N) \qquad \qquad L_{ot1Clay} := M + N = 8.8 \, ft$$

MastArmV1.2.xmcd

 $mforce(M) \cdot m_arm(M) = nforce(M, N) \cdot n_arm(M, N)$

$$L_{\text{MATTICIAN}} = \operatorname{ceil}\left(\frac{L_{ot1Clay}}{ft}\right) \cdot ft = 9 \ ft \qquad (round up \ to \ nextfoot)$$

short free-head pile in <u>cohesive soil</u> using Regular Broms method for L > 3b

Deflection, load, shear and moment diagram for a short pile in cohesive soil that is unrestrained against rotation. M_{max.clay} equation is derived from the integration of the upper part of the shear diagram to the point of zero shear.

$$f := \frac{P_u}{\phi_{ot} \cdot 9 \cdot c_{soil} \cdot b} = 0.2 \, ft$$

 $M_{max.clay} := P_u \cdot (e_{clay} + 1.5 \cdot b + 0.5 \cdot f) = 358.5 \cdot kip \cdot ft$

$$g := \sqrt{\frac{M_{max.clay}}{2.25 \cdot \phi_{ot} \cdot c_{soil} \cdot b}} = 5.2 \, \text{ft}$$

 $L_{ot2Clay} := (1.5 \cdot b + f + g) = 12.8 \text{ ft}$

$$L_{\text{ot2Clay}} := \text{ceil}\left(\frac{L_{\text{ot2Clay}}}{\text{ft}}\right) \cdot \text{ft} = 13 \text{ ft}$$

$$L_{otClay} := if[(L_{ot1Clay} < 3 \cdot b), L_{ot1Clay}, L_{ot2Clay}] = 2.7$$

 $L_{reqdOT} := if[(SoilType = 0), L_{otSand}, L_{otClay}]$

required shaft embedment depth to resist overturning

(If $L_{ot} < 3b$, use Modified Broms method)

(round up to next foot)

 $L_{reqdOT} = 13 \text{ ft}$

 $\phi_{tor} := 1.0$ **<u>SM V3 13.6</u>**

short free-head pile in cohesionless soil

NOTE: ω_{fdot} *is based upon concrete soil interaction. This tors ion methodology is not to be used with permanent casing.*

$$\begin{split} N_{blows} &= 12 \\ \omega_{fdot} &\coloneqq if \Bigg[\Big(N_{blows} < 5 \Big), 0, if \Bigg[\Big(N_{blows} \ge 15 \Big), 1.5, 1.5 \cdot \frac{N_{blows}}{15} \Bigg] \Bigg] = 1.2 \end{split}$$

load transfer ratio, If 5<N<15, ω_{fdot} is

SM Vol-3 13.6

0 - Sand

1 - Clay

reduced by a factor of
$$\frac{N_{blows}}{15}$$

Guess value

$$L_{torSand} := L_{regdOT} = 13 \text{ ft}$$

Given
$$T_u = \phi_{tor} \cdot \left[\left(\pi \cdot b \cdot L_{torSand} \right) \cdot \left(\gamma_{soil} \cdot \frac{L_{torSand}}{2} \right) \cdot \left(\omega_{fdot} \right) \cdot \frac{b}{2} \right]$$

$$L_{torSand} := Find(L_{torSand}) = 20.4 ft$$

$$L_{\text{torSand}} := \operatorname{ceil}\left(\frac{L_{\text{torSand}}}{\operatorname{ft}}\right) \cdot \operatorname{ft} = 21 \operatorname{ft} \qquad (round up \ to \ next foot)$$

short free-head pile in cohesive soil

CohesionFactor := 0.55

 $f_{se} := CohesionFactor \cdot c_{soil} = 1.1 \cdot ksf$

Guess value

G

 $L_{torClay} := L_{reqdOT}$

iven
$$T_u = \phi_{tor} \cdot \left[f_{se} \cdot (\pi \cdot b) \cdot \left(L_{torClay} - 1.5 \cdot ft \right) \cdot \frac{b}{2} \right]$$

$$L_{torClay} := Find(L_{torClay}) = 11.3 \text{ ft}$$

$$L_{\text{torClay}} := \operatorname{ceil}\left(\frac{L_{\text{torClay}}}{\text{ft}}\right) \cdot \text{ft} = 12 \text{ ft} \qquad (round up to nextfoot)$$

$$L_{reqdTor} := if[(SoilType = 0), L_{torSand}, L_{torClay}] L_{reqdTor} = 21 ft$$

required shaft embedment depth to resist torsion

SoilType = 0

 $L_{embedded} := if[(L_{reqdTor} > L_{reqdOT}), L_{reqdTor}, L_{reqdOT}] = 21 \cdot ft$ $L_{shaft} := L_{embedded} + Offset$ $L_{shaft} = 21.5 \text{ ft} \quad shaft \text{ length}$

 $L_{\text{shaft}} := L_{\text{embedded}} + \text{Offset}$ $L_{\text{shaft}} = 2$

Maximum Moment in Shaft

short free-head pile in cohesionless soil using Broms method

$$f_{sand} := \sqrt{\frac{2 \cdot P_u}{3 \cdot \gamma_{soil} \cdot b \cdot K_p \cdot \varphi_{ot}}} = 3.9 \, \text{ft}$$

6/10/2021

$$M_{maxSand} := P_{u} \cdot \left(e_{sand} + f_{sand} \right) - \frac{P_{u} \cdot f_{sand}}{3} + M_{u} = 315.6 \cdot \text{kip} \cdot \text{ft}$$

short free-head pile in <u>cohesive soil</u> using Modified Broms method for L < 3b (see reference file for derivation)

Guess value $f_{mod} := 4.0 \cdot ft$

Given
$$P_{u} = \frac{f_{mod} \cdot b}{2} \cdot (2\phi_{ot} \cdot c_{soil} + \phi_{ot} \cdot f_{mod} \cdot Slope)$$

$$f_{mod} := Find(f_{mod}) = 1.1 \text{ ft}$$

 $M_{modBroms} \coloneqq P_{u} \cdot \left(e_{clay} + f_{mod} \right) - \frac{\phi_{ot} \cdot c_{soil} \cdot b \cdot f_{mod}^{2}}{2} - \frac{\phi_{ot} \cdot b \cdot f_{mod}^{3} \cdot Slope}{6} = 298.1 \cdot kip \cdot ft$

short free-head pile in <u>cohesive soil</u> using Regular Broms method for L > 3b

 $M_{Broms} := P_u \cdot \left(e_{clay} + 1.5 \cdot b + 0.5 \cdot f \right) = 358.5 \cdot kip \cdot ft$

 $M_{maxClay} := if[(L_{ot1Clay} < 3 \cdot b), M_{modBroms}, M_{Broms}] = 298.1 \cdot kip \cdot ft \qquad (If L_{ot} < 3b, use Modified Broms method)$

 $M_{max} := if[(SoilType = 0), M_{maxSand}, M_{maxClay}] = 315.6 \cdot kip \cdot ft$

Minimum Reinforcing and Spacing

$F_{y.rebar} := 60 \cdot ksi$	reinforcing yield strength			
$f_c := \textbf{4.0} \cdot ksi$	concrete stre	ngth	<u>Spec 346-3</u>	
Cover := 6 in	cover	<u>SDG Ta</u>	<u>ble 1.4.2-1</u>	

$A_{long,bar} := 1.56 \cdot in^2$	longitudinal bar area	
$d_{long.bar} := 1.41 \cdot in$	longitudinal bar diameter	
$A_{v,bar} := if (StirrupBarSize = 5, 0.31 \cdot in)$	$n^2, 0.44 \cdot in^2 = 0.31 \cdot in^2$ stirrup area	<u>SM V3 13.6.2</u>

 $d_{v,bar} := if(StirrupBarSize = 5, 0.625 \cdot in, 0.75 \cdot in) = 0.625 \cdot in$ stirrup diameter

$$s_{v} := \begin{pmatrix} 4 \cdot in \\ s_{v_{1}} \\ s_{v_{2}} \\ 12 \cdot in \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \\ 0 \\ 12 \end{pmatrix} \cdot in \begin{pmatrix} "Stirrups A" \\ "Stirrups B" \\ "Stirrups C" \\ "Stirrups D" \end{pmatrix} \qquad stirrup spacing, depth = 2 ft-depth.stir \\ stirrup spacing, depth > depth.stir \\ stirrup spacing, depth > depth.stirA \\ depth.stirA \\ Stirrup spacing, depth > depth.stirA \\ MastArmV1.2.xmcd \\ \end{bmatrix}$$

$$\begin{split} & \#\text{Spaces}_{vbar} := \begin{pmatrix} 6 \\ \text{NumSpacesStirrupsB} \\ \text{NumSpacesStirrupsC} \\ 1 \end{pmatrix} = \begin{pmatrix} 6 \\ 10 \\ 0 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} \text{"Stirrups A"} \\ \text{"Stirrups B"} \\ \text{"Stirrups D"} \end{pmatrix} \\ & \text{s}_v = \begin{pmatrix} 4 \\ 8 \\ 0 \\ 12 \end{pmatrix} \cdot \text{in} \qquad \#\text{Spaces}_{vbar} = \begin{pmatrix} 6 \\ 10 \\ 0 \\ 1 \end{pmatrix} \\ & \#\text{Spaces}_{vbar_2} := \text{if} \begin{bmatrix} \#\text{Spaces}_{vbar} = 0, \text{floor} \end{bmatrix} \begin{pmatrix} L_{\text{shaft}} - 5 \cdot \text{in} - \sum_{i=0}^{1} \left(s_{v_i} \cdot \#\text{Spaces}_{vbar_i} \right) \\ & \frac{1}{s_{v_3}} \end{bmatrix}, \#\text{Spaces}_{vbar_2} = 0, \text{floor} \begin{bmatrix} L_{\text{shaft}} - 5 \cdot \text{in} - \sum_{i=0}^{1} \left(s_{v_i} \cdot \#\text{Spaces}_{vbar_i} \right) \\ & \frac{1}{s_{v_3}} \end{bmatrix} = 12 \\ & \#\text{Spaces}_{vbar_3} := \text{floor} \begin{bmatrix} L_{\text{shaft}} - 5 \cdot \text{in} - \sum_{i=0}^{2} \left(s_{v_i} \cdot \#\text{Spaces}_{vbar_i} \right) \\ & \frac{1}{s_{v_3}} \end{bmatrix} = 12 \\ & L_{\text{shaft}} = 21.5 \text{ ft} \qquad \sum_{i=0}^{3} \left(s_{v_i} \cdot \#\text{Spaces}_{vbar_i} \right) = 20.7 \text{ ft} \end{split}$$

$$b = 5 \text{ ft}$$
 shaft diameter

#LongBars_{reqd1} :=
$$\frac{0.01}{A_{long,bar}} \cdot \frac{\pi \cdot b^2}{4} = 18.1$$

#LongBars_{reqd2} :=
$$\frac{0.135}{A_{long,bar} \cdot F_{y,rebar}} \cdot \left(\frac{\pi \cdot b^2}{4} \cdot f_c\right) = 16.3$$

 $#LongBars_{prov} := ceil(max(#LongBars_{reqd_1}, #LongBars_{reqd_2})) = 10$ number of longitudinal bars Use 18

$$\Phi_{u} := 0.90 \qquad Shear Resistance Factor \qquad \underline{LRFD 5.5.4.2.1}$$
$$V_{u} := \sqrt{\left(V_{x.polebase}_{LoadCaseOT}\right)^{2} + \left(V_{z.polebase}_{LoadCaseOT}\right)^{2}} = 8.6 \cdot kip$$

 $T_u = 421.5 \cdot kip \cdot ft$

Effective shear depth

$$D_{r} := b - 2 \cdot \left(Cover + d_{v,bar} + \frac{d_{long,bar}}{2} \right) = 3.8 \text{ ft} \qquad d_{e} := \frac{b}{2} + \frac{D_{r}}{\pi} = 3.7 \text{ ft}$$
LRFD C5.8.2.9-2

 $d_v := max(0.9 \cdot d_e, 0.72 \cdot b) = 3.6 \, ft$

Check Shear Strength

$$V_{c} := 0.0316 \cdot (2.0) \cdot \sqrt{f_{c} \cdot ksi} \cdot (d_{v}) \cdot b = 327.6 \cdot kip \qquad \underline{\textit{LRFD Eqn 5.8.3.3-3}} \qquad \underline{\textit{LRFD 5.8.3.4.1}} \qquad \underline{\textit{ACI 11.3.3}}$$

$$V_{s} \coloneqq \frac{A_{v,bar} \cdot F_{y,rebar} \cdot d_{v}}{max \left(s_{v_{0}}, s_{v_{1}}, s_{v_{2}}\right)} = 100.4 \cdot kip \qquad \underline{\textit{LRFD Eqn 5.8.3.3-4}}$$

$$D/C_{shear} := max \left(\left(\begin{array}{c} V_u - \phi_v \cdot V_c \\ \phi_v \cdot V_s \\ 0 \end{array} \right) \right) = 0$$

Check Torsion Strength

$$A_{cp} := \pi \cdot \left(\frac{b}{2}\right)^2 = 2827.4 \cdot in^2 \qquad p_{cp} := 2 \cdot \pi \cdot \left(\frac{b}{2}\right) = 188.5 \cdot in \qquad Area and perimeter of concrete cross-section$$

$$d_{oh} \coloneqq b - 2 \cdot \left(\text{Cover} + \frac{d_{v.bar}}{2} \right) = 47.4 \cdot \text{in} \qquad p_h \coloneqq \pi \cdot d_{oh} = 148.8 \cdot \text{in}$$
$$A_{oh} \coloneqq \pi \left(\frac{d_{oh}}{2} \right)^2 = 1.8 \times 10^3 \cdot \text{in}^2 \qquad A_o \coloneqq 0.85 \cdot A_{oh} = 1.5 \times 10^3 \cdot \text{in}^2$$

$$T_{n.torsion_{0}} \coloneqq \frac{2 \cdot A_{o} \cdot A_{v.bar} \cdot F_{y.rebar}}{s_{v_{0}}} = 1161.2 \cdot kip \cdot ft$$

$$\frac{LRFD Eqn 5.8.3.6.2-1}{LRFD 5.8.3.6.2-1}$$

$$T_{n.torsion_{1}} \coloneqq \frac{2 \cdot A_{o} \cdot A_{v.bar} \cdot F_{y.rebar}}{s_{v_{1}}} = 580.6 \cdot kip \cdot ft$$

$$\frac{LRFD 5.8.3.4.1}{s_{v_{1}}}$$

 $T_{n.torsion_2} := T_{n.torsion_1}$ on error $\frac{2 \cdot A_0 \cdot A_{v.bar} \cdot F_{y.rebar}}{s_{v_2}} = 580.6 \cdot kip \cdot ft$

 $\varphi_v = 0.9 \qquad \qquad T_u = 421.5 \cdot kip \cdot ft$

 $L_{reqdTor} = 21 \text{ ft}$

6/10/2021

MastArmV1.2.xmcd

Diameter, perimeter and area enclosed by the centerline of the outermost closed transverse torsion reinforcement

depth_{stir} :=
$$\begin{cases} \text{for } i \in 0..1 \\ \text{depth}_{i} \leftarrow \sum_{j=0}^{i} \left(s_{v_{j}} \cdot \# \text{Spaces}_{vbar_{j}} \right) \\ \text{depth} \end{cases} \quad \text{depth}_{stir} = \begin{pmatrix} 2 \\ 8.7 \end{pmatrix} \text{ft}$$

 $T_{u.section_0} := T_u$

$$T_{u.sand_{1}} := T_{u} - if\left[\left(depth_{stir_{0}} > Offset\right), \left[\pi \cdot b \cdot \left(depth_{stir_{0}} - Offset\right) \cdot \gamma_{soil} \cdot \left(\frac{depth_{stir_{0}} - Offset}{2}\right) \cdot \left(\omega_{fdot}\right) \cdot \frac{b}{2}\right], 0 \cdot kip \cdot ft\right] = 419.2 \cdot kip \cdot ft$$

$$T_{u.sand_{2}} := T_{u} - if\left[\left(depth_{stir_{1}} > Offset\right), \left[\pi \cdot b \cdot \left(depth_{stir_{1}} - Offset\right) \cdot \gamma_{soil} \cdot \left(\frac{depth_{stir_{1}} - Offset}{2}\right) \cdot \left(\omega_{fdot}\right) \cdot \frac{b}{2}\right], 0 \cdot kip \cdot ft\right] = 353.9 \cdot kip \cdot ft$$

$$T_{u.clay_{1}} \coloneqq T_{u} - if \left[\left(depth_{stir_{0}} - 1.5ft > Offset \right), \left[f_{se} \cdot (\pi \cdot b) \cdot \left(depth_{stir_{0}} - Offset - 1.5 \cdot ft \right) \cdot \frac{b}{2} \right], 0 \cdot kip \cdot ft \right] = 421.5 \cdot kip \cdot ft$$

$$T_{u.clay_2} := T_u - if \left[\left(depth_{stir_1} - 1.5ft > Offset \right), \left[f_{se} \cdot (\pi \cdot b) \cdot \left(depth_{stir_1} - Offset - 1.5 \cdot ft \right) \cdot \frac{b}{2} \right], 0 \cdot kip \cdot ft \right] = 133.5 \cdot kip \cdot ft$$

 $T_{u.section_1} := if \left[(SoilType = 0), T_{u.sand_1}, T_{u.clay_1} \right] = 419.2 \cdot kip \cdot ft$

$$T_{u.section_2} := if \left[(SoilType = 0), T_{u.sand_2}, T_{u.clay_2} \right] = 353.9 \cdot kip \cdot ft$$

$$T_{u.section} = \begin{pmatrix} 421.5\\419.2\\353.9 \end{pmatrix} \cdot kip \cdot ft \qquad T_{n.torsion} = \begin{pmatrix} 1161.2\\580.6\\580.6 \end{pmatrix} \cdot kip \cdot ft$$

$$D/C_{torsion} := \frac{T_{u.section}}{\phi_{tor} \cdot T_{n.torsion}} = \begin{pmatrix} 0.36\\ 0.72\\ 0.61 \end{pmatrix} \qquad D/C_{max.torsion} := max(D/C_{torsion}) = 0.72$$

$$T_{cr} \coloneqq 0.125 \sqrt{\frac{f_c}{ksi}} \cdot \left(\frac{A_{cp}^2}{p_{cp} \cdot in^3}\right) \cdot kip \cdot in = 883.6 \cdot kip \cdot ft$$
LRFD Eqn 5.8.2.1-4

 $T_u = 421.5 \cdot kip \cdot ft \qquad \qquad 0.25 \cdot \varphi_{tor} \cdot T_{cr} = 220.9 \cdot kip \cdot ft$

$$D/C_{torsion.max} := if[(T_u \le 0.25 \cdot \phi_{tor} \cdot T_{cr}), 0, max(D/C_{torsion})] = 0.722 \qquad \underline{LRFD \ Eqn \ 5.8.2.1-3}$$

 $D/C_{shear} = 0.000$ $D/C_{torsion.max} = 0.722$

$$\label{eq:checkD/C} \begin{split} CheckD/C_{shear.and.torsion} &\coloneqq if \Big[\Big(D/C_{shear} + D/C_{torsion.max} \leq 1 \Big), "OK", "No \ Good" \Big] \\ \hline 6/10/2021 & MastArmV1.2.xmcd \end{split}$$

CheckD/C_{shear.and.torsion} = "OK"

$$v_{u} \coloneqq \frac{V_{u}}{\varphi_{v} \cdot b \cdot d_{v}} = 0.0037 \cdot \text{ksi}$$

$$0.125 \cdot f_{c} = 0.5 \cdot \text{ksi}$$

$$IRFD Eqn 5.8.2.9-1$$

$$s_{max1} \coloneqq \text{if} \left[\left(0.8 \cdot d_{v} < 24 \cdot \text{in} \right), 0.8 d_{v}, 24 \cdot \text{in} \right] = 24 \cdot \text{in}$$

$$IRFD Eqn 5.8.2.7-1$$

$$s_{max2} \coloneqq \text{if} \left[\left(0.4 \cdot d_{v} < 12 \cdot \text{in} \right), 0.4 d_{v}, 12 \cdot \text{in} \right] = 12 \cdot \text{in}$$

$$IRFD Eqn 5.8.2.7-2$$

$$s_{max} \coloneqq \text{if} \left[\left(v_{u} < 0.125 \cdot f_{c} \right), s_{max1}, s_{max2} \right] = 24 \cdot \text{in}$$

$$max(s_{v}) = 12 \cdot \text{in}$$

 $CheckMaxSpacingTransvReinf := if[(max(s_v) \le s_{max}), "OK", "No Good"]$

CheckMaxSpacingTransvReinf = "OK"

LRFD Eqn 5.8.3.6.3-1

LRFD 5.8.3.4.1

Check Longitudinal Reinforcement for Combined Shear and Torsion

 $M_u = 288.6 \cdot kip \cdot ft$

$$V_{temp} := if\left(\frac{V_u}{\phi_v} - 0.5 \cdot V_s > 0 \cdot kip, \frac{V_u}{\phi_v} - 0.5 \cdot V_s, 0 \cdot kip\right) = 0 \cdot kip$$

$$\text{LongReinf}_{\text{shr.tor}} \coloneqq \frac{\frac{M_{u}}{\phi_{v} \cdot d_{v}} + \sqrt{\left(V_{\text{temp}}\right)^{2} + \left(\frac{0.45 \cdot p_{h} \cdot T_{u}}{2 \cdot A_{o} \cdot \phi_{v}}\right)^{2}}}{F_{v,\text{rebar}}} = 3.58 \cdot \text{in}^{2}$$

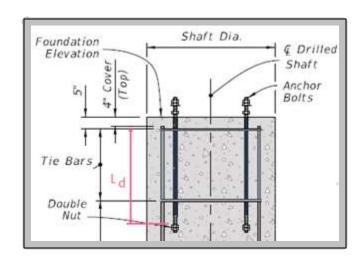
$$\#$$
LongBars_{prov}·A_{long.bar} = 29.6·in²

 $CheckLongReinf_{shr.tor} := if[(\#LongBars_{prov} \cdot A_{long.bar} \ge LongReinf_{shr.tor}), "OK", "No Good"]$

CheckLongReinf_{shr.tor} = "OK"

Anchor Bolt Embedment

$$T_{u.anchor} = 45.2 \cdot kip$$


tension force in anchor

 $Dia_{bar.circle} = 45.3 \cdot in$

 $Dia_{anchor.circle} := Diameter_{boltcircle.pole} = 32 \cdot in$

center-to-center distance

 $\text{Dist}_{\text{bar.to.bolt}} \coloneqq \frac{\text{Dia}_{\text{bar.circle}} - \text{Dia}_{\text{anchor.circle}}}{2} = 6.7 \cdot \text{in}$

$$Num_{bars.per.anchor} := min\left(\frac{\#LongBars_{prov}}{\#AnchorBolts}, 3\right) = 2.4 \qquad Use \ a \ maximum \ of three \ rebar per \ anchor \ bolt \ (conservative)$$

$$Num_{bars.reqd.per.anchor} := \frac{T_{u.anchor}}{A_{long.bar} \cdot (\phi \cdot F_{y.rebar})} \cdot \frac{Dia_{anchor.circle}}{Dia_{bar.circle}} = 0.38$$

AreaRatio :=
$$min\left(\frac{Num_{bars.reqd.per.anchor}}{Num_{bars.per.anchor}}, 1\right) = 0.16$$

2015 AASHTO Development Length of Deformed Bars in Tension 5.11.2.1

 $Cover = 6 \cdot in$

 $c_b =$ the smaller of the distance from center of bar or wire being developed to the nearest concrete surface and one half the center-to-center spacing of the bars or wires being developed

$$c_{b} := \min\left(\begin{pmatrix} Cover + d_{v,bar} + \frac{d_{long,bar}}{2} \\ \frac{Spacing_{vert,reinf}}{2} \end{pmatrix} \right) = 3.7 \cdot in$$

 $k_{tr} := 0 \cdot in$ assume no transverse bars:

$$\begin{split} \lambda_{rc} &:= \min \left[\begin{bmatrix} 1.0 \\ \max \left(\begin{pmatrix} 0.4 \\ \frac{d_{\log bar}}{c_b + k_t} \right) \right) \right] = 0.4 \quad LRFD \ Eqn \ 5.11.2.1.3-1 \\ L_{d.bar} &:= \max \left(\begin{pmatrix} 12 \cdot in \\ \lambda_{rc} \cdot 2.4 \cdot d_{\log bar} \cdot \frac{F_{y,rebar}}{\sqrt{f_c \cdot k_{si}}} \right) \right) = 40.6 \cdot in \quad tension \ development \ length \ LRFD \ Eqn \ 5.11.2.1.1-2 \\ Spacing Factor &:= \max \left[\begin{pmatrix} 0.5 \\ Num_{bars, per, anchor} \cdot 0.5 - 0.5 \end{pmatrix} \right] = 0.7 \\ L_{embed ment, added} &:= \sqrt{\left(Clearance_{vert, reinf} \cdot Spacing Factor \right)^2 + Dist_{bar, to, bolt}^2} = 7.9 \cdot in \\ L_{embed ment, anchor} &:= \max \left[\begin{bmatrix} L_{d.bar} \cdot (Area Ratio) + 12 \cdot in + L_{embed ment, added} \\ 20 \cdot d_{anchor bolt} \end{bmatrix} \right] = 40 \cdot in \quad in \ LTS, 3rd \ Ed. \ 1994, \ Section \ 3, 1.3.4 \ and \ still \ a \ good \ rule \ of \ thumb. \\ L_{anchor, bolt, exposed} &:= \max \left(\begin{pmatrix} 8 \cdot in \\ 2 \cdot d_{anchorbolt} + t_{baseplate, pole} + 2 \cdot d_{anchorbolt} + 2 \cdot in \end{pmatrix} \right) = 12.5 \cdot in \end{split}$$

 $L_{anchor.bolt} = 53 \cdot in$

Anchor Bolt Shear Break-Out Strength

References: ACI 318-05 Appendix D. FDOT/University of Florida Report BD545 RPWO #54, Anchor Embedment Requirements for Signal/Sign Structures, July 2007. number of anchor bolts #AnchorBolts = 8anchor bolt diameter

 $d_{anchorbolt} = 2 \cdot in$

anchor bolt circle diameter $Diameter_{boltcircle.pole} = 32 \cdot in$

anchor bolt embedment $L_{embedment.anchor} = 40 \cdot in$

 $b = 60 \cdot in$

shaft diameter

$$r_b := \frac{\text{Dia}_{\text{anchor.circle}}}{2} = 16 \cdot \text{in}$$

$$r := \frac{b}{2} = 30 \cdot in$$

$$c_{a1} := \frac{\sqrt{r_b^2 + 3.25 \cdot (r^2 - r_b^2)} - r_b}{3.25} = 10 \cdot in$$

adjusted cover

UF Report Eqn 3-2

 $L_e := \min\left(\begin{pmatrix} 8 \cdot d_{anchorbolt} \\ L_{embedment.anchor} \end{pmatrix} \right) = 16 \cdot in$

load bearing length of anchor for shear

ACI D.6.2.2

$$V_{b} := 13 \cdot \left(\frac{L_{e}}{d_{anchorbolt}}\right)^{0.2} \cdot \sqrt{\frac{d_{anchorbolt}}{in}} \cdot \sqrt{\frac{f_{c}}{psi}} \left(\frac{c_{a1}}{in}\right)^{1.5} \cdot lbf = 55.6 \cdot kip \qquad shear break-out strength (single anchor) \\ UF Report Eqn 2-11$$

 $A_{bolt.sector} := \frac{(360 \cdot deg)}{\#AnchorBolts} = 45 \cdot deg$ UF Report Fig 3-7

$$\alpha_{\text{cone}} \coloneqq 2 \operatorname{asin}\left[\frac{(1.5 \cdot c_{a1})}{r}\right] = 59.9 \cdot \deg$$

OverlapTest := if $(A_{bolt,sector} \le \alpha_{cone}, "Overlap of Failure Cones", "No Overlap of Failure Cones") = "Overlap of Failure Cones"$

chord :=
$$2 \cdot \mathbf{r} \cdot \sin\left(\frac{\mathbf{A}_{\text{bolt.sector}}}{2}\right) = 23 \cdot \mathbf{in}$$
 UF Report Fig 3-7

 $A_{Vco} := 4.5 \cdot c_{a1}^2 = 449.1 \cdot in^2$

projected concrete failure area (single anchor) ACI Eqn D-23

 $A_{Vc} := chord \cdot 1.5 \cdot c_{a1} = 344.1 \cdot in^2$

projected concrete failure area (group) ACI D.6.2.1

 $\underset{\text{WW}}{\text{A}_{\text{Vco}}} := \text{if}\left[\left(A_{\text{Vc}} > A_{\text{Vco}}\right), A_{\text{Vco}}, A_{\text{Vc}}\right] = 344.1 \cdot \text{in}^2$

$\psi_{ecV} \coloneqq \textbf{1.0}$	eccentric load modifier	ACI D.6.2.5	
$\psi_{edV} \coloneqq \textbf{1.0}$	edge effect modifier	ACI D.6.2.6	
$\psi_{cV} \coloneqq \textbf{1.0}$	cracked section modifier	ACI D.6.2.7	(stirrup spacing <= 4")
$\psi_{hV} \coloneqq \textbf{1.0}$	member thickness modifier	ACI D.6.2.8	
$\phi_{breakout} :=$ 0.75	strength reduction factor	ACI D.4.4.c.i	(shear breakout, condition A)

 $V_{cbg} := #AnchorBolts \cdot \left(\frac{A_{Vc}}{A_{Vco}}\right) \cdot \left(\psi_{ecV} \cdot \psi_{edV} \cdot \psi_{cV} \cdot \psi_{hV}\right) \cdot V_b = 341.1 \cdot kip$

concrete breakout strength - shear **ACI Eqn D-22** Shear force \perp to edge

 $V_{cbg_parallel} := 2 \cdot V_{cbg} = 682.1 \cdot kip$ ACI D.6.2.1.c Shear force || to edge

 $T_{n.breakout} := V_{cbg_parallel} \cdot r_b = 909.5 \cdot kip \cdot ft$

concrete breakout strength - torsion

 $\varphi_{breakout} \cdot T_{n.breakout} = 682.1 \cdot kip \cdot ft$

 $T_u = 421.5 \cdot kip \cdot ft$

 $BreakoutTest := if \left[\left(\varphi_{breakout} \cdot T_{n.breakout} \ge T_u \right), "OK", "No Good" \right]$

BreakoutTest = "OK"

OverlapDesign := if $[(A_{bolt.sector} \le \alpha_{cone}), "Based on Overlap of Failure Cones", "Based on No Overlap of Failure Cones"]$ OverlapDesign = "Based on Overlap of Failure Cones"

Clearance Between Vertical Reinforcement and Anchor Bolt Nut

 $Dist_{bar.to.bolt} = 6.7 \cdot in$ center-to-center distance

 $d_{anchor.nut} := 1.85 \cdot d_{anchorbolt} = 3.7 \cdot ir use$ an .to account for anchor nut

Clearance_{bar.to.nut} := Dist_{bar.to.bolt} - $\left(\frac{d_{anchor.nut} + d_{long.bar}}{2}\right) = 4.1 \cdot in$

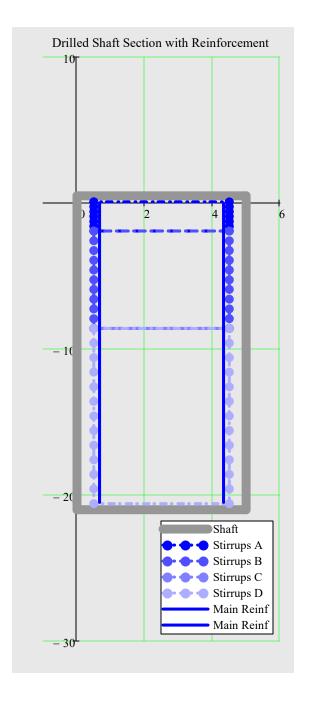
CheckAnchorageClearance = "OK"

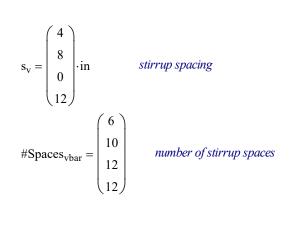
CSL tubes can be relocated plus/minus 2 inches from planned position (see Specifications)

 $d_{csl.tube} := 2 \cdot in$

6/10/2021

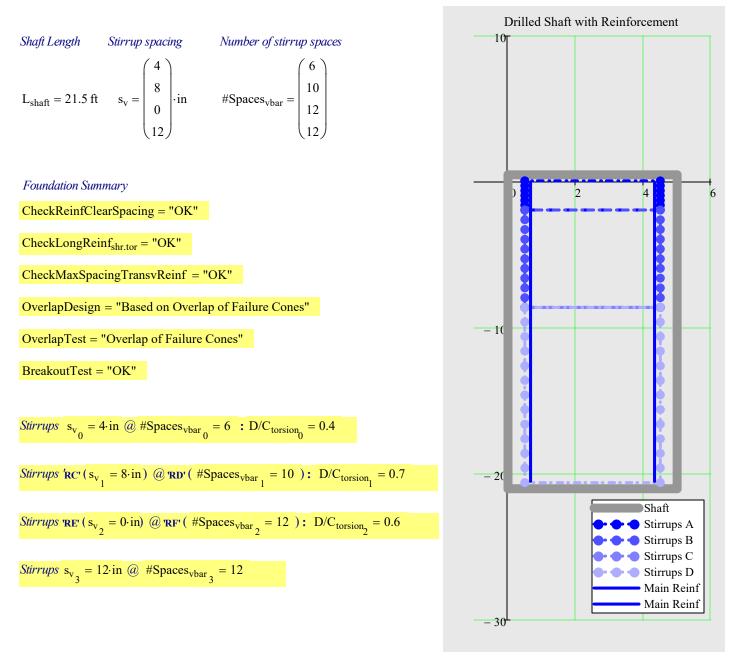
Draw Drilled Shaft Section with Reinforcement


$$\begin{split} & \text{StirrupsA} \coloneqq \text{fDrawStirrups} \Big(s_{v_0}, \#\text{Spaces}_{vbar_0}, \text{Cover}, \text{Offset} - 5 \cdot \text{in} \Big) \\ & \text{StirrupsB} \coloneqq \text{fDrawStirrups} \Big(s_{v_1}, \#\text{Spaces}_{vbar_1}, \text{Cover}, \min\left(\text{StirrupsA}^{\langle 1 \rangle}\right) \Big) \\ & \text{StirrupsC} \coloneqq \text{fDrawStirrups} \Big(s_{v_2}, \#\text{Spaces}_{vbar_2}, \text{Cover}, \min\left(\text{StirrupsB}^{\langle 1 \rangle}\right) \Big) \end{split}$$


StirrupsD :=
$$\begin{pmatrix} \text{Cover} & \min(\text{StirrupsC}) \\ b - \text{Cover} & \min(\text{StirrupsC}) \end{pmatrix}$$

 $\operatorname{coord} \leftarrow \operatorname{fDrawStirrups}\left(s_{v_3}, \#\operatorname{Spaces}_{vbar_3}, \operatorname{Cover}, \min\left(\operatorname{StirrupsC}^{\langle 1 \rangle}\right)\right) \text{ if } \min(\operatorname{StirrupsC}) > -L_{\operatorname{shaft}} + \operatorname{Cover} + 6 \cdot \operatorname{in} \operatorname{coord}$

Shaft :=
$$\begin{pmatrix} 0 \cdot in & Offset \\ b & Offset \\ b & -L_{shaft} + Offset \\ 0 \cdot in & -L_{shaft} + Offset \\ 0 \cdot in & Offset \end{pmatrix} = \begin{pmatrix} 0 & 0.5 \\ 5 & 0.5 \\ 5 & -21 \\ 0 & -21 \\ 0 & 0.5 \end{pmatrix} ft$$


$$\operatorname{Rebar} := \begin{bmatrix} (\operatorname{Cover} + 2 \cdot \operatorname{in}) & -\operatorname{Cover} + \operatorname{Offset} & (b - \operatorname{Cover} - 2 \cdot \operatorname{in}) \\ (\operatorname{Cover} + 2 \cdot \operatorname{in}) & (-L_{\operatorname{shaft}} + \operatorname{Cover} + \operatorname{Offset}) & (b - \operatorname{Cover} - 2 \cdot \operatorname{in}) \end{bmatrix} = \begin{pmatrix} 8 & 1.1 \times 10^{-15} & 52 \\ 8 & -246 & 52 \end{pmatrix} \cdot \operatorname{ind} \frac{1}{2} + \frac{$$

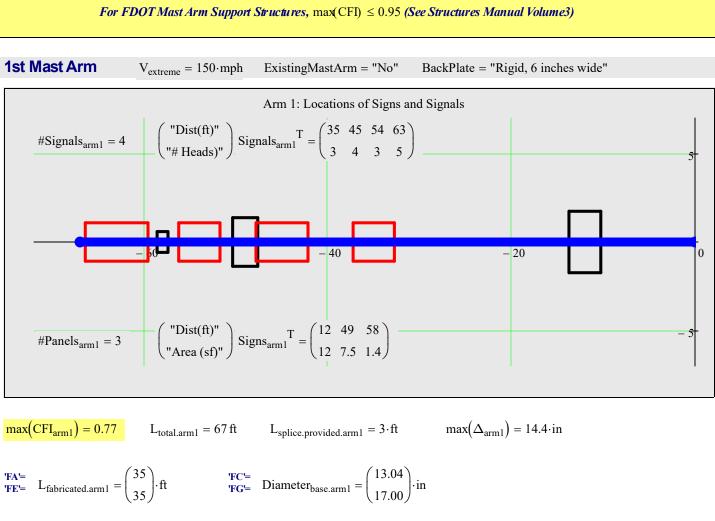
MastArmV1.2.xmcd

Analyze Foundation

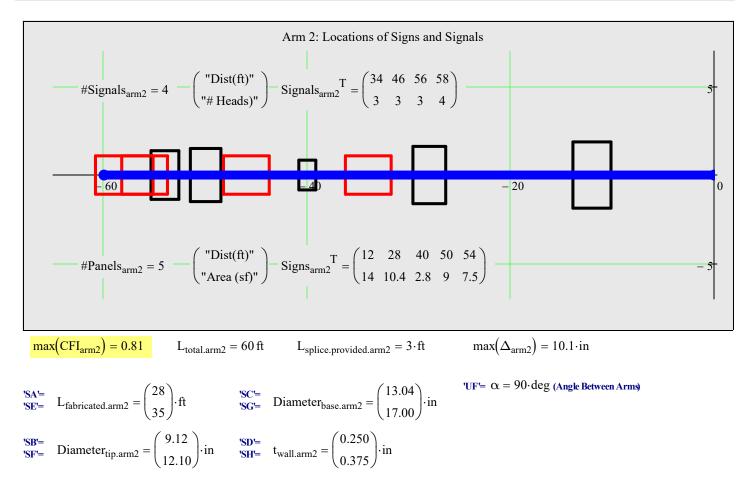
Use 22 ft

Offset = 0.5 ft	'DA'= $L_{shaft} = 21.5$ ft	'RA'= round $\left(\frac{d_{long,bar}}{0.125n}\right) = 11$	#Spaces _{vbar₀} = 6
$d_{long.bar} = 1.41 \cdot in$	DB Diameter _{shaft} = $5 \cdot \text{ft}$	'RB'= #LongBars _{prov} = 19	$s_{v_0} = 4 \cdot in$
$Dia_{bar,circle} = 45.3 \cdot in$	'BF'= $L_{embedment.anchor} = 40$ in		'RC'= $\#$ Spaces _{vbar 1} = 10
Suitemente	$L_{anchor.bolt} = 53 \cdot in$		'RD' = $s_{v_1} = 8 \cdot in$
	Page 16 of the Mathcad s	heets in this documentation shows	'RE'= $\#$ Spaces _{vbar 2} = 12
	required total number of lo	ongitudinal rebar is 18.1. Provide 18 to ans Index 649-030 typical drilled shaft t. This reinforcement is considered to be	$\mathbf{RF} = \mathbf{s}_{\mathbf{v}_2} = 0 \cdot \mathbf{i} \mathbf{n}$
	the 1% requirement per F		#Spaces _{vbar₃} = 12
	is considered to typically t	pe a gn. Meets Eq. 5.6.4.2-3 of the AASHTO	$s_{v_3} = 12 \cdot in$

IX. Fatigue Analysis Input	utDataFile = "A70D-A70D-P6D-DS	3185.dat"
FatigueCategory _{galloping} := 2	FatigueCategory _{natural.wind} := 2	2 <u>SM V3 11.6</u>
Analyze Structure for Fatigue		
Fatigue Summary		
Arm and Pole Welds	K1 values within 2% of LTS threshold	ds of 3.0 and 4.0 may use next higher CAFT values
Check _{galloping.arm1} = "OK"	$f_{galloping.arm1} = 5.8$ ·ksi	$CAFT_{fullpengroove.weld.arm1} = 7 \cdot ksi$
Check _{galloping.arm2} = "OK"	$f_{galloping.arm2} = 6.8$ ·ksi	$CAFT_{fullpengroove.weld.arm2} = 7 \cdot ksi$
Check _{galloping.pole} = "OK"	$f_{galloping.pole} = 2.5 \cdot ksi$	$CAFT_{fullpengroove.weld.pole} = 4.5 \cdot ksi$
Check _{nwg.arm1} = "OK"	$f_{nwg.arm1} = 3.6 \cdot ksi$	$CAFT_{fullpengroove.weld.arm1} = 7 \cdot ksi$
Check _{nwg.arm2} = "OK"	$f_{nwg.arm2} = 3.7 \cdot ksi$	$CAFT_{fullpengroove.weld.arm2} = 7 \cdot ksi$
Check _{nwg.pole} = "OK"	$f_{nwg.pole} = 1.2 \cdot ksi$	$CAFT_{fullpengroove.weld.pole} = 4.5 \cdot ksi$
CheckK1Values = "K1 is outsi	de of 2% of K1 thresholds" de of 2% of K1 thresholds" de of 2% of K1 thresholds"	$\begin{pmatrix} K_{\text{Larm1}} \\ K_{\text{Larm2}} \\ K_{\text{Lpole}} \end{pmatrix} = \begin{pmatrix} 3.781 \\ 3.781 \\ 8.768 \end{pmatrix} \qquad \begin{pmatrix} \text{"Arm 1 Base Weld"} \\ \text{"Arm 2 Base Weld"} \\ \text{"Upright Base Weld"} \end{pmatrix}$
A325 Connection Bolts		
$Check_{g.conn.bolt} = \begin{pmatrix} "OK" \\ "OK" \end{pmatrix}$	$f_{t.g.bolt} = \begin{pmatrix} 5.2\\ 5.8 \end{pmatrix} \cdot ksi$	CAFT _{conn.bolt} = 16·ksi
$Check_{nwg.conn.bolt} = \begin{pmatrix} "OK" \\ "OK" \end{pmatrix}$	$f_{t.nwg.bolt} = \begin{pmatrix} 3.2 \\ 3.2 \end{pmatrix} \cdot ksi$	
Anchor Bolts		
Check _{g.anchor} = "OK"	$f_{t.g.anchor} = 2.4 \cdot ksi$	$CAFT_{anchor.bolts} = 7 \cdot ksi$
Check _{nwg.anchor} = "OK"	$f_{t.nwg.anchor} = 1.3 \cdot ksi$	
Save Data File (optional)		
Use current input file		
File Name A70D-A70D-P6D	-DS185.dat	
	tt folder by using the "Change Folder" o	option above.
<u>Arm Designation Example</u> A70/D-A30/D/H-P5/D/L-DS/16 A70/D - Arm A30/D/H - Arm P5/D/L - Pole		Save Data


X. Mast Arm Design and Analysis Summary InputDataFile = "A70D-A70D-P6D-DS185.dat"

If comparing results to Standard Index 649-030, some values in the index have been increased to reduce the number of variations.


Subject= "Erie Rd and SR 62 Improvements"DesignedBy= "RT"ProjectNo= "850-6094060"CheckedBy= ""

<u>PoleLocation</u> = "106+71.00/52.5 RT" <u>Date</u> = "5 / 27 / 2021"

ExistingMastArm = "No"

'FB'=
'FF'= Diameter_{tip.arm1} =
$$\begin{pmatrix} 8.14 \\ 12.10 \end{pmatrix}$$
 in **'FD'=**
'FH'= t_{wall.arm1} = $\begin{pmatrix} 0.250 \\ 0.375 \end{pmatrix}$ in

Luminaire Arm and Connection (use MC10x33.6 channel for connection)

(CFI _{base.lumarm})		0.00	'LA'= Y _{luminaire} = 0 ft	'LF'= $r_{lumarm} = 0$ ft
CSR _{bolt.lum}	=	7.17×10^{-9}	'LB'= X _{luminaire} = 0 ft	'LG'= $d_{bolt.lum} = 0 \cdot in$
D/C _{baseplate.lum} D/C _{conn.plate.lum}		0.00	'LC'= Diameter _{base.lumarm} = $0 \cdot in$	'LH'= $t_{baseplate.lum} = 0 \cdot in$
			'LD'= $t_{wall.lumarm} = 0 \cdot in$	'LJ'= $w_{base.lum} = 0 \cdot in$
			LE Slope _{lumarm} = 0	$\mathbf{W}_{\mathbf{k}} = \mathbf{W}_{\mathbf{k}} = \mathbf{W}_{\mathbf{k}}$

Upright			
$\max(\text{CFI}_{\text{pole}}) = 0.50$	Check _{deflection} = "OK"	Check _{slope} = "OK"	
'UA'= $Y_{pole} = 23.25 \cdot ft$	'UC'= Diam	$eter_{tip.pole} = 20.8 \cdot in$	'UE'= $t_{wall.pole} = 0.5 \cdot in$
'UB'= $Y_{arm.conn} = 20.25 \cdot ft$	' UD '= Diam	$eter_{base.pole} = 24 \cdot in$	$UF = \alpha = 90 \cdot \deg$
			'UG'= $Y_{lum.conn} = 0$ ft

1st Arm to Upright Connection

$D/C_{ht.conn.plate} = 0.75$ CheckHt_{conn.plate} = "OK"

 $D/C_{width.conn.plate_0} = 0.97$

D/C_{t.baseplate.arm}

CFI_{t.vert.plate0}

CSR_{bolt.conn}0

 $CheckWidth_{conn.plate_0} = "OK"$

'HT'= $h_{conn.plate} = 30 \cdot in$

 $\#Bolts_{conn_0} = 6$

'FJ'= $b_{\text{conn.plate}_0} = 36 \cdot \text{in}$

'FK'= $t_{\text{baseplate.arm}_0} = 3 \cdot \text{in}$

FL'=
$$t_{vertical.plate_0} = 0.75 \cdot in$$

FN'= $w_{vertical.plate_0} = \frac{3}{8} \cdot in$

'FO'= Offset_{conn₀} = 23.0·in **'FP'=** $d_{bolt.conn_0} = 1.5$ ·in **'FR'=** $t_{conn.plate_0} = 2.5$ ·in **'FS'=** Spacing_{bolts.conn_0} = 12·in **'FT'=** $w_{conn.plate_0} = \frac{3}{8}$ ·in

2nd Arm to Upright Connection

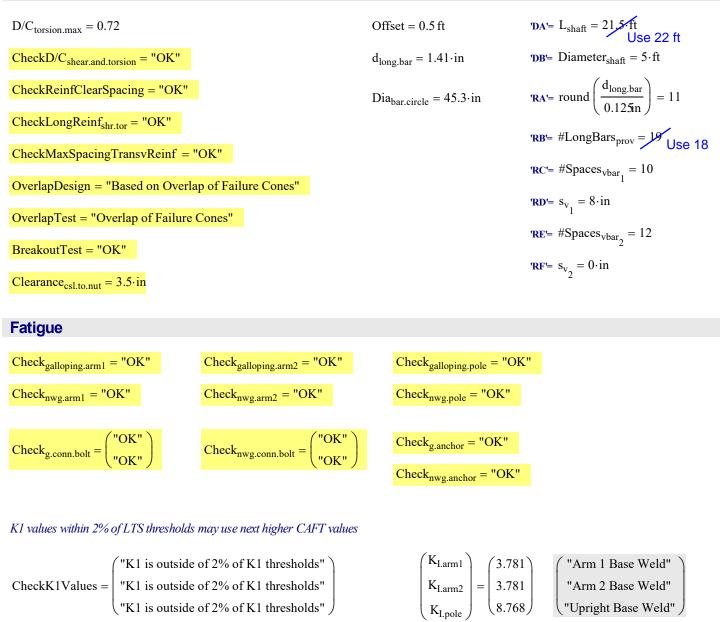
(0.83)

 $= \begin{bmatrix} 0.52\\ 0.31 \end{bmatrix}$

$D/C_{width.conn.plate_1} = 0.97$	
-----------------------------------	--

CheckWidth_{conn.plate₁} = "OK"

$$\begin{pmatrix} D/C_{t,baseplate,arm_1} \\ CFI_{t,vert,plate_1} \\ CSR_{bolt,conn_1} \end{pmatrix} = \begin{pmatrix} 0.83 \\ 0.54 \\ 0.31 \end{pmatrix}$$


'HT'= $h_{conn.plate} = 30 \cdot in$

#Bolts_{conn_1} = 6'SO'= Offset_{conn_1} = 23.0 \cdot in'SJ'=
$$b_{conn.plate_1} = 36 \cdot in$$
'SP'= $d_{bolt.conn_1} = 1.5 \cdot in$ 'SK'= $t_{baseplate.arm_1} = 3 \cdot in$ 'SR'= $t_{conn.plate_1} = 2.5 \cdot in$ 'SL'= $t_{vertical.plate_1} = 0.75 \cdot in$ 'SS'= Spacing_{bolts.conn_1} = 12 \cdot in'SN'= $w_{vertical.plate_1} = \frac{3}{8} \cdot in$ 'ST= $w_{conn.plate_1} = \frac{3}{8} \cdot in$

Pole Base Plate

$CSR_{anchor} = 0.38$	'#Bolts'= #AnchorBolts = 8	BA'= Diameter _{baseplate.pole} = $40 \cdot in$
CheckCSR _{anchorbolt} = "OK"	$Diameter_{boltcircle.pole} = 32 \cdot in$	'BB'= $t_{baseplate.pole} = 2.5 \cdot in$
		'BC'= $d_{anchorbolt} = 2.00 \cdot in$
		'BF'= $L_{embedment.anchor} = 40 \cdot in$
		$L_{anchor.bolt} = 53 \cdot in$

Foundation

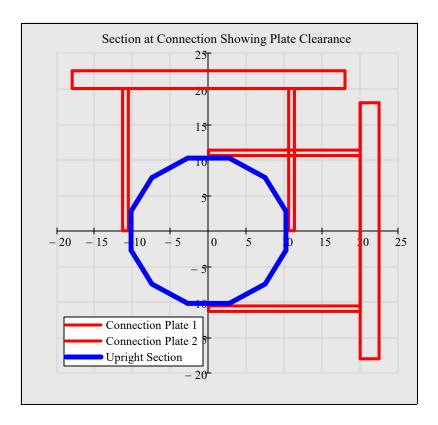
WRITEPRN to Line 1-2-3 for Mast Arm Data Table

Mast Arm Tip Deflection

Compare Mast Arm deflection of each arm to a proposed camber

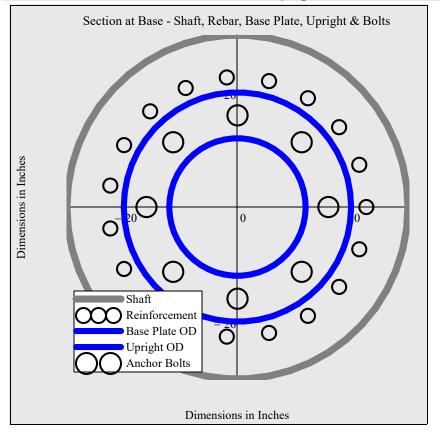
$$\begin{aligned} \text{Camber}_{arm1} &\coloneqq \mathbf{2} \cdot \text{deg} \\ \text{Deflection}_{arm1} &\coloneqq \text{Slope}_{x} \cdot \text{L}_{\text{total.arm1}} + \max(\Delta_{arm1}) = 18.6 \cdot \text{in} \\ \text{CamberArm1}_{upward} &\coloneqq \sin(\text{Camber}_{arm1}) \cdot \text{L}_{\text{total.arm1}} = 28.1 \cdot \text{in} \\ \text{Deflection}_{arm2} &\coloneqq \left[\text{Slope}_{z} \cdot \text{L}_{\text{total.arm2}} \cdot (\sin(\alpha)) \right] + \text{Slope}_{x} \cdot \text{L}_{\text{total.arm2}} \cdot \cos(\alpha) + \max(\Delta_{arm2}) = 13.6 \cdot \text{in} \\ \text{CamberArm2}_{upward} &\coloneqq \sin(\text{Camber}_{arm2}) \cdot \text{L}_{\text{total.arm2}} = 25.1 \cdot \text{in} \end{aligned}$$

MastArmV1.2.xmcd

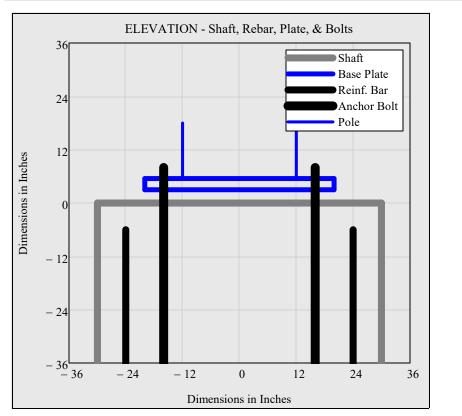

Check Clearance Between Connection Plates (for Two Arm Structures only)

$\alpha = 90 \cdot \text{deg}$	$\alpha := if[(\alpha > 180 \cdot deg), (360 \cdot deg - $	$(\alpha), \alpha]$	
$Offset_{conn_0} = 23 \cdot in$	$b_{conn.plate_0} = 36 \cdot in$	$h_{conn.plate} = 30 \cdot in$	$\alpha = 90 \cdot deg$
$Offset_{conn_1} = 23 \cdot in$	$b_{\text{conn.plate}_1} = 36 \cdot \text{in}$		
x1 := Offset _{conn₀} - t_c	$h_{\text{conn.plate}_0} - h_{\text{conn.plate}} \cdot \frac{\sin(\text{Camber}_{\text{arm1}})}{2}$	$\frac{)}{2} = 20 \cdot \text{in}$ y1 := $\frac{b_{\text{conn.plat}}}{2}$	$\frac{e_0}{2} = 18 \cdot in$
$x2 := \left(Offset_{conn_1} - \right)$	$t_{\text{conn.plate}_1} - h_{\text{conn.plate}} \cdot \frac{\sin(\text{Camber}_{\text{arm}})}{2}$	$\frac{a^2}{2}$) $\cdot \cos(\alpha) + \frac{b_{\text{conn.plate}_1}}{2} \cdot \sin(\alpha)$	= 18·in
$y2 := \left(Offset_{conn_1} - \right)$	$t_{\text{conn.plate}_1} - h_{\text{conn.plate}} \cdot \frac{\sin(\text{Camber}_{\text{arm}})}{2}$	$\frac{b_{\text{conn.plate}_1}}{2}$ $\left(\sin(\alpha) - \frac{b_{\text{conn.plate}_1}}{2} \cdot \cos(\alpha) \right)$	= 20·in
Clearance _{plate.to.plate} :	$= if \left[(x1 > x2) \cdot (y2 > y1), \sqrt{(x1 - x2)} \right]$	$\overline{)^{2}} + (y1 - y2)^{2}, 0 \cdot in = 2.8 \cdot in$	

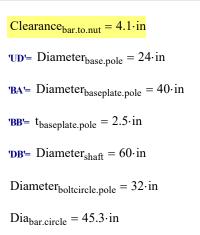
(if Clearance < 2 inches, a redesign is required.


Coordinates for Drawings

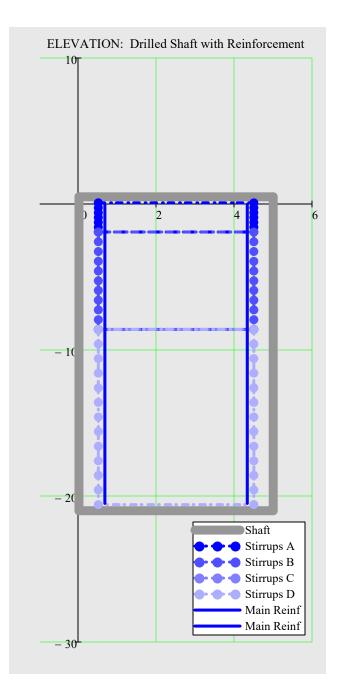
Plan View - Connection Plate Clearance for Two Arm Connections

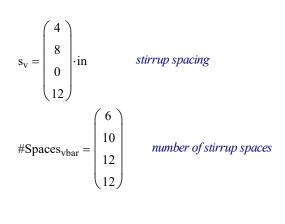

Clearance_{plate.to.plate} = 2.8·in Diameter_{conn.pole} = 21.2·in **TR** = $t_{conn.plate_0} = 2.5 \cdot in$ **TJ** = $b_{conn.plate_0} = 36 \cdot in$ **TL** = $t_{vertical.plate_0} = 0.75 \cdot in$ **TO** = Offset_{conn_0} = 23.0·in Gap₀ = 12.44·in **'SR** = $t_{conn.plate_1} = 2.5 \cdot in$ **'SL** = $t_{vertical.plate_1} = 36 \cdot in$ **'SL** = $t_{vertical.plate_1} = 0.75 \cdot in$ **'SO** = Offset_{conn_1} = 23.0·in Gap₁ = 12.44·in

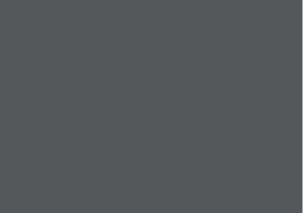
Plan View - Drilled Shaft, Base Plate, Upright, Anchor Bolts, & Reinforcing Steel



Clearance_{bar.to.nut} = $4.1 \cdot in$ 'UD'= Diameter_{base.pole} = $24 \cdot in$ 'BA'= Diameter_{baseplate.pole} = $40 \cdot in$ 'DB'= Diameter_{shaft} = $60 \cdot in$ Diameter_{boltcircle.pole} = $32 \cdot in$ Dia_{bar.circle} = $45.3 \cdot in$ #AnchorBolts = 8#LongBars_{prov} = 19


Note: The Plan and Elevation Views do not show the 4 or 5 1.9" O.D. Nondestructive Integrity Testing Access Tubes that are tied to the inside of the reinforcing cage (see FDOT Spec 455-16.4).




Elevation View - Drilled Shaft, Base Plate, Anchor Bolts, & Reinforcing Steel

Elevation View - Drilled Shaft with Main Reinforcement and Stirrups

Erie Rd. and SR 62 Improvements

HDR Project Number: 10151274

Miscellaneous Structures

1.7 Geotechnical Information

For: Manatee County Public Works

SR-62 and Erie Road

Parrish, Manatee County, Florida

January 3, 2019 Terracon Project No. HC185059

Prepared for:

Manatee County Public Works Bradenton, Florida

> Prepared by: Terracon Consultants, Inc. Sarasota, Florida

January 3, 2019

Manatee County Public Works 1022 26th Avenue East Bradenton, Florida 34206

- Attn: Mr. Michael Sturm, P.E. P: (941) 708-7450 E: Michael.Sturm@mymanatee.com
- Re: Geotechnical Engineering Report SR-62 and Erie Road Parrish, Manatee County, Florida Terracon Project No. HC185059

Dear Mr. Sturm:

We have completed the Geotechnical Engineering services for the above referenced project. This study was performed in general accordance with Terracon Proposal No. PHC185059 dated October 11, 2018 and authorized by Purchase Order Work Assignment No. W1900036 dated October 30, 2018. This report presents the findings of the subsurface exploration and provides geotechnical recommendations concerning earthwork and the design and construction of pavements and signal pole foundations for the proposed project.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report or if we may be of further service, please contact us.

Sincerely, Terracon Consultants, Inc.

James M. Jackson, P.E. Department Manager FL License No. 77733 Douglas S. Dunkelberger, P.E. Principal FL License No. 33317

lerracon

GeoReport.

Terracon Consultants, Inc. 8260 Vico Court, Unit B Sarasota, Florida 34240 P (941) 379 0621 F (941) 379 5061 terracon.com

REPORT TOPICS

INTRODUCTION	1
SITE CONDITIONS	1
PROJECT DESCRIPTION	2
GEOTECHNICAL CHARACTERIZATION	3
GEOTECHNICAL OVERVIEW	4
EARTHWORK	5
DEEP FOUNDATIONS	7
PAVEMENTS	
GENERAL COMMENTS1	
FIGURES	3

Note: This report was originally delivered in a web-based format. **Orange Bold** text in the report indicates a referenced section heading. The PDF version also includes hyperlinks which direct the reader to that section and clicking on the *GeoReport* logo will bring you back to this page. For more interactive features, please view your project online at <u>client.terracon.com</u>.

ATTACHMENTS

EXPLORATION AND TESTING PROCEDURES PHOTOGRAPHY LOG SITE LOCATION AND EXPLORATION PLANS EXPLORATION RESULTS SUPPORTING INFORMATION

Note: Refer to each individual Attachment for a listing of contents.

REPORT SUMMARY

Topic ¹	Overview Statement ²	
Project Description	The project includes widening Erie Road from US-301 to approximately 500 feet west of US-301 and extending Erie Road east of US-301 to connect with State Road 62 (approximately 1,300 linear feet). New mast arm signal poles are also planned for the intersection of Erie Road and US-301.	
Geotechnical Characterization	In general, the borings found loose to dense poorly graded fine sand with varying amounts of silt from the surface to a depth of about 18 feet below the ground surface (bgs) followed by varying layers of loose to medium dense clayey sand and sand with silt to the maximum borehole termination depth of 30 feet bgs. The estimated Seasonal High Groundwater Level (SHGWL) is +39 ½ feet-NAVD.	
Earthwork	Remove topsoil and other large vegetative matter from the planned pavement areas. Densify the existing sandy soils for support of the proposed pavements.	
Deep Foundations	Recommended soil parameters for design of drilled shafts are provided on the Report of Core Borings exhibit.	
Pavements	 With subgrade prepared as noted in Earthwork. Asphalt: 3" Asphaltic Concrete (AC) over 10" aggregate base and 12" of stabilized subgrade 	
General Comments	This section contains important information about the limitations of this geotechnical engineering report.	
 If the reader is reviewing this report as a pdf, the topics above can be used to access the appropriate section of the report by simply clicking on the topic itself. This summary is for convenience only. It should be used in conjunction with the entire report for design purposes. 		

SR-62 and Erie Road Parrish, Manatee County, Florida Terracon Project No. HC185059 January 3, 2019

INTRODUCTION

This report presents the results of our subsurface exploration and geotechnical engineering services performed for the proposed Erie Road extension in Parrish, Manatee County, Florida. The purpose of these services is to provide information and geotechnical engineering recommendations relative to:

- Subsurface soil conditions
- Site preparation and earthwork
- Groundwater conditions

- Geotechnical parameters for drilled shaft design (by others)
- Pavement design and construction

The geotechnical engineering Scope of Services for this project included the advancement of 18 test borings to depths ranging from approximately 10 to 30 feet below existing site grades.

Maps showing the site and boring locations are shown in the **Site Location** and **Exploration Plan** sections, respectively. The results of the laboratory testing performed on soil samples obtained from the site during the field exploration are included on the boring logs in the **Exploration Results** section.

SITE CONDITIONS

The following description of site conditions is derived from our site visit in association with the field exploration and our review of publicly available geologic and topographic maps.

Item	Description
Parcel Information	The project is located at SR-62 and Erie Road in Parrish, Manatee County, Florida. See Site Location
Existing Improvements	Erie Road, west of US-301, currently consists of a 2-lane, asphalt-paved road with unpaved shoulders. The planned extension of Erie Road, east of US-301, is currently undeveloped pasture land.
Current Ground Cover	Most of the site is covered with short grasses except for the western portion of Erie Road which is covered with asphalt pavement and unpaved shoulders.
Existing Topography	Based on information provided by Mr. Jim Gatch of ZNS Engineering, the site is relatively level with ground surface elevations ranging from about +42 to +44 feet-NAVD.

SR-62 and Erie Road – Parrish, Manatee County, Florida January 3, 2019 – Terracon Project No. HC185059

Item	Description		
Prior Land Use	Review of historical aerial photographs (ref. Google Earth) indicate the western portion of Erie Road has been in-place from at least 1995 to the present day. The eastern portion of the site, east of US-301, appears to have been a citrus grove from at least 1995 until 2010 when the grove appears to have been abandoned. The trees appear to have been removed by 2012 and the site remains generally unchanged to the present day.		
Surficial Soil Conditions	Review of the Soil Survey for Manatee County, Florida issued April 1983 indicates the site is mapped with Soil Unit 36, Orlando fine sand, moderately wet, 0 to 2 percent slopes. The typical soil profile consists of fine sand to a depth of 80 inches or more. Under natural (pre-development) conditions, the seasonal high groundwater level (SHGWL) is reported to be between 40 and 72 inches bgs.		

We also collected photographs at the time of our field exploration program. Representative photos are provided in our **Photography Log**.

PROJECT DESCRIPTION

Our initial understanding of the project was provided in our proposal and was discussed during project planning. A period of collaboration has transpired since the project was initiated, and our final understanding of the project conditions is as follows:

Item	Description		
Information Provided	The following information was provided to us by Mr. Michael Sturm, P.E. of Manatee County Public Works and Mr. Jason Starr, P.E. of HDR Engineering.		
Project Description	The project includes widening Erie Road from US-301 to approximately 500 feet west of US-301 and extending Erie Road east of US-301 to connect with State Road 62 (approximately 1,300 linear feet). New mast arm signal poles are also planned for the intersection of Erie Road and US-301.		
Proposed Structures	The project includes up to three mast arm signal poles located at the northeast, southeast, and southwest corners of Erie Road and US-301. The new signal poles are to be supported on drilled shaft foundations (to be designed by others). We have assumed the mast arm foundation will be designed assuming the most aggressive corrosion conditions.		
Maximum Loads	Structural loads for the new mast arm foundation were not provided.		
Grading/Slopes	We expect site grading fill thicknesses to be moderate (up to 5 feet in thickness).		

SR-62 and Erie Road Parrish, Manatee County, Florida January 3, 2019 Terracon Project No. HC185059

Item	Description		
Pavements ¹	 Based on information from the Florida Department of Transportation (FDOT) Transportation Data and Analytics Office (provided by Mr. Jason Starr, P.E. of HDR) we understand SR-62 has an Average Annual Daily Traffic (AADT) of 3,000. Historically, the AADT peaked in 2014 at 3,400 (1,700 per lane). Additionally, the Average Daily Truck Traffic (ADTT) is 816 (24%) for SR-62 (408 per lane). Based on this information, the following traffic data was utilized: Autos/light trucks: 1,292 vehicles per day per lane Light delivery and trash collection vehicles: 355 vehicles per day per lane Tractor-trailer trucks: 53 vehicles per day per lane 		
	The pavement design period is 20 years.		

 The distribution of truck traffic is based on Table 6.9 of Pavement Analysis and Design by Yang H. Huang (2004) and indicates 87% single-unit trucks and 13% multiple-unit trucks for a Rural Major Collector.

GEOTECHNICAL CHARACTERIZATION

We have developed a general characterization of the subsurface conditions based upon our review of the subsurface exploration, laboratory data, geologic setting and our understanding of the project. This characterization, termed GeoModel, forms the basis of our geotechnical calculations and evaluation of site preparation and foundation options. Conditions encountered at each exploration point are indicated on the individual logs. The individual logs can be found in the **Exploration Results** section and the GeoModel can be found in the **Figures** section of this report.

As part of our analyses, we identified the following model layers within the subsurface profile. For a more detailed view of the model layer depths at each boring location, refer to the GeoModel.

Model Layer	Layer Name	General Description		
1	Sand with silt	Poorly graded SAND with silt, sometimes with sand-sized phosphate grains (A-3, A-2-4, SP, SP-SM)		
2	Clayey sand	Clayey SAND (A-2-6, SC)		
3	Sandy clay	Clayey sand to sandy CLAY (A-6, SC)		
4	Silty sand	Silty SAND (A-2-4, SM)		

Groundwater

Three shallow piezometers were installed along the planned Erie Road alignment to collect stabilized groundwater levels. Groundwater level measurements were made in the piezometers on a weekly basis during the month of December 2018 and are summarized in the table below:

Piezometer	Ground Surface	Ele	evation of Groun	dwater (feet-NAV	/D)
No.	Elevation (feet-NAVD) ¹	12-7-18	12-12-18	12-17-18	12-26-18
PZ-1	+42.7	+36.8	+37.8	+38.3	+39.4
PZ-2	+43.6	+37.7	+37.6	+37.9	+39.5
PZ-3	+43.0	+37.9	+36.8	+37.1	+38.7
1. Ground surface elevations were provided by ZNS Engineering.					

As presented herein, the SHGWL is the highest sustained groundwater elevation during a typical (normal or average rainfall amount) wet season and not the peak groundwater elevation immediately following a major storm event. Therefore, the SHGWL referred to in this report is an average, high value and not necessarily a peak (upper bound) value. The SHGWL generally occurs at the end of the wet season, which the Southwest Florida Water Management District (SWFWMD) identifies as the four months of mid-May through October.

The best and most accurate method of determining the SHGWL is to obtain real-time site-specific groundwater data through an entire hydro period (dry and wet seasons) during a year with normal rainfall. However, due to the project's design schedule, this was not feasible. Therefore, our SHGWL estimates are based on the stabilized groundwater measurement made in December 2018 and an adjustment factor derived from published rainfall and groundwater data.

The groundwater levels in surficial aquifer well ROMP 39, which is located approximately 10 miles east of the site, were considered. The historical groundwater measurements reported for the well show that the groundwater levels peak in the month of August. In general, the groundwater level falls about 1 ½ feet from August to December, during a normal hydro-period. Additionally, the real-time data for the well suggests that the groundwater levels for December 2018 are about ½ feet higher than the typical average for this time of year.

The well data discussed above suggests that the groundwater measurements made in December 2018 for this study are likely on the order of about 2 feet below the normal (i.e. average rainfall) year SHGWL. Therefore, we estimate the SHGWL to be at an elevation of about +40 feet-NAVD (3 feet bgs).

Our estimated SHGWL is generally consistent with the Soil Survey.

GEOTECHNICAL OVERVIEW

In general, the borings found loose to dense poorly graded fine sand with varying amounts of silt from the surface to a depth of about 18 feet bgs followed by varying layers of loose to medium dense clayey sand, sandy clay, and sand with silt to the maximum borehole termination depth of 30 feet bgs. These materials are generally suitable for construction of the proposed roadway and

Terracon GeoReport

SR-62 and Erie Road
Parrish, Manatee County, Florida January 3, 2019
Terracon Project No. HC185059

associated structures following completion of the recommendations in the Earthwork section of this report.

The Pavements section addresses the design of pavement systems.

The General Comments section provides an understanding of the report limitations.

EARTHWORK

Earthwork is anticipated to include clearing and grubbing, excavations, and fill placement. The following sections provide recommendations for use in the preparation of specifications for the work. Recommendations include critical quality criteria, as necessary, to render the site in the state considered in our geotechnical engineering evaluation for foundations, floor slabs, and pavements.

Site Preparation

Earthwork operations should begin with the stripping of any surficial organic soils (topsoil) from the planned roadway areas. Tree removal should include roots down to finger sized roots and topsoil should be removed from the construction areas. Wet or dry material should either be removed, or moisture conditioned and re-compacted. After stripping and grubbing, the exposed surface should be proof-rolled to aid in locating loose or soft areas. Proof-rolling should be performed with a vibratory roller with a minimum static weight of 20,000 pounds. The roller should make a minimum of eight overlapping passes over all areas of the site, the latter four passes at right angles to previous passes. The soils should be compacted sufficiently to obtain a minimum compaction. Unstable soil (pumping) should be removed or moisture conditioned and compacted in place prior to placing fill.

Fill Material Types

Fill Type ¹	AASHTO Classification	Acceptable Location for Placement	
Select ¹	A-3 and A-2-4 (fines content < 15 percent, maximum particle size < 2 inches, organic content < 3 percent)	All locations and elevations	
1. GeoModel Layer 1 and 2 soils at this site appear to meet this criterion. Soils with fines content > 12 percent may retain moisture and be difficult to compact and achieve specified density and stability. These soils may need to be maintained dry of optimum to properly compact.			

Engineered fill should meet the following material property requirements:

Fill Compaction Requirements

Engineered fill should meet the following compaction requirements:

ltem	Description		
Fill Lift Thickness	12 inches or less in loose thickness when heavy vibratory compaction equipment is used. Maximum particle size should not exceed 2 inches in a 12-inch lift.		
	4 to 6 inches in loose thickness when hand-guided equipment (i.e. jumping jack or plate compactor) is used. Maximum particle size should not exceed 1 inch in a 4- to 6-inch lift.		
Minimum Compaction Requirements ¹	At least 100 percent of the maximum dry density as determined by the standard Proctor Test (AASHTO T-99).		
Moisture Content ²	Within ±3 percent of optimum moisture content as determined by the Modified Proctor test, at the time of placement and compaction.		
Minimum Testing Frequency	At least one field density test per 500 linear feet of roadway.		
1. The moisture content and compaction should be measured for each lift of engineered fill during placement			

 The moisture content and compaction should be measured for each lift of engineered fill during placement. Should the results of the in-place density tests indicate the specified moisture or compaction limits have not been met, the area represented by the test should be reworked and retested as required until the specified moisture and compaction requirements are achieved.

2. Specifically, moisture levels should be maintained low enough to allow for satisfactory compaction to be achieved without the fill material pumping.

Utility Trench Backfill

All trench excavations should be made with sufficient working space to permit construction including backfill placement and compaction. Backfill for utility trenches located beneath pavements should be compacted to at least 98% of the maximum dry density as determined by the Modified Proctor Test (AASHTO T-180) per the Manatee County Utility Design Standards (June 2015). Utility trenches located outside of pavement areas should be compacted to at least 95% of the Modified Proctor Proctor maximum dry density.

Earthwork Construction Considerations

Excavations are anticipated to be accomplished with conventional construction equipment. The site should be graded to prevent ponding of surface water on the prepared subgrades or in excavations. Water collecting over, or adjacent to, construction areas should be removed. If the subgrade desiccates, saturates, or is disturbed, the affected material should be removed, or the materials should be scarified, moisture conditioned, and re-compacted.

The groundwater table will affect excavation efforts, especially for storm drain or utility construction. A temporary dewatering system consisting of well points or sumps with pumps will be necessary to achieve the recommended compaction in excavation trenches.

As a minimum, excavations should be performed in accordance with OSHA 29 CFR, Part 1926, Subpart P, "Excavations" and its appendices, and in accordance with any applicable local, and/or state regulations.

Construction site safety is the sole responsibility of the contractor who controls the means, methods, and sequencing of construction operations. Under no circumstances shall the information provided herein be interpreted to mean Terracon is assuming responsibility for construction site safety, or the contractor's activities; such responsibility shall neither be implied nor inferred.

Construction Observation and Testing

The earthwork efforts should be monitored under the direction of the Geotechnical Engineer. Monitoring should include documentation of adequate removal of vegetation and top soil, proofrolling and mitigation of areas delineated by the proof-roll to require mitigation.

Each lift of compacted fill should be tested, evaluated, and reworked as necessary until approved by the Geotechnical Engineer prior to placement of additional lifts.

If unanticipated conditions are encountered, the Geotechnical Engineer should prescribe mitigation options.

In addition to the documentation of the essential parameters necessary for construction, the continuation of the Geotechnical Engineer into the construction phase of the project provides the continuity to maintain the Geotechnical Engineer's evaluation of subsurface conditions, including assessing variations and associated design changes.

DEEP FOUNDATIONS

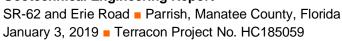
Drilled Shaft Design Parameters

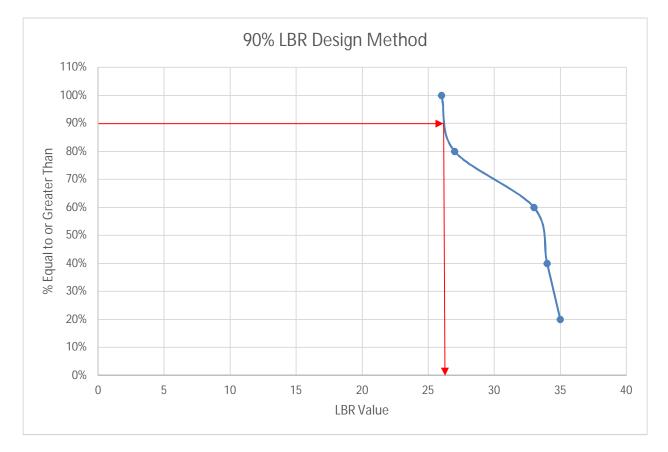
Soil design parameters are provided below in the tables on the **Report of Core Borings** exhibit for the design of drilled shaft foundations. The soil parameters were based on empirical correlations (ref: Florida Department of Transportation Soils and Foundations Handbook, 2017) with average SPT blow counts (N-Values) for the different soil strata. Lateral earth pressure coefficients were based on the estimated friction angles. It is our understanding that the pole foundations will be drilled shafts designed by others. The pole foundations should be designed using the soil parameters provided on the exhibit.

PAVEMENTS

General Pavement Comments

Pavement designs are provided for the traffic conditions and pavement life conditions as noted in **Project Description** and in the following sections of this report. A critical aspect of pavement performance is site preparation. Pavement designs, noted in this section, must be applied to the site, which has been prepared as recommended in the **Site Preparation** section.


Roadway Embankments


The design LBR value was determined according to the Florida Department of Transportation (FDOT) Soils and Foundations Handbook (2017) Section 8.1.2. The LBR values corresponding to moisture contents at 2% above and 2% below the moisture content at the maximum LBR value were averaged to determine a limiting LBR value (+/- 2% of Optimum Method) and are presented in the following table:

+/-2% of Optimum Moisture Method Calculation				
Test No.			R at Moisture Contents (of Optimum LBR)	
		-2%	+2%	
RB-4	27	22.3	26.8	
RB-7	26	21.9	7.6	
RB-9	35	25.9	11.3	
RB-11	34	28.9	6.0	
RB-14	33	19.0	28.4	
Mean LBR Value	31	23.6	16.0	
		Average = 20		

The maximum LBR values were also sorted into ascending order and the percentage of values that were equal to or greater than each LBR vale were calculated. The percentages were plotted versus the maximum LBR values and the LBR value corresponding to 90% is the design value (see chart below) according the Soils and Foundations Handbook 90% Method.

Terracon GeoReport

Per the FDOT guidelines, the final design LBR value is taken as the lower of the values determined by each of these two methods. Therefore, we recommend that pavement designs include a limiting LBR value of 20, as determined by the 2% Method, for the existing embankment soils. This corresponds to a Resilient Modulus (M_R) of about 7,500 pounds per square inch (psi) per Table 5.1 of the FDOT Flexible Pavement Design Manual (2018).

Pavement Design Parameters

The design of the recommended pavement section has been based on the traffic data provided in the **Project Description** section and the FDOT Flexible Pavement Design Manual (2018). The following design parameters were used:

Design Criteria	Value	
Design Life	20 years	
Estimated Growth Factor Percentage	2.66%	
Estimated ESAL	4,183,342	
1. See Exhibit A for ESAL calculation		

The following design parameters were based on the FDOT Flexible Pavement Design Manual (2018)

Pavement Thickness Design Parameters			
Input Parameter Value			
Reliability	85%		
Asphalt Layer Coefficient	0.44		
Aggregate Base Layer Coefficient (LBR = 100)	0.18		
Subgrade Layer Coefficient (LBR = 60)	0.09		

The recommended subgrade resilient modulus is 7,500 psi as provided in the above **Roadway Embankments** section.

Based on the estimated traffic data and the listed design parameters, the minimum required Structural Number of 4.20 was calculated for Erie Road based on Table A.3A of the FDOT Flexible Pavement Design Manual (2018).

Pavement Section Thicknesses

As a minimum, we suggest the following pavement section:

Typical Pavement Section (inches)				
Asphalt Concrete Surface CourseLimerock, or Crushed Concrete Base CourseStabilized Subbase Course				
3 10 12				

The above recommended pavement section provides a Structural Number of 4.20 which equals the minimum required Structural Number of 4.20.

Asphalt Concrete Design Recommendations

The following items are applicable to asphalt concrete pavement sections.

 Terracon recommends a minimum separation of 36 inches between the bottom of the base course and the seasonal high-water table. January 3, 2019 Terracon Project No. HC185059

Tlerracon GeoReport.

- Natural or fill subgrade soils to a depth of 18 inches below the base should be relatively clean sands with AASHTO Classifications of A-3 and A-2-4 but with a maximum of 15% fines. The natural soils generally satisfy this requirement.
- Stabilized subgrade soils (also identified as stabilized subbase) should be stabilized to a minimum Limerock Bearing Ratio (LBR; Florida Method of Test Designation FM 5-515) value of 60, per Manatee County requirements. Based on the results of the LBR tests, the existing sandy soils will need to be stabilized with an aggregate admixture to meet the minimum LBR value.
- The stabilized subgrade course should be compacted to at least 98 percent of the Modified Proctor maximum dry density (AASHTO T-180 or ASTM D-1557). Any underlying, newlyplaced subgrade fill should also be compacted to a minimum of 98 percent of the Modified Proctor maximum dry density.
- Limerock base material from an approved FDOT source should have a minimum LBR value of 100 and be compacted to a minimum of 98 percent of the maximum dry density as determined by the Modified Proctor test. Limerock should be placed in uniform lifts not to exceed 6 inches of loose thickness. Recycled limerock is not a suitable substitute for virgin limerock for base courses but may be used as a granular stabilizing admixture.
- Crushed (recycled) concrete base should meet the current FDOT Specification 911 for recycled materials.
- Asphalt should be compacted to the requirements shown in Table 334-7 of the FDOT Specifications. Asphalt surface courses should be Type SP according to FDOT requirements.
- For a two-lane road with AADT and speed limit greater than 3,000 and 35 miles per hour (mph), respectively, FDOT requires use of a friction course.
- To verify thicknesses, after placement and compaction of the pavement courses, core the wearing surface to evaluate material thickness and composition at a minimum frequency shown in the most current FDOT specifications.

Pavement Drainage

Pavements should be sloped to provide rapid drainage of surface water. Water allowed to pond on or adjacent to the pavements could saturate the subgrade and contribute to premature pavement deterioration. In addition, the pavement subgrade should be graded to provide positive drainage within the granular base section. The subgrade and the pavement surface should have a minimum 1/4 inch per foot slope to promote drainage. Appropriate sub-drainage or connection to a suitable daylight outlet should be provided to remove water from the base layer.

Pavement Maintenance

The pavement sections provided in this report represent minimum recommended thicknesses and, as such, periodic maintenance should be anticipated. Therefore, preventive maintenance should be planned and provided for through an on-going pavement management program. Maintenance

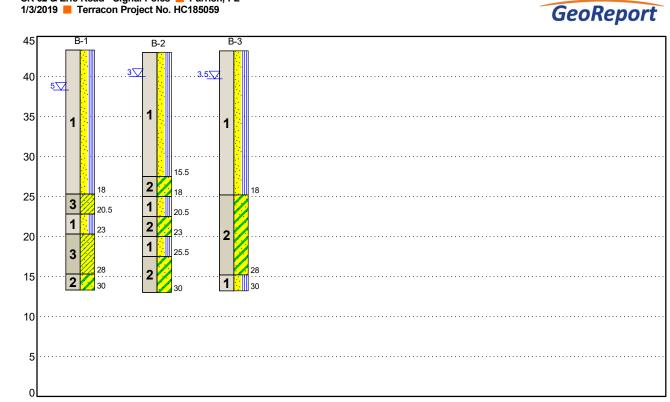
activities are intended to slow the rate of pavement deterioration, and to preserve the pavement investment. Maintenance consists of both localized maintenance (e.g., crack and joint sealing and patching) and global maintenance (e.g., surface sealing). Preventive maintenance is usually the priority when implementing a pavement maintenance program. Additional engineering observation is recommended to determine the type and extent of a cost-effective program. Even with periodic maintenance, some movements and related cracking may still occur, and repairs may be required.

GENERAL COMMENTS

Our analysis and opinions are based upon our understanding of the project, the geotechnical conditions in the area, and the data obtained from our site exploration. Natural variations will occur between exploration point locations or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. Terracon should be retained as the Geotechnical Engineer, where noted in this report, to provide observation and testing services during pertinent construction phases. If variations appear, we can provide further evaluation and supplemental recommendations. If variations are noted in the absence of our observation and testing services on-site, we should be immediately notified so that we can provide evaluation and supplemental recommendations.

Our Scope of Services does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

Our services and any correspondence or collaboration through this system are intended for the sole benefit and exclusive use of our client for specific application to the project discussed and are accomplished in accordance with generally accepted geotechnical engineering practices with no third-party beneficiaries intended. Any third-party access to services or correspondence is solely for information purposes to support the services provided by Terracon to our client. Reliance upon the services and any work product is limited to our client and is not intended for third parties. Any use or reliance of the provided information by third parties is done solely at their own risk. No warranties, either express or implied, are intended or made.


Site characteristics as provided are for design purposes and not to estimate excavation cost. Any use of our report in that regard is done at the sole risk of the excavating cost estimator as there may be variations on the site that are not apparent in the data that could significantly impact excavation cost. Any parties charged with estimating excavation costs should seek their own site characterization for specific purposes to obtain the specific level of detail necessary for costing. Site safety, and cost estimating including, excavation support, and dewatering requirements/design are the responsibility of others. If changes in the nature, design, or location of the project are planned, our conclusions and recommendations shall not be considered valid unless we review the changes and either verify or modify our conclusions in writing.

FIGURES

Contents:

GeoModel (3 pages) Report of Core Borings AASHTO 1993 ESAL Calculation

GEOMODEL SR 62 & Erie Road - Signal Poles Parrish, FL 1/3/2019 Terracon Project No. HC185059

This is not a cross section. This is intended to display the Geotechnical Model only. See individual logs for more detailed conditions.

Model Layer	Layer Name	General Description
1	Sand with silt	Poorly graded sand with silt (A-3, A-2-4, SP, SP-SM))
2	Clayey sand	Clayey sand (A-2-6, SC)
3	Sandy clay	Clayey sand to sandy clay (A-6, SC)
4	Silty sand	Silty sand (A-2-4, SM)

Poorly-graded Sand with Silt

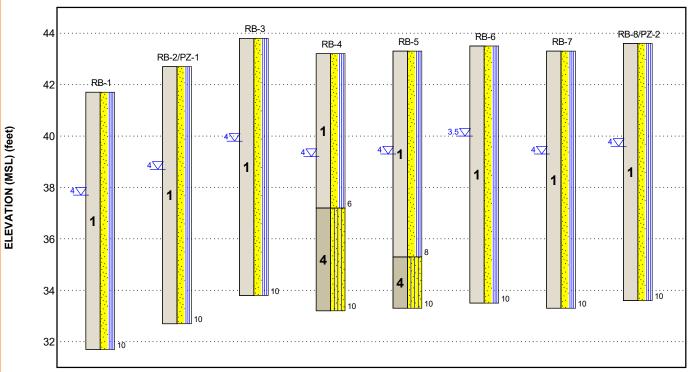
Sandy Lean Clay

Clayey Sand

ELEVATION (MSL) (feet)

✓ First Water Observation

V Second Water Observation


Final Water Observation

Groundwater levels are temporal. The levels shown are representative of the date and time of our exploration. Significant changes are possible over time. Water levels shown are as measured during and/or after drilling. In some cases, boring advancement methods mask the presence/absence of groundwater. See individual logs for details. NOTES:

Layering shown on this figure has been developed by the geotechnical engineer for purposes of modeling the subsurface conditions as required for the subsequent geotechnical engineering for this project. Numbers adjacent to soil column indicate depth below ground surface.

Terracon

GEOMODEL SR 62 & Erie Road - Signal Poles Parrish, FL 1/3/2019 Terracon Project No. HC185059

This is not a cross section. This is intended to display the Geotechnical Model only. See individual logs for more detailed conditions.

Model Layer	Layer Name	General Description
1	Sand with silt	Poorly graded sand with silt (A-3, A-2-4, SP, SP-SM))
2	Clayey sand	Clayey sand (A-2-6, SC)
3	Sandy clay	Clayey sand to sandy clay (A-6, SC)
4	Silty sand	Silty sand (A-2-4, SM)

LEGEND

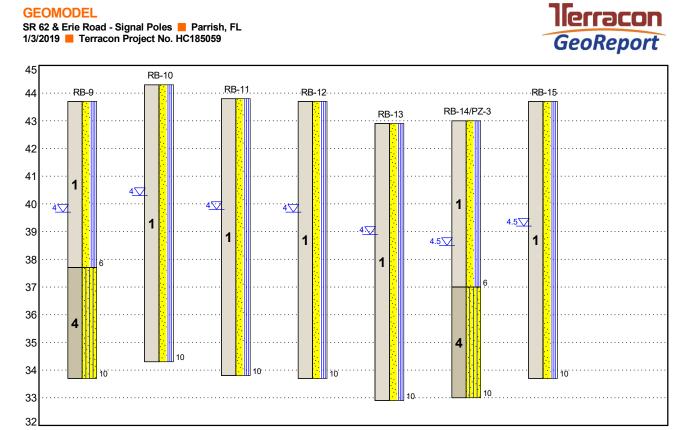
Poorly-graded Sand with Silt

Silty Sand

✓ First Water Observation

Second Water Observation

Final Water Observation


Groundwater levels are temporal. The levels shown are representative of the date and time of our exploration. Significant changes are possible over time. Water levels shown are as measured during and/or after drilling. In some cases, boring advancement methods mask the presence/absence of groundwater. See individual logs for details. NOTES:

Layering shown on this figure has been developed by the geotechnical engineer for purposes of modeling the subsurface conditions as required for the subsequent geotechnical engineering for this project. Numbers adjacent to soil column indicate depth below ground surface.

Terracon

GeoReport

GEOMODEL SR 62 & Erie Road - Signal Poles 📕 Parrish, FL 1/3/2019 E Terracon Project No. HC185059

This is not a cross section. This is intended to display the Geotechnical Model only. See individual logs for more detailed conditions.

Model Layer	Layer Name	General Description
1	Sand with silt	Poorly graded sand with silt (A-3, A-2-4, SP, SP-SM))
2	Clayey sand	Clayey sand (A-2-6, SC)
3	Sandy clay	Clayey sand to sandy clay (A-6, SC)
4	Silty sand	Silty sand (A-2-4, SM)

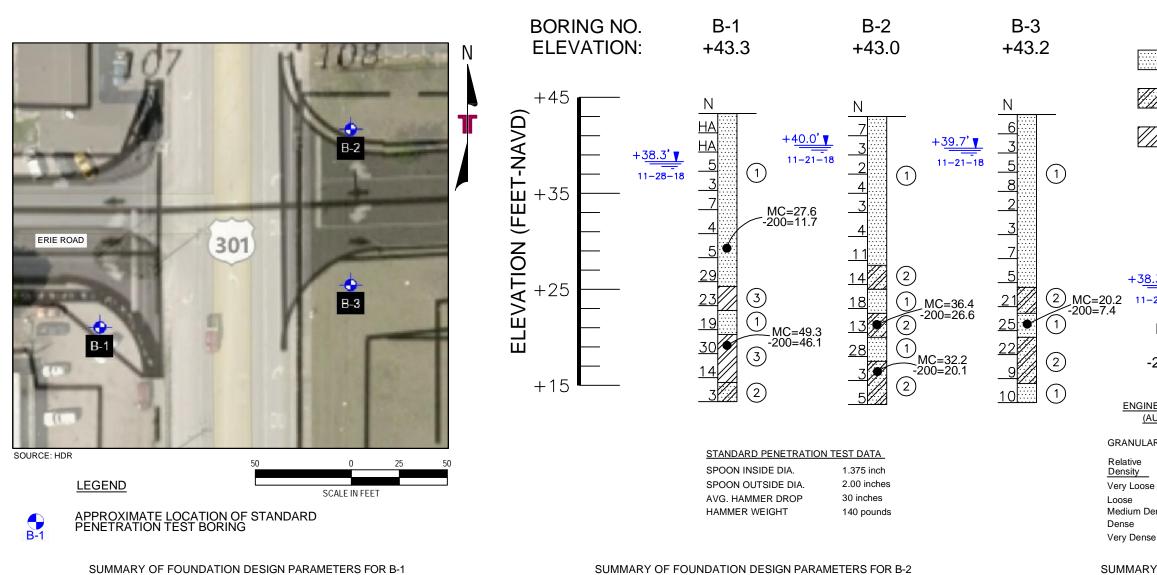
LEGEND

Poorly-graded Sand with Silt

Silty Sand

ELEVATION (MSL) (feet)

✓ First Water Observation


✓ Second Water Observation

✓ Final Water Observation

Groundwater levels are temporal. The levels shown are representative of the date and time of our exploration. Significant changes are possible over time. Water levels shown are as measured during and/or after drilling. In some cases, boring advancement methods mask the presence/absence of groundwater. See individual logs for details.

NOTES:

Layering shown on this figure has been developed by the geotechnical engineer for purposes of modeling the subsurface conditions as required for the subsequent geotechnical engineering for this project. Numbers adjacent to soil column indicate depth below ground surface.

SUMMARY OF FOUNDATION DESIGN PARAMETERS FOR B-1

Depth (feet)	Soil Type	Unit We	ight (pcf)	Angle of Internal Friction (degrees)	Effective Cohesion (psf)	Earth P Coeff	ressure icients	Soil Modulus, k (pci)	Depth (feet)	Soil Type	Unit We	ight (pcf)	Angle of Internal Friction (degrees)	Effective Cohesion (psf)	Earth P Coeff	Pressure	Soil Modulus, k (pci)	Depth (feet)	Soil Type	Unit We	ight (pcf)	Angle of Internal Friction (degrees)	Effective Cohesion (psf)	Earth Pr Coeffic		Soil Modulus, k (pci)
		Moist	Submerged	(degrees)		Ka	Кр				Moist	Submerged	(degrees)		Ka	Кр				Moist	Submerged	(degrees)		Ka	Кр	
0 to 18	SAND	105	43	29	0	0.347	2.88	11	0 to 13	SAND	105	43	28	0	0.361	2.77	11	0 to 18	SAND	105	43	29	0	0.347	2.88	11
18 to 20.5	CLAY	125	63	0	3,100	1.00	1.00	-	13 to 25.5	SAND	115	53	32	0	0.307	3.25	55	18 to 30	SAND	115	53	29	0	0.347	2.88	55
20.5 to 23	SAND	115	53	34	0	0.283	3.54	65	25.5 to 30	SAND	105	43	23	0	0.438	2.28	11				•			•		
23 to 28	CLAY	125	63	0	2,900	1.00	1.00	-				•	•													
28 to 30	SAND	105	43	23	0	0.438	2.28	7																		

NOTES

- Borings were drilled on November 21 and 28, 2018 using a BR 2500 drilling rig equipped (1) with an automatic hammer.
- Strata boundaries are approximate and represent soil strata at each test hole location only. Soil transitions may be more gradual than implied. (2)
- Groundwater elevations shown on the subsurface profiles represent the groundwater levels on the dates shown. Groundwater level fluctuations should be anticipated throughout the year. (3)
- Elevations were provided by the project surveyor, ZNS Engineering. (4)

JAMES M. JACKSON, P.E FL LICENSE NO. 77733

Project Mngr: J Drawn By: J Checked By: SI	IJ File No.	HC185059 AS-SHOWN 1		
Approved By:	Date:	12-21-18	8260 VICO COURT, UNIT B PH. (941) 379-0621	SARASOTA, FL FAX. (941) 37

GENERAL LEGEND Brown to gray SAND with silt, sometimes with sand-sized phosphate grains (A-3, SP, SP-SM) (1) \mathbb{Z} Dark gray, gray, and tan clayey SAND (A-2-6, SC) \square \bigcirc Gray clayey SANd to sandy CLAY (A-6, SC) N – Standard penetration resistance in blows per foot unless otherwise noted SP -Unified Soil Classification System Group Symbol (ASTM D 2487) +38.3' _ Elevation of groundwater (feet-NAVD) & date measured 11-28-18 Moisture Content (%) MC _ -200 Amount Finer Than The U.S. Standard No. 200 Sieve (%) — ENGINEERING CLASSIFICATION (AUTOMATIC HAMMER)

GRANULAR MATERIALS

SPT BLOW-COUNTS Less than 2 3 - 8 Medium Dense 8 - 24 24 - 40 Greater than 40

SILTS AND CLAYS

Consistency Very Soft Soft Firm Stiff Very Stiff Hard

SPT BLOW-COUNTS Less than 1 1 - 3 3 - 6 6 - 12 12 - 24 Greater than 24

SUMMARY OF FOUNDATION DESIGN PARAMETERS FOR B-3

	REPORT OF CORE BORINGS	EXHIBIT
	GEOTECHNICAL ENGINEERING REPORT	
sts	ERIE ROAD AT SR-62	1
FL 34240 379-5061	MANATEE COUNTY, FLORIDA	

		AASHTO) 1993 E	ESAL Ca	lculate	or f	or Fle	xib	le Pav	en	nents				
	Traffic	Volume		Analysis	A	Axle	Load a	nd T	уре		Gross	E	quivalend	су	
Vehicle Description	Quantity in the	Days	Weeks	Period	Axle	1	Axle	2	Axle 3	3	Weight		Factors		ESAL's
	Design Lane	per Week	per Year	(years)	(kips)	(kips)	(kips)		(pounds)	Axle 1	Axle 2	Axle 3	
Passenger car	646	7	52	20	2	S	2	S			4,000	0.0002	0.0002	0	2,440
Pick-up truck or van	646	7	52	20	2	S	4	S			6,000	0.0002	0.003	0	19,522
Recreational vehicle					4	S	4	S			8,000	0.003	0.003	0	0
School bus					6	S	14	S			20,000	0.013	0.388	0	0
TARC bus					8	S	14	S			22,000	0.041	0.388	0	0
Greyhound MC-12 bus					13.4	S	18.4	S	6	S		0.3355	1.094	0.013	0
Package delivery truck	215	6	52	20	4	S	14	S			18,000	0.003	0.388	0	680,882
Beverage delivery truck	20	6	52	20	6	S	12	S	12	S		0.013	0.213	0.213	71,105
Garbage/dumpster truck	50	6	52	20	20	S	35	Т			55,000	1.47	1.245	0	1,099,515
Concrete truck (full)	20	6	52	20	20	S	48	R			68,000	1.47	1.069	0	411,286
Dump truck (full)	50	6	52	20	20	S	48	R			68,000	1.47	1.069	0	1,028,228
Semi-tractor (no trailer)					8	S	2	Т			10,000	0.041	0	0	0
Semi-tractor trailer (empty)					8	S	8	Т	6	Т	22,000	0.041	0.004	0.001	0
Semi-tractor trailer	53	5	52	20	12	S	34	Т	34	Т	80,000	0.213	1.11	1.11	870,365
User Defined											0	0	0	0	0
User Defined											0	0	0	0	0
Vehicle type H10					4	S	16	S			20,000	0.003	0.645	0	0
Vehicle type H15					6	S	24	S			30,000	0.013	2.89	0	0
Vehicle type H20					8	S	32	S			40,000	0.041	8.8	0	0
Vehicle type 3					16	S	34	Т			50,000	0.645	1.11	0	0
Vehicle type HS15					6	S	24	S	24	S	54,000	0.013	2.89	2.89	0
Vehicle type HS20					8	S	32	S	32	S	72,000	0.041	8.8	8.8	0
Vehicle type 3S2					10	S	31	Т	31	Т	72,000	0.102	0.791	0.791	0
Terminal Serviceability, rt	0.5	1				r							A.L		4 4 9 9 9 4 9
	2.5	_					0.				Total AAS	HIUES			4,183,342
Assumed Structural Number	,						51	umn	nary:				Si	uperpave	ESAL Class 3
Traffic Growth Rate, %/yr	2.66										Traffic Ca	tegory		C	
Project:	Erie Roa	d		Location:	Ma	anat	ee Cou	nty,	FL						
Job No.:	HC18505	9		Date:		12	2/19/20 ⁻	18							on—
												-	err		

ATTACHMENTS

EXPLORATION AND TESTING PROCEDURES

Field Exploration

Number of Borings	Boring Depth (feet)	Planned Location
3	30	Planned signal pole locations
15	10	Planned roadway alignment

Boring Layout and Elevations: Unless otherwise noted, Terracon personnel provided the boring layout. Coordinates were obtained with a handheld GPS unit (estimated horizontal accuracy of about ± 10 feet) and elevations were provided by ZNS Engineering.

Subsurface Exploration Procedures: We advanced the borings with a truck-mounted rotary drill rig using mud rotary procedures. Five samples were obtained in the upper 10 feet of each boring and at intervals of 2.5 feet thereafter. In the split-barrel sampling procedure, a standard 2-inch outer diameter split-barrel sampling spoon was driven into the ground by a 140-pound automatic hammer falling a distance of 30 inches. The number of blows required to advance the sampling spoon the last 12 inches of a normal 18-inch penetration is recorded as the Standard Penetration Test (SPT) resistance value. The SPT resistance values, also referred to as N-values, are indicated on the boring logs at the test depths. We observed and recorded groundwater levels during drilling and sampling. For safety purposes, all borings were backfilled with cement grout after their completion.

The sampling depths, penetration distances, and other sampling information was recorded on the field boring logs. The samples were placed in appropriate containers and taken to our soil laboratory for testing and classification by a Geotechnical Engineer. Our exploration team prepared field boring logs as part of the drilling operations. These field logs included visual classifications of the materials encountered during drilling and our interpretation of the subsurface conditions between samples. Final boring logs were prepared from the field logs. The final boring logs represent the Geotechnical Engineer's interpretation of the field logs and include modifications based on observations and tests of the samples in our laboratory.

Laboratory Testing

The project engineer reviewed the field data and assigned laboratory tests to understand the engineering properties of the various soil strata, as necessary, for this project. Procedural standards noted below are for reference to methodology in general. In some cases, variations to methods were applied because of local practice or professional judgment. Standards noted below include reference to other, related standards. Such references are not necessarily applicable to describe the specific test performed.

SR-62 and Erie Road Parrish, Manatee County, Florida January 3, 2019 Terracon Project No. HC185059

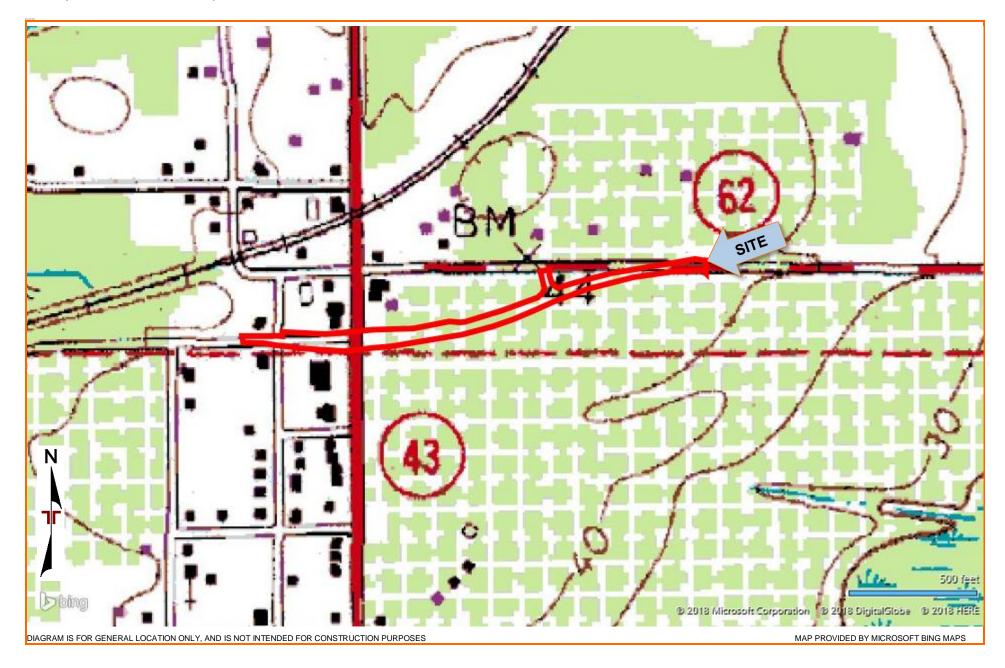
- ASTM D2216 Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass
- ASTM D422 Standard Test Method for Particle-Size Analysis of Soils

The laboratory testing program also included examination of soil samples by an engineer. Based on the material's texture, we described and classified the soil samples in accordance with the American Association of State Highway and Transportation Officials (AASHTO) soil classification system and the Unified Soil Classification System (USCS).

PHOTOGRAPHY LOG

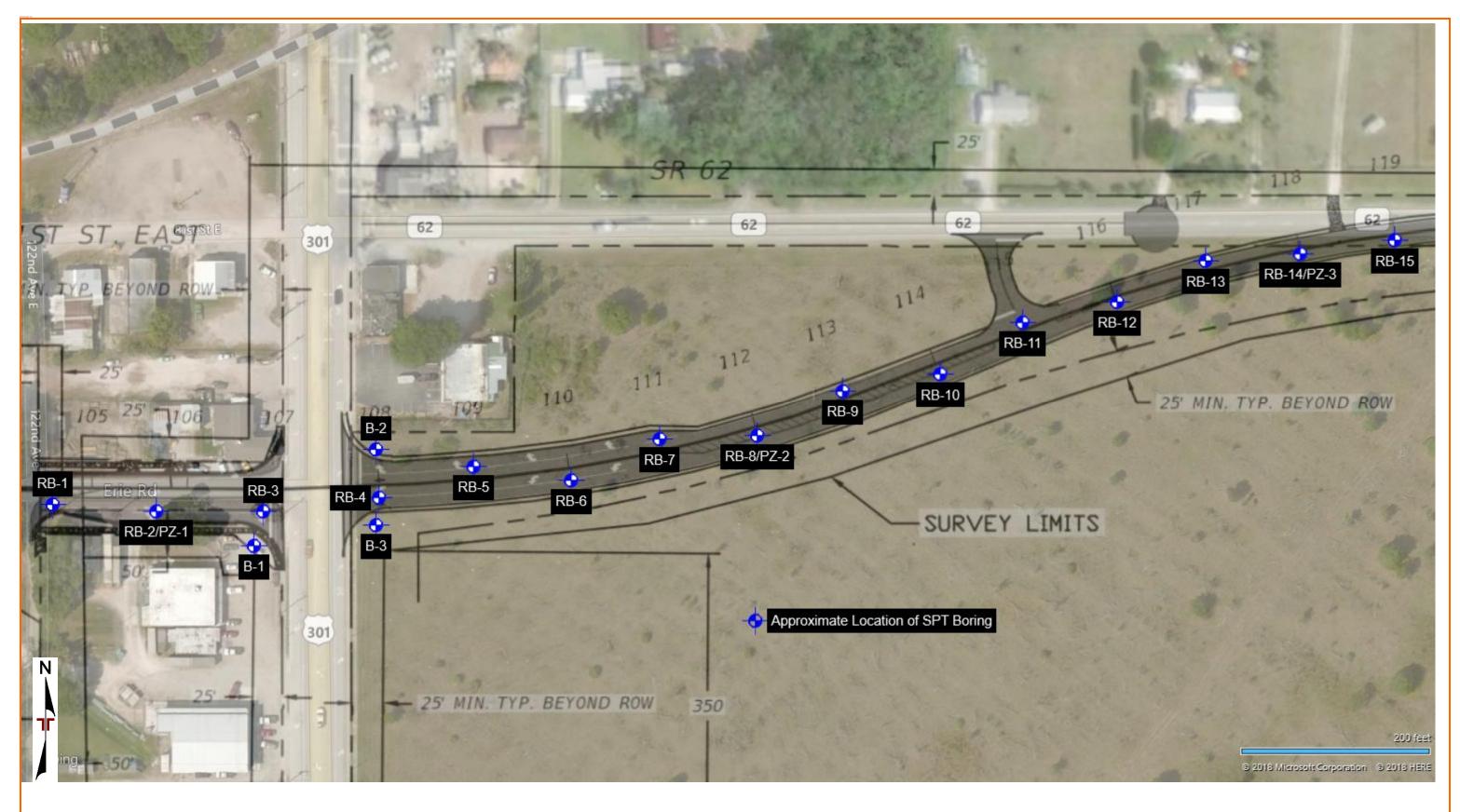
SITE LOCATION AND EXPLORATION PLANS

Contents:


Site Location Plan Exploration Plan

Note: All attachments are one page unless noted above.

SITE LOCATION


SR-62 and Erie Road Parrish, Manatee County, Florida January 3, 2019 Terracon Project No. HC185059

EXPLORATION PLAN

SR-62 and Erie Road
Parrish, Manatee County, Florida January 3, 2019
Terracon Project No. HC185059

MAP PROVIDED BY MICROSOFT BING MAPS

EXPLORATION RESULTS

Contents:

Roadway Boring Logs (RB-1 through RB-15) LBR Results

Note: All attachments are one page unless noted above.

			BORING LC)g no. F	RB-1				Page	e 1 of 1	1
	PROJ	ECT: SR 62 & Erie Road - Signal	Poles	CLIENT: M B	lanatee Cou Gradenton, Fl	nty G	over	nme	ent		
-	SITE:	SR 62 Parrish, FL		-	,						
YER	90	LOCATION See Exploration Plan				t.)	VEL ONS	ΥΡΕ	Lo o	(%)	INES
MODEL LAYER	GRAPHIC LOG	Latitude: 27.587° Longitude: -82.4264°				DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	WATER CONTENT (%)	PERCENT FINES
-		DEPTH POORLY GRADED SAND WITH SIL	T (A-3) (SP-SM) , fine grai	ined, brown to g	gray,		>0	S		0	E
		loose to medium dense				-	_			12	7
AYER.GPJ 1/3/19						_	-				
WELL HC185059 SR 62 & ERIE ROAD.GPJ MODELLAYER.GPJ 1/3/19 L						5 -			2-3-4-5 N=7		
						-	-		5-7-12-11 N=19	_	
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO		10.0				-			5-8-9-9 N=17		
		Boring Terminated at 10 Feet				10-					
FROM (
ARATED	St	tratification lines are approximate. In-situ, the transiti	on may be gradual.		Hammer	 Type: A	utomat	ic			
LID IF SEP/		ent Method: ıger to 4 feet then mud rotary	See Exploration and Te description of field and I used and additional data	aboratory procedui		HTO Gro	up Cla	ssifica	tion		
AN T VA ∀		ent Method: ackfilled with cement grout upon completion.	See Supporting Informa symbols and abbreviation Elevations were provide	ons.	n of						
10 FOG	_	WATER LEVEL OBSERVATIONS			Boring Star	ted: 11-2	8-2018	3	Boring Completed	l: 11-28-2	2018
	Z At	t 4' while sampling	- lierr	9001	Drill Rig: BF				Driller: MC		
THISE			8260 Vico	o Ct, Unit B ota, FL	Project No.:		059				

		ВО	RING LOG	NO. RB-2/I	PZ-1				Page	e 1 of	1
Ρ	ROJ	ECT: SR 62 & Erie Road - Signal Po	les	CLIENT: Mana Brade	tee Cour enton, FL	nty G	over	nme	ent		
S	ITE:	SR 62 Parrish, FL				-					
YER	90	LOCATION See Exploration Plan				(;	/EL	PE	T.C.	(%)	NES
MODEL LAYER	GRAPHIC LOG	Latitude: 27.5869° Longitude: -82.426°				DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	WATER CONTENT (%)	PERCENT FINES
MOD	GRAI					DEF	WATE	SAMF	FIEL	CON	PERCE
		DEPTH POORLY GRADED SAND WITH SILT (A to gray, loose to medium dense	-3, A-2-4) (SP-SM) , fi	ne grained, light brov	wn						
						-	-				
						-	_				
						_				20	12
										20	12
						_					
1						5 -			2-3-4-3 N=7		
						_	_		3-3-4-3 N=7	-	
		40.0				_	-		3-6-10-10 N=16	-	
		Boring Terminated at 10 Feet				10-					
╞	St	 ratification lines are approximate. In-situ, the transition m	ay be gradual.		Hammer 1	Гуре: А	utomat	ic		1	I
		ent Method: ger to 4 feet then mud rotary	See Exploration and Te description of field and I used and additional data	aboratory procedures	Notes: A-3: AASH	TO Gro	up Cla	ssifica	ation		
		ent Method: ackfilled with cement grout upon completion.	– See Supporting Informa symbols and abbreviation Elevations were provide	tion for explanation of ons.							
		WATER LEVEL OBSERVATIONS		-	Boring Starte	ed: 11_2	8-2019	3	Boring Completed	· 11-28-	2018
\square	At	4' while sampling	llerr	DCON	Drill Rig: BR		.5-2010	,	Driller: MC	20-	2010
			8260 Vico	Ct, Unit B ota, FL	Project No.:		059				

		E	BORING LO)g no. Rb	-3				Page	e 1 of	1
F	ROJ	ECT: SR 62 & Erie Road - Signal Po	les	CLIENT: Mana Brade	atee Cour enton, FL	nty G	over	nme	ent		
S	SITE:	SR 62 Parrish, FL			,						
YER	00	LOCATION See Exploration Plan				t.)	/EL ONS	/PE	T. ((%)	NES
MODEL LAYER	GRAPHIC LOG	Latitude: 27.5869° Longitude: -82.4257°				DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	WATER CONTENT (%)	PERCENT FINES
Σ	U	ДЕРТН					З₿	SA	Щ	Ŭ	Ш
		POORLY GRADED SAND WITH SILT (A loose to medium dense	<u>-3) (SP-SM)</u> , fine gra	ned, light brown to g	gray,	-					
1						5 -			2-2-3-2 N=5	21	7
						-	-		1-2-3-5 N=5	_	
		10.0				-	_		2-4-6-4 N=10		
		Boring Terminated at 10 Feet				10-		$ \uparrow $			
	St	ratification lines are approximate. In-situ, the transition m	ay be gradual.		Hammer 1	Type: A	utomat	ic			
F Aba	land au	ent Method: ger to 4 feet then mud rotary ent Method:	See Exploration and Te description of field and used and additional dat See Supporting Informa symbols and abbreviatio	aboratory procedures a (If any). tion for explanation of	Notes: A-3: AASH	ITO Gro	oup Cla	ssifica	tion		
Ē	soring b	ackfilled with cement grout upon completion.	Elevations were provide	ed by others.							
$\overline{\nabla}$	7	WATER LEVEL OBSERVATIONS			Boring Start	ed: 11-2	28-2018	3	Boring Completed	: 11-28-	2018
	_ At	4' while sampling	IIErr	acon	Drill Rig: BR	R-2500			Driller: MC		
				o Ct, Unit B ota, FL	Project No.:	HC185	059				

		В)g no. R	B-4				Page	e 1 of	1
F	PROJ	ECT: SR 62 & Erie Road - Signal Pole	es	CLIENT: Ma Bra	natee Cour adenton, FL	nty G	over	nme	ent		
S	SITE:	SR 62 Parrish, FL			·						
MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 27.587° Longitude: -82.4253° DEPTH				DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	WATER CONTENT (%)	PERCENT FINES
		POORLY GRADED SAND WITH SILT (A-3 loose to loose	<u>8) (SP-SM)</u> , fine grai	ned, brown to gra	ay, very	_	_		3-3-2-2 N=5		
LLAYER.GPJ 1/3/19 L						_			2-1-1-1 N=2		
32 & ERIE ROAD.GPJ MODEI		6.0				5 -	-		2-1-1-1 N=2		
		SILTY SAND (A-2-4) (SM), fine grained, gr	ay, loose to mediur	n dense		_	-		2-2-3-4 N=5	21	14
L REPORT. GEO SMART LOO		10.0				_	_		4-4-7-8 N=11		
	1. 1. 1.	Boring Terminated at 10 Feet				10-					
ARATED FR	St	ratification lines are approximate. In-situ, the transition may	y be gradual.		Hammer 1	Гуре: А	utomat	ic			
	Aud rota	ent Method: ackfilled with cement grout upon completion.	See Exploration and Tex description of field and I used and additional data See Supporting Informat symbols and abbreviation Elevations were provide	aboratory procedures a (If any). tion for explanation o ns.	S A-3: AASH	TO Gro	up Cla	ssificat	lion		
	-	WATER LEVEL OBSERVATIONS		-	Boring Starte	ed: 11-2	21-2018	;	Boring Completed	d: 11-21-	2018
	_ At	4' while sampling	llerr	ЭСОГ	Drill Rig: BR				Driller: MC		
THIS			8260 Vico Saraso		Project No.:	HC1850	059				

		BORING LOG NO. RB-5 Page 1 of 1									
F	PROJ	ECT: SR 62 & Erie Road - Signal Po	les	CLIENT: Ma Br	anatee Cou adenton, Fl	nty Go	over	nme			
S	SITE:	SR 62 Parrish, FL									
ÊR	OG	LOCATION See Exploration Plan				(NS NS	ΡE	⊢	(%	NES
MODEL LAYER	GRAPHIC LOG	Latitude: 27.5871° Longitude: -82.425°				DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	WATER CONTENT (%)	PERCENT FINES
		DEPTH POORLY GRADED SAND WITH SILT (A-	-3) (SP-SM), fine grai	ned, brown to gr	ray, very					+	
		loose to loose				_	-		4-3-1-1 N=4		
1				_			1-2-1-1 N=3				
						5 -	-		1-1-1-1 N=2		
		8.0				_			3-4-5-6 N=9		
		SILTY SAND (A-2-4) (SM), fine grained, g	gray, medium dense			_					
4						_	-	\mathbb{N}	4-5-5-7 N=10	20	13
		Boring Terminated at 10 Feet				10-				1	
	St	ratification lines are approximate. In-situ, the transition ma	ay be gradual.		Hammer	Type: A	utomat	ic			
	See Supporting Information for explanation of						up Cla	ssificat	tion		
		ent Method: ackfilled with cement grout upon completion.									
Ļ	7	WATER LEVEL OBSERVATIONS	Boring Start	ted: 11-2	1-2018	3	Boring Completed	d: 11-21-	2018		
	_ At	4' while sampling	Ilerr	acor	Drill Rig: BR-2500 Driller: MC						
			Project No.:	Driller: MC							

			BORING LO	OG NO. RB-6			Page	e 1 of ′	1
Р	ROJ	ECT: SR 62 & Erie Road - Signa	l Poles	CLIENT: Manatee Bradent	e County Gov on. FL	ernme	nt		
S	ITE:	SR 62 Parrish, FL							
YER	LOG	LOCATION See Exploration Plan		•	t.) VEL	ONS	To S	(%)	INES
MODEL LAYER	GRAPHIC LOG	Latitude: 27.587° Longitude: -82.4247°			DEPTH (Ft.) WATER LEVE	OBSERVATIONS SAMPLE TYPE	FIELD TEST RESULTS	WATER CONTENT (%)	PERCENT FINES
		DEPTH POORLY GRADED SAND WITH SIL loose to medium dense	<u>.T (A-3) (SP-SM)</u> , fine gra	ined, brown to gray, ver					ш.
							3-3-2-2 N=5	5	7
						z	2-1-2-1 N=3		
1					5-		2-1-1-2 N=2		
							4-4-4 N=8		
Adv M Aba B							2-5-5-2 N=10		
		Boring Terminated at 10 Feet			10				
	Sti	atification lines are approximate. In-situ, the transit	tion may be gradual.	ŀ	I I Hammer Type: Autor	natic			
Adv N	anceme lud rota	ent Method: ry	See Exploration and Te description of field and used and additional dat	laboratory procedures	otes: -3: AASHTO Group (Classificat	ion		
Aba R		ent Method: ackfilled with cement grout upon completion.	See Supporting Informa symbols and abbreviation	tion for explanation of					
			Elevations were provide	ed by others.			.		
		WATER LEVEL OBSERVATIONS 3.5' while sampling			ring Started: 11-21-2	018	Boring Completed	d: 11-21-2	2018
	_ 71				ll Rig: BR-2500		Driller: MC		
				o Ct, Unit B ota, FL Pro	oject No.: HC185059				

			BORING LC	G NO.	RB-7				Page	e 1 of	1
F	PROJ	ECT: SR 62 & Erie Road - Signal Po	oles	CLIENT:	Manatee Cou	inty G	over	nme			
S	SITE:	SR 62 Parrish, FL			Bradenton, F	Ľ					
YER	ő	LOCATION See Exploration Plan				t.)	/EL ONS	ΥΡΕ	to o	(%)	NES
MODEL LAYER	GRAPHIC LOG	Latitude: 27.5871° Longitude: -82.4244°				DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	WATER CONTENT (%)	PERCENT FINES
		DEPTH POORLY GRADED SAND WITH SILT (A to medium dense	3) (SP-SM) , fine grai	ned, brown, v	very loose						а.
						-	_	\mathbb{N}	1-1-1-1 N=2		
						_			4-1-2-1 N=3	19	8
					5 -	-		6-3-4-2 N=7			
						_	-		4-4-4-3 N=8		
						-	-		2-3-3-4 N=6		
		Boring Terminated at 10 Feet				- 10-					
	St	 ratification lines are approximate. In-situ, the transition m	nay be gradual.		Hamme	Type: A	l utomat	ic		1	I
Adv	/ancemo /lud rota	ent Method: ry	See Exploration and Tes description of field and la used and additional data	aboratory proced	duroc	HTO Gro	up Cla	ssifica	tion		
Aba	andonm Boring b	ent Method: ackfilled with cement grout upon completion.	See Supporting Information Symbols and abbreviation	tion for explanati ons.	ion of						
- 		WATER LEVEL OBSERVATIONS	Elevations were provide	d by others.					I		
	-	4 ' while sampling]][orr:	900	Boring Sta		1-2018	3	Boring Completed	1: 11-21-	2018
2											
5		8260 Vico Ct, Unit B Sarasota, FL Proje					Project No.: HC185059				

PRC	DJECT: SR 62 & Erie Road - Signal	Poles CLIE	NT: Manatee Cou Bradenton, F	nty G	over	nme		e 1 of	
SITI	E: SR 62 Parrish, FL		Bradenton, F	L					
ER C	LOCATION See Exploration Plan				NS NS	ΡE	t. c	(%)	NES
MODEL LAYER				DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	WATER CONTENT (%)	PERCENT FINES
	DEPTH POORLY GRADED SAND WITH SILT gray, loose	<mark>⊺ (A-3, A-2-4) (SP-SM)</mark> , fine grair	ned, brown to						
				-	_		2-2-3-2 N=5		
				-	-		2-1-2-3 N=3		
1 1				5 -			2-2-2-2 N=4	23	11
				-	-		2-2-4-7 N=6		
				-	_		2-2-5-7 N=7		
	Boring Terminated at 10 Feet			10-					
I	Stratification lines are approximate. In-situ, the transition	on may be gradual.	Hammer	Type: A	utomat	ic			
Advance Mud i	ement Method: rotary	See Exploration and Testing Prod description of field and laboratory used and additional data (If any).		HTO Gro	up Cla	ssificat	tion		
	nment Method: g backfilled with cement grout upon completion.	See Supporting Information for ex symbols and abbreviations. Elevations were provided by othe							
	WATER LEVEL OBSERVATIONS			had: 11	7 004)	Parine Country	4. 14 07	2040
\bigtriangledown	At 4' while sampling	- 1lerrac	Boring Star		21-2018	b	Boring Completed	u: 11-2/-	2018
		8260 Vico Ct, Unit Sarasota, FL			059		Driller: MC		
		Salasula, FL							

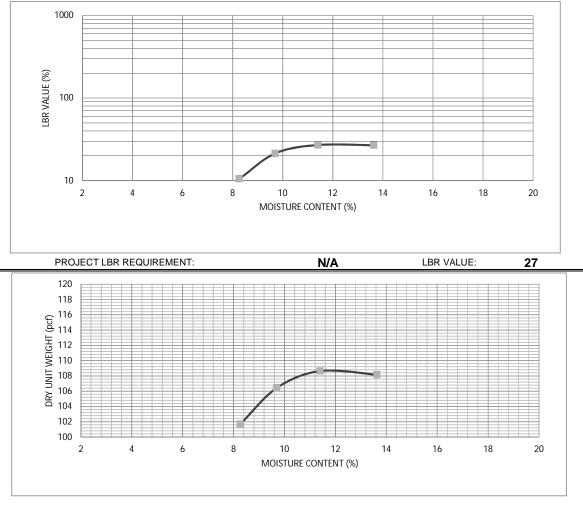
	BORING LOG NO. RB-9 Page 1 of 1										
Р	ROJ	ECT: SR 62 & Erie Road - Signal Po	oles	CLIENT: Mana	atee Cour enton, Fl	nty G	over	nme			
S	ITE:	SR 62 Parrish, FL				-					
MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 27.5873° Longitude: -82.4238°				DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	WATER CONTENT (%)	PERCENT FINES
		DEPTH POORLY GRADED SAND WITH SILT (A brown, very loose to loose	<u>∿-3) (SP-SM)</u> , fine grai	ned, brown to light			-		2-2-2-3 N=4		
1						_			2-2-2-2 N=4		
		6.0				5 -	-		2-1-2-1 N=3		
		SILTY SAND (A-2-4) (SM), fine grained,	light brown, loose to	medium dense		_	-		5-8-5-4 N=13	18	16
4		10.0				-	-		2-4-5-7 N=9		
		Boring Terminated at 10 Feet				10-					
-	Si	ratification lines are approximate. In-situ, the transition m	nay be gradual.		Hammer ⁻	Type: A	 utomat	tic			
N Aba	lud rota	ent Method: ary nent Method: nackfilled with cement grout upon completion.	description of field and used and additional data	ting Information for explanation of d abbreviations.			up Cla	ssifica	ition		
	× ک	WATER LEVEL OBSERVATIONS 44' while sampling			Boring Start	ed: 11-2	7-2018	3	Boring Completed	g Completed: 11-27-2018	
	_ A			DCON OCt, Unit B	Drill Rig: BF	R-2500			Driller: MC		
				ota, FL	Project No.:	HC1850)59				

	BORING LOG NO. RB-10 Page 1 of 1											
P	ROJ	ECT: SR 62 & Erie Road - Signal Po	les	CLIENT: Mana Brad	atee Coul enton, Fl	nty G	iover	nme				
S	ITE:	SR 62 Parrish, FL			,							
ÊR	g	LOCATION See Exploration Plan				<u> </u>	NS NS	ΡE	۲.	(%	VES	
MODEL LAYER	GRAPHIC LOG	Latitude: 27.5873° Longitude: -82.4235°				DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	WATER CONTENT (%)	PERCENT FINES	
M	GF	DEPTH					WA OBS	SAI	Ē	0 0	PER	
		POORLY GRADED SAND WITH SILT (A to medium dense	-3) (SP-SM) . fine grai	ined, brown, very loo	ose	-			2-1-1-2 N=2			
						-			2-2-2-2 N=4			
1						5 -			2-1-2-1 N=3			
						-	_		2-4-5-7 N=9			
		10.0				-			2-2-4-6 N=6	20	9	
		Boring Terminated at 10 Feet				10-						
	St	ratification lines are approximate. In-situ, the transition ma	ay be gradual.		Hammer ⁻	Type: A	utomat	ic				
	ancem Iud rota	ent Method: ry	See Exploration and Te description of field and l used and additional dat See Supporting Informa	laboratory procedures a (If any).	Notes: A-3: AASH	ITO Gro	oup Cla	ssificat	tion			
		ndonment Method: pring backfilled with cement grout upon completion. Elevations were provided by others.										
	7	WATER LEVEL OBSERVATIONS		acon	Boring Start	ed: 11-2	27-2018	3	Boring Completed	: 11-27-	2018	
	At	4' while sampling	Drill Rig: BR-2500 Driller: MC									
			o Ct, Unit B ota, FL	Project No.: HC185059								

		E	BORING LOG	NO. R	B-11				Page	e 1 of ⁻	1
F	PROJ	ECT: SR 62 & Erie Road - Signal Po	oles C	LIENT: Ma	anatee Cour adenton, FL	nty G	over	nme			
٤	SITE:	SR 62 Parrish, FL		Bi		-					
ËR	ю	LOCATION See Exploration Plan				0	NS	РЕ	F	%)	LES
- LAY		Latitude: 27.5875° Longitude: -82.4232°				H (Ft.	R LEV	ЕТΥ	ULTS	TER ENT (°	IT FIN
MODEL LAYER	GRAPHIC LOG					DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	WATER CONTENT (%)	PERCENT FINES
2		DEPTH POORLY GRADED SAND WITH SILT (A	2 A 2 A) (SD SM) fina	arainad dark	brown		≤ä	ŝ		0	Ц
		to brown, loose to medium dense	43, A-2-4) (37-310) , inte	graineu, uark	biowii	_	-		1-2-1-2 N=3	5	12
EK.GPJ 1/3/19						_	-		2-4-3-4 N=7		
WELL HC185059 SK 62 & EKIE KOAD.GPJ MODELLAYEK.GFJ 1/3/19						- 5 -			2-4-7-6 N=11	-	
						-	-		2-5-4-4 N=9		
		10.0				-	_		2-2-1-2 N=3		
KIGINA		Boring Terminated at 10 Feet				10-					
					11	Franz					
PAKA	51	ratification lines are approximate. In-situ, the transition n	nay be graduar.		Hammer 1	ype: A	uomat	IC			
	vancem Mud rota	ent Method: ary	See Exploration and Testing description of field and labo used and additional data (If	ratory procedure		TO Gro	up Clas	sificat	tion		
> Q Aba		ent Method: ackfilled with cement grout upon completion.	 See Supporting Information symbols and abbreviations. 		of						
		WATER LEVEL OBSERVATIONS	Elevations were provided by	-			7.00			44.67	0010
	At 4' while sampling					Boring Started: 11-27-2018 Boring Completed: 11-27-2018 Drill Rig: BR-2500 Driller: MC:					
л В Л			8260 Vico Ct, Sarasota,	Unit B							
Ë			Project No.:	roject No.: HC185059							

	BORING LOG NO. RB-12 Page 1 of 1													
Р	ROJ	ECT: SR 62 & Erie Road - Signal Po	les	CLIENT: Mana Brad	atee Cour enton, FL	nty G	iover	nme						
S	ITE:	SR 62 Parrish, FL		-										
Я	g	LOCATION See Exploration Plan				~	NS	ЪЕ	F	(%	IES			
MODEL LAYER	GRAPHIC LOG	Latitude: 27.5875° Longitude: -82.4229°				DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	WATER CONTENT (%)	PERCENT FINES			
2		DEPTH POORLY GRADED SAND WITH SILT (A	2) (SD SM) find and	ined dark brown to			≤ö	ŝ		0	H			
		brown, very loose to medium dense	<u>-3) (3P-3M)</u> , line gra	inea, dark drown lo		-			2-2-2-2 N=4					
						-			2-1-1-1 N=2	7	7			
1						5 -			1-2-1-1 N=3					
						-	_		4-6-4-5 N=10					
		10.0				-			3-4-6-5 N=10					
		Boring Terminated at 10 Feet				10-								
	St	ratification lines are approximate. In-situ, the transition m	ay be gradual.		Hammer 1	Гуре: А	utomat	ic						
N Aba	lud rota	ent Method: rry ent Method: ackfilled with cement grout upon completion.	sting Procedures for a laboratory procedures a (If any). tition for explanation of ons. ed by others.	Notes: A-3: AASH	TO Gro	oup Cla	ssifica	tion						
		WATER LEVEL OBSERVATIONS	Boring Started: 11-27-2018 Boring Completed: 11-27-2018					2018						
\rightarrow	_ At	4' while sampling								Drill Rig: BR-2500 Driller: MC				
			Project No.:	st No.: HC185059										

		I	BORING LO	g no. R	B-13				Page	: 1 of ′	1
F	PROJ	ECT: SR 62 & Erie Road - Signal P	oles	CLIENT: M	anatee Cour radenton, Fl	nty G	over	nme			
S	SITE:	SR 62 Parrish, FL				-					
ĔR	gg	LOCATION See Exploration Plan				(;	EL DNS	ΡE	۲.	%)	NES
MODEL LAYER	GRAPHIC LOG	Latitude: 27.5877° Longitude: -82.4226°				DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	WATER CONTENT (%)	PERCENT FINES
		DEPTH POORLY GRADED SAND WITH SILT ((<mark>A-3) (SP-SM)</mark> , fine grai	ned, brown, ver	y loose						
		to medium dense				_	-		3-4-4-3 N=8		
LAYER.GPJ 1/3/19						_			2-2-2-2 N=4		
WELL HU 189099 SK 52 & EKIE KOAU GPJ MODELLAYER GFJ 1/3/19						- 5			1-WOH/12-1 N=1	25	9
						_			5-8-12-14 N=20		
		10.0				_			4-6-12-11 N=18		
		Boring Terminated at 10 Feet				10-					
	St	ratification lines are approximate. In-situ, the transition	may be gradual.		Hammer ⁻	Гуре: А	utomat	с			
vpA octar	ancem	ent Method:	Soo Evoloration and T	ting Procedures for	ra Notes:						
	Mud rota		See Exploration and Test description of field and I used and additional data	aboratory procedure		ITO Grou	up Clas	sifica	tion		
> Aba		ent Method: backfilled with cement grout upon completion.	See Supporting Information Symbols and abbreviation	ons.	of						
יין רכפיי רכפיי	5-	WATER LEVEL OBSERVATIONS	Elevations were provide	-							
	Z At	t 4' while sampling		acor	Boring Started: 11-28-2018 Boring Completed: 11-28-2			2018			
					Drill Rig: BR-2500 Driller: MC						
Ē			ota, FL	Project No.:	HC1850	59					

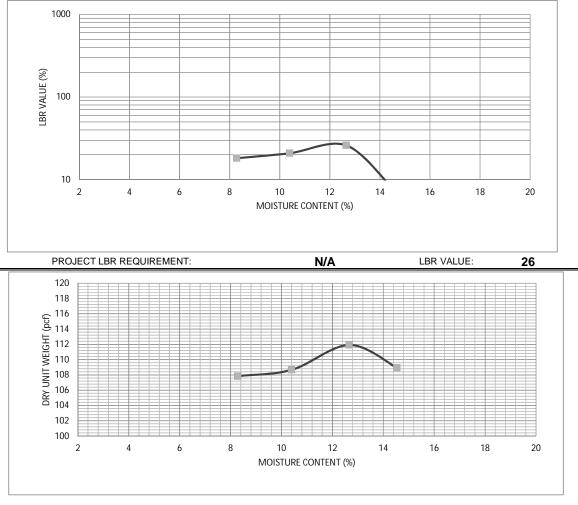

P	ROJ	ECT: SR 62 & Erie Road - Signal Poles	CLIENT:	Manatee Coun Bradenton, FL	ty Go	over	nme		e 1 of	<u>,</u>
	ITE:			Bradenton, FL						
MODEL LAYER	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 27.5877° Longitude: -82.4223°			DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	WATER CONTENT (%)	PERCENT FINES
		POORLY GRADED SAND WITH SILT (A-3) (SP-3	<u>SM)</u> , fine grained, brown,	loose	_	-		2-2-2-2 N=4		
1					_			2-2-2-3 N=4		
		6.0			5-			2-2-2-3 N=4		
		<u>SILTY SAND (A-2-4) (SM)</u> , fine grained, brown, n	nedium dense		_	-		2-2-10-15 N=12	18	16
4		10.0			_	-		5-6-9-9 N=15		
	1. • •].	Boring Terminated at 10 Feet			10-					
	St	tratification lines are approximate. In-situ, the transition may be grad	dual.	Hammer Ty	vpe: Au	L Litomat	ic			
N Aba	Iud rota	ary descript used an See Sup ackfilled with cement grout upon completion.	loration and Testing Procedur ion of field and laboratory proc d additional data (If any). oporting Information for explana and abbreviations. ns were provided by others.	edures						
	,	WATER LEVEL OBSERVATIONS		Boring Started	d: 11-28	8-2018	;	Boring Completed	l: 11-28-	2018
	_ At	t 4.5' while sampling	lerraco	Drill Rig: BR-:	2500			Driller: MC		
			8260 Vico Ct, Unit B Sarasota, FL	Project No.: H	IC1850)59				

		BORING LOG NO. RB-15 Page 1 of 1									
F	ROJ	ECT: SR 62 & Erie Road - Signal P	oles	CLIENT: Mana Brad	atee Coul enton, Fl	nty G	over	nme			
S	SITE:	SR 62 Parrish, FL			ionton, r	-					
YER	90	LOCATION See Exploration Plan		I		t:	/EL	ſΡΕ	ti (a	(%)	NES
MODEL LAYER	GRAPHIC LOG	Latitude: 27.5877° Longitude: -82.422°				DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	WATER CONTENT (%)	PERCENT FINES
≥	0		A 2) (SD SM) find are	inad brown to grov	Von		≥ª	Ś	-	0	Ъ
		POORLY GRADED SAND WITH SILT (<i>i</i> loose to medium dense	4-3) (37-310) , inte gra	ined, brown to gray,	very	-	-		4-3-3-3 N=6		
						-	-		2-1-1-2 N=2		
1						5-			2-2-2-2 N=4	_	
						_			4-8-8-7 N=16	_	
						_			3-4-6-6 N=10	20	11
		Boring Terminated at 10 Feet				10-		$\left \right $			
		ratification lines are entravimate. In site, the taxy "	nov bo gradical		However."		utore -				
L	5	ratification lines are approximate. In-situ, the transition i	nay be gradual.		Hammer	Type: A					
	/ancem /lud rota	ent Method: rry	See Exploration and Te description of field and used and additional dat	laboratory procedures a (If any).	Notes:						
		ent Method: ackfilled with cement grout upon completion.	 See Supporting Information Symbols and abbreviation Elevations were provide 	ons.							
Ę	7	WATER LEVEL OBSERVATIONS	- 7 Г		Boring Start	ted: 11-2	8-2018	3	Boring Completed	l: 11-28-	2018
	<u> </u>	4.5' while sampling	- IIerr	acon	Drill Rig: BR-2500 Driller: MC						
			o Ct, Unit B sota, FL		BR-2500 Driller: MC						

TESTED FOR: Manatee County Public Works	PROJECT: Erie Road
SAMPLE NO.: LBR-1	PROJECT NO: HC185059
TESTED BY: D. Richards	% <#4 : 100.0%
DATE TESTED: November 19, 2018	WASH 200: 7.7%

SAMPLE LOCATION: RB-4

SOIL DESCRIPTION: Brown to gray sand with silt and trace roots

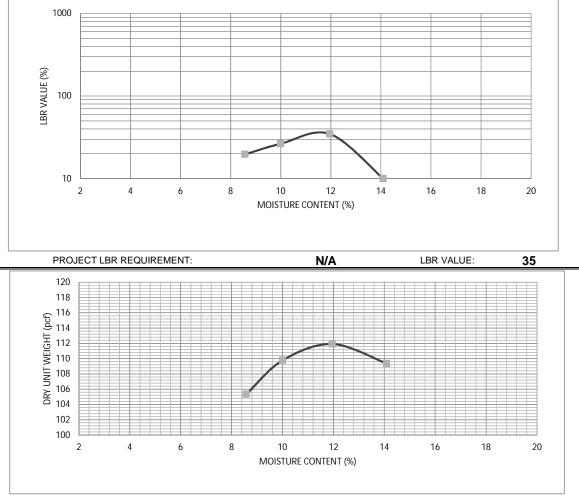

OPT MOISTURE: 12.0

MAX DENSITY: 108.7

TESTED FOR: Manatee County Public Works	PROJECT: Erie Road
SAMPLE NO.: LBR-2	PROJECT NO: HC185059
TESTED BY: D. Richards	% <#4 : 100.0%
DATE TESTED: November 19, 2018	WASH 200: 8.8%

SAMPLE LOCATION: RB-7

SOIL DESCRIPTION: Gray sand with silt and trace roots

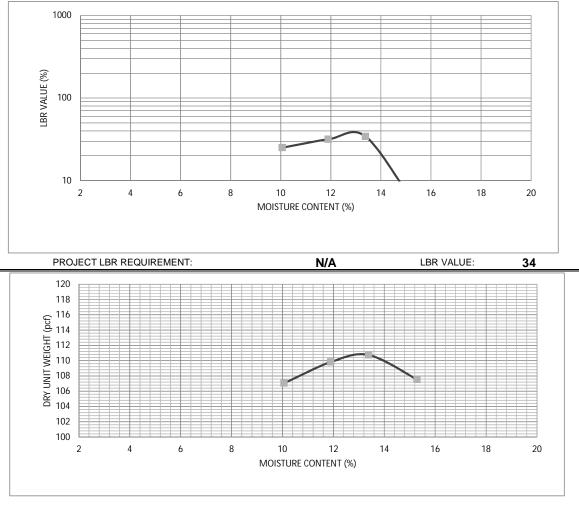

OPT MOISTURE: 12.9

MAX DENSITY: 111.9

TESTED FOR: Manatee County Public Works	PROJECT: Erie Road
SAMPLE NO.: LBR-3	PROJECT NO: HC185059
TESTED BY: D. Richards	% <#4 : 100.0%
DATE TESTED: November 19, 2018	WASH 200: 8.4%

SAMPLE LOCATION: RB-9

SOIL DESCRIPTION: Brown to gray sand with silt and trace roots

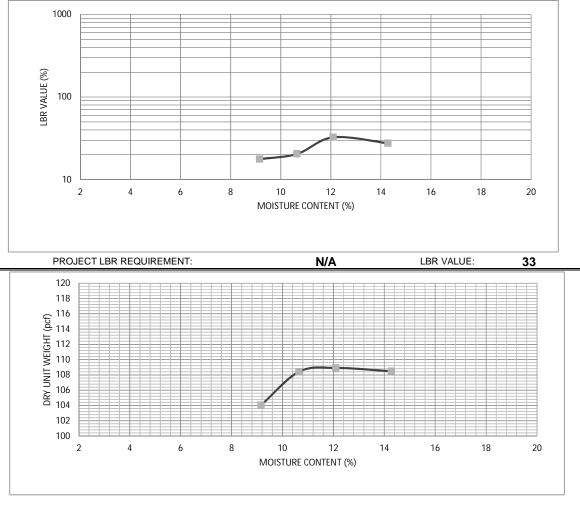

OPT MOISTURE: 11.9

MAX DENSITY: 111.9

TESTED FOR: Manatee County Public Works	PROJECT: Erie Road
SAMPLE NO.: LBR-4	PROJECT NO: HC185059
TESTED BY: D. Richards	% <#4 : 100.0%
DATE TESTED: November 21, 2018	WASH 200: 9.9%

SAMPLE LOCATION: RB-11

SOIL DESCRIPTION: Gray sand with silt and trace roots


OPT MOISTURE: 13.2

MAX DENSITY: 110.7

TESTED FOR: Manatee County Public Works	PROJECT: Erie Road
SAMPLE NO.: LBR-5	PROJECT NO: HC185059
TESTED BY: D. Richards	% <#4 : 100.0%
DATE TESTED: November 19, 2018	WASH 200: 10.2%

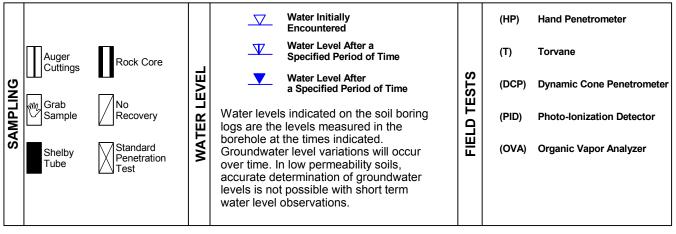
SAMPLE LOCATION: RB-14

SOIL DESCRIPTION: Gray sand with silt and trace roots

OPT MOISTURE: 11.9

MAX DENSITY: 109.0

SUPPORTING INFORMATION


Contents:

General Notes Unified Soil Classification System

Note: All attachments are one page unless noted above.

GENERAL NOTES

DESCRIPTION OF SYMBOLS AND ABBREVIATIONS

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

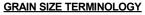
LOCATION AND ELEVATION NOTES

Unless otherwise noted, Latitude and Longitude are approximately determined using a hand-held GPS device. The accuracy of such devices is variable. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

	RELATIVE DENSITY OF COARSE-GRAINED SOILS (More than 50% retained on No. 200 sieve.) Density determined by Standard Penetration Resistance		CONSISTENCY OF FINE-GRAINED SOILS (50% or more passing the No. 200 sieve.) Consistency determined by laboratory shear strength testing, field visual-manual procedures or standard penetration resistance		
RMS	Descriptive Term (Density) Automatic Hammer SPT N-Value (Blows/Ft.)		Descriptive Term (Consistency) Unconfined Compressive Strength Qu, (psf)		Automatic Hammer SPT N-Value (Blows/Ft.)
H TE	Very Loose	< 3	Very Soft	less than 500	< 1
NGTH	Loose	3 - 8	Soft	500 to 1,000	1 - 3
IRE	Medium Dense	8 - 24	Medium Stiff	1,000 to 2,000	3 - 6
S	Dense	24 - 40	Stiff	2,000 to 4,000	6 - 12
	Very Dense	> 40	Very Stiff	4,000 to 8,000	12 - 24
			Hard	> 8,000	> 24

RELATIVE PROPORTIONS OF SAND AND GRAVEL

Descriptive	Term(s)
of other cor	nstituents
Trace	


With

Modifier

Percent of Dry Weight < 15 15 - 29 > 30

RELATIVE PROPORTIONS OF FINES

Descriptive Term(s) of other constituents Trace With Modifier Percent of Dry Weight < 5 5 - 12 > 12

Major Component of Sample Boulders Cobbles Gravel Sand

Silt or Clay

Over 12 in. (300 mm)

Particle Size

12 in. to 3 in. (300 mm) 12 in. to 4 sieve (75mm to 4.75 mm) #4 to #200 sieve (4.75mm to 0.075mm Passing #200 sieve (0.075mm)

PLASTICITY DESCRIPTION

Term Non-plastic Low Medium

High

0 1 - 10 11 - 30 > 30

UNIFIED SOIL CLASSIFICATION SYSTEM

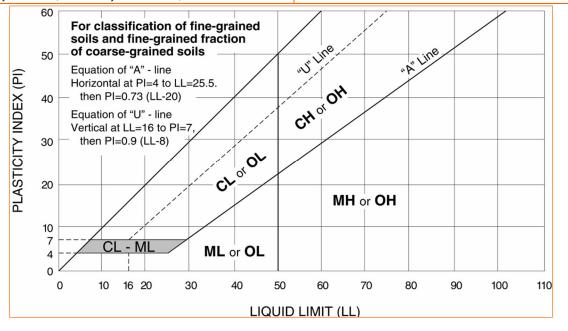
Terracon GeoReport

					Soil Classification	
Criteria for Assigning Group Symbols and Group Names Using Laboratory Tests A					Group Symbol	Group Name ^B
	Gravels: More than 50% of coarse fraction retained on No. 4 sieve	Clean Gravels:	Cu ³ 4 and 1 £ Cc £ 3 ^E	Cu ³ 4 and 1 £ Cc £ 3 ^E		Well-graded gravel F
Coarse-Grained Soils: More than 50% retained on No. 200 sieve		Less than 5% fines ^C	Cu < 4 and/or [Cc<1 or Cc>3.0] E		GP	Poorly graded gravel F
		Gravels with Fines:	Fines classify as ML or MH		GM	Silty gravel ^{F, G, H}
		More than 12% fines ^C	Fines classify as CL or CH		GC	Clayey gravel ^{F, G, H}
	Sands: 50% or more of coarse fraction passes No. 4 sieve	Clean Sands:	Cu ³ 6 and 1 £ Cc £ 3 ^E		SW	Well-graded sand I
		Less than 5% fines D	Cu < 6 and/or [Cc<1 or Cc>3.0] ^E		SP	Poorly graded sand ^I
		Sands with Fines: More than 12% fines ^D	Fines classify as ML or MH		SM	Silty sand ^{G, H, I}
			Fines classify as CL or CH		SC	Clayey sand ^{G, H, I}
	Silts and Clays: Liquid limit less than 50	Inorganic:	PI > 7 and plots on or above "A"		CL	Lean clay ^K , L, M
Fine-Grained Soils: 50% or more passes the No. 200 sieve			PI < 4 or plots below "A" line J		ML	Silt K, L, M
		Organic:	Liquid limit - oven dried	< 0.75 OL		Organic clay ^K , L, M, N
			Liquid limit - not dried		0L	Organic silt ^K , L, M, O
	Silts and Clays: Liquid limit 50 or more	Inorganic:	PI plots on or above "A" line		СН	Fat clay ^K , ^L , ^M
			PI plots below "A" line		MH	Elastic Silt ^K , L, M
		Organic:	Liquid limit - oven dried	< 0.75		Organic clay ^K , L, M, P
			Liquid limit - not dried			Organic silt ^K , L, M, Q
Highly organic soils: Primarily organic matter, dark in color, and organic odor					PT	Peat

A Based on the material passing the 3-inch (75-mm) sieve.

^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.

- ^C Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- ^D Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay.


$$D_{60}/D_{10}$$
 $Cc = \frac{(D_{30})^2}{D_{10} \times D_{c0}}$

E Cu =

F If soil contains ³ 15% sand, add "with sand" to group name.

^G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

- ^H If fines are organic, add "with organic fines" to group name.
- ¹ If soil contains ³ 15% gravel, add "with gravel" to group name.
- ^J If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- ^K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.
- L If soil contains ³ 30% plus No. 200 predominantly sand, add "sandy" to group name.
- ^MIf soil contains ³ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- NPI ³ 4 and plots on or above "A" line.
- ^OPI < 4 or plots below "A" line.
- P PI plots on or above "A" line.
- ^QPI plots below "A" line.

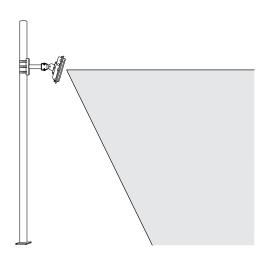
Erie Rd. and SR 62 Improvements

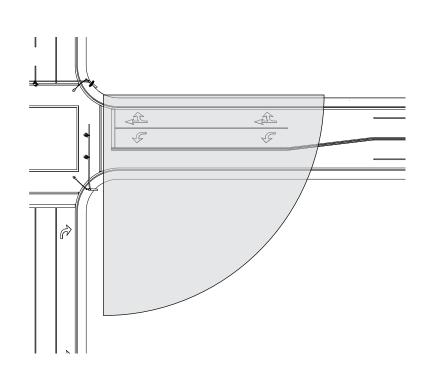
HDR Project Number: 10151274

Miscellaneous Structures

1.8 MVDS Product Data

For: Manatee County Public Works


16-beam stop bar sensor


The SmartSensor Matrix is a first-of-its-kind stop bar presence detector designed for use at signalized intersections to detect vehicles with the reliability of radar and with all the advantages of non-intrusive detection.

- Matrix of 16 radars for two-dimensional coverage
- Tracks vehicles through a 90 degree field of view that extends out 140 ft. (42.7 m)
- Includes Radar Vision technology to detect and track in two dimensions
- Reports real-time presence of both moving and stopped vehicles
- Standard detector-rack contactclosure interface
- Easy to install and operate
- Supports curved and angled lanes
 - Compatible with Click 65x all-inone cabinet interface device
 - Automated manufacturing process

- Patented auto-configuration process
- Patented Digital Wave Radar II technology
- Remote accessible for traffic monitoring and sensor management
- Flash upgradable
- Robust to changing temperature, light and weather conditions

Technical specifications

Measured quantities

- Per-vehicle range, speed
- Dynamic stop-bar ETA tracking, adjusted as vehicles change speeds
- Dynamic density (a measure of instantaneous roadway efficiency)
- Number of simultaneous vehicle detections: 25
- Logic filters for zone output
- Combinational logic applied to zone outputs for alert output
- Channel output from multiple alerts
- Latched channel output controlled by alerts and timer
- Delay and extend settings used for channel outputs
- Number of channels: 8
- Detection data available via serial communications
- Pulse channel outputs for intersection arrival-time information

Detectable area

- Maximum mounting distance from center of lanes: 50 ft. (15.2 m)
- Maximum mounting height: 40 ft. (12.2 m)
- Detection area: 50 to 600 ft. (15.2 m to 182.8 m)
- Percentage of vehicles detected before 400 ft. (121.9 m): large vehicles 95%; all motor vehicles 90%

Performance

- Detection accuracy: large vehicles 98%; all motor vehicles 95%
- Range accuracy: ±10 ft. (3 m) for 90% of measurements
- Speed accuracy: ±5 mph (8 kph) for 90% of measurements
- ETA accuracy: ±1 sec. for 85% of measurements

Performance maintenance

- No cleaning or adjustment necessary
- No battery replacement necessary
- Mean time between failures: 10 years (estimated based on manufacturing techniques

Physical properties

- Weight: 3.8 lbs. (1.7 kg)
- Physical dimensions: 13.2 in. × 10.6 in. × 3.8 in. (33.5 cm x 26.9 cm x 9.7 cm)
- Resistant to corrosion, fungus, moisture deterioration and ultraviolet rays
- Enclosure: Lexan polycarbonate
- Outdoor weatherable: UL 746C
- Watertight by NEMA 250 standard
- NEMA 250 compliant for:
 - External icing (clause 5.6)
 - □ Hose down (clause 5.7)
 - □ 4X corrosion protection (clause 5.10)
 - □ Gasket (clause 5.14)

Ordering information

SmartSensor Advance **SS-200V**

Retrofitted SmartSensor Advance **SS-200-001**

Accessories

102-0416/102-0451 – Click 650/656 cabinet interface device

CLK-112/114 - Click 112/114 rack cards

SS-704-xxx/705 - SmartSensor 6-conductor cable

S5-708-xxx/707 – SmartSensor 8-conductor cable (for retrofitted sensor)

SS-611 - SmartSensor mount

SS-B01-0003/0005/0008 – Intersection preassembled backplate – AC

SS-B01-0004/0006 – Intersection preassembled backplate – DC

SS-B02-0002/0003 – Intersection preassembled 19-inch rack

SS-710 - Sensor cable junction box

Contact us

801.734.7200 sales@wavetronix.com www.wavetronix.com

- Withstands 5-ft. (1.5-m) drop
- Connector: MIL-C-26482
- Rotational backplate for 360° of roll

Electrical

- Power consumption: 3.2 W @ 12 VDC
- Supply voltage: 10–28 VDC
- Onboard surge protection

Communication ports

- Two half-duplex RS-485 COM ports support:
 - Dedicated detection communications
 - □ Configuration, verification, or traffic display without disrupting detection communications
- Firmware upgradability over any COM port

Technical specifications

Sensor outputs

- Real-time presence data across a 140-ft. (42.7-m) range
- Maximum number of zones: 16
- Maximum number of channels: 16
- User-selectable zone to channel mapping
- AND logic triggers the channel when all the selected zones are active
- OR logic used to combine multiple zones to a channel output
- Channel output extend and delay functionality
- Algorithms mitigate detections from wrong way or cross traffic
- Fail-safe mode for contact closure outputs if communication is lost

Detectable area

- Detection range: 6 to 140 ft. (1.8 to 42.7 m)
- Field of view: 90°
- Flexible lane configuration support including:
 - □ Up to 10 lanes
 - Curved lanes
 - $\hfill\square$ Islands and medians

System hardware

- A complete SmartSensor Matrix system includes the following hardware:
 - □ A SmartSensor Matrix corner radar for each approach
 - Either a preassembled backplate or a cabinet interface device (the Click 600, 650 or 656)
 - □ Contact closure input file cards (if using a preassembled backplate or Click 600): 2 or 4 channel, compatible with industry standard detector racks

Maintenance

- No cleaning or adjustment necessary
- No battery replacement necessary
- Recalibration is not necessary
- Mean time between failures: 10 years (estimated based on manufacturing techniques)

Physical properties

- Weight: 4.2 lbs. (1.9 kg)
- Physical dimensions: 13.2 in. × 10.6 in. × 3.3 in. (33.5 cm x 26.9 cm x 8.4 cm)
- Resistant to corrosion, fungus, moisture deterioration, and ultraviolet rays
- Enclosure: Lexan EXL polycarbonate
- Outdoor weatherable: UL 746C
- Watertight by NEMA 250 standard
- NEMA 250 compliant for:
 - External icing (clause 5.6)
 - □ Hose down (clause 5.7)

Ordering information

SmartSensor Matrix **SS-225**

Accessories

102-0416/102-0451 - Click 650/656

- CLK-112/114 Click 112/114
- SS-704-xxx/705 SmartSensor 6-conductor Cable
- SS-611 SmartSensor Mount

SS-B01-0003/0005/0008 – Intersection Preassembled Backplate – AC

SS-B01-0004/0006 – Intersection Preassembled Backplate – DC

SS-B02-0002/0003 – Intersection Preassembled 19-inch Rack

SS-710 - Sensor Cable Junction Box

Contact us

801.734.7200 sales@wavetronix.com www.wavetronix.com

- □ 4X corrosion protection (clause 5.10)
- Gasket (clause 5.14)
- Withstands 5-ft. (1.5-m) drop
- Connector: MIL-C-26482
- Rotational backplate for 360° of roll

Electrical

- Power consumption: 9 W
- Supply voltage: 10–28 VDC
- Onboard surge protection

Communication ports

- Two half-duplex RS-485 COM ports support:
 - Dedicated detection communications
 - □ Configuration, verification or traffic display without disrupting detection communications
- Firmware upgradability over any COM port
- User configurable:
 - □ Response delay
 - □ Push port

Technical specifications

Measured quantities

- Per-lane interval data: volume, average speed, occupancy, classification counts, 85th percentile speed, average headway, average gap, speed bin counts, direction counts
- Classification bins: 8
- Interval speed bins: 15
- Per-vehicle data: speed, length, class, lane assignment, range
- Presence data in 22 lanes

Detectable area

- Number of lanes: up to 22
- Detection range: 6 to 250 ft. (1.8 m to 76.2 m)
- Any lane spacing is supported
- Detection over barriers is supported

Performance

- Per-direction volume accuracy:
 - □ Typical: 98%–99%
 - □ Minimum: 95%
- Per-lane volume accuracy:
 - □ Typical: 98%–99%
 - □ Minimum: 90%
- Minimum separation between two vehicles: 5.5 ft. (1.67 m)
- Per-direction average speed accuracy: ±3 mph (5 kph)
- Per-lane average speed accuracy: ±3 mph (5 kph)
- Percentage of vehicles generating per-vehicle-speed measurements:
 - □ Typical: 98%
 - □ Minimum: 95%
- Per-vehicle speed measurement accuracy: ±3mph (5 kph) for 90% of measurements
- Method of speed measurement: dual radar speed trap
- Per-direction occupancy accuracy: ±10%
- Per-lane occupancy accuracy: ±20%
- Classification accuracy:
 - □ Typical: 90%
 - □ Minimum: 80%

Performance maintenance

- No cleaning or adjustment necessary
- No battery replacement necessary
- No recalibration necessary
- Mean time between failures: 10 years (estimated based on manufacturing techniques)

Physical properties

- Weight: 4.2 lbs. (1.9 kg)
- Physical dimensions: 13.2 in. × 10.6 in. × 3.3 in. (33.5 cm x 26.9 cm x 8.4 cm)

Ordering information

SmartSensor HD 101-0415

Retrofitted SmartSensor HD **101-0416**

SmartSensor HD with Rotating Backplate **101-0403**

Accessories

CLK-201/202 – Click 201/202 CLK-200 – Click 200 CLK-112/114 – Click 112/114 SS-706-xxx/707 – SmartSensor 8-conductor Cable SS-611 – SmartSensor Mount

Contact us

801.734.7200 sales@wavetronix.com www.wavetronix.com

- Resistant to corrosion, fungus, moisture deterioration, and ultraviolet rays
- Enclosure: Lexan polycarbonate
- Outdoor weatherable: UL 746C, IP66 rated
- Watertight by NEMA 250 standard
- NEMA 250 compliant for:
 - □ External icing (clause 5.6)
 - □ Hose down (clause 5.7)
 - □ 4X corrosion protection (clause 5.10)
 - □ Gasket (clause 5.14)
- Withstands 5-ft. (1.5-m) drop
- Housing withstands wind loads exceeding 120 mph
- Connector: MIL-DTL-26482

Power

- Power consumption: 7.6 W
- Supply voltage: 10–28 VDC

Communication ports

- Com ports:
 - □ Full-duplex RS-232 with RTS/CTS
 - □ Half-duplex RS-485
- Firmware upgradability over any com port

Erie Rd. and SR 62 Improvements

HDR Project Number: 10151274

Miscellaneous Structures

1.9 Structure ID Number

For: Manatee County Public Works

MEMORANDUM

Districts 1 & 7 Structures Maintenance Office 2916 Leslie Road, Tampa, FL. 33619-2263 (813) 975-7570 • Fax: (813) 975-7595

DATE: April 29, 2020

TO: Michael Oates, P.E.; Senior Traffic Engineer; HDR

FROM: Katharine Sampson, E.I., Senior Engineer Trainee- Structures Project Manager.

COPIES: Tara Rodrigues, P.E., Engineering Section Manager; Nico Antona, DBi; Vicki Griswold Hitch, DBi; Traffic Signal Mast Arm File

SUBJECT: Request for Traffic Signal Mast Arm/Steel Pole Number Assignment

Your request for a Traffic Signal Mast Arm/Steel Pole Number Assignment has been granted as follows:

Traffic Signal Mast Arm/Steel Pole Project Information

FINANCIAL PROJECT ID: <u>N/A</u> OWNER: <u>State</u> (Ex: State, County, City Name, Other [specify]) EOR name; Design firm, address: <u>Michael Oates, P.E.; HDR; 4830 W. Kennedy Blvd, Suite 400, Tampa, FL 33609</u>

YEAR BUILT - PROPOSED: 2021 OR ACTUAL: ____ (if already built) (Year Built (Proposed or Actual) pertains to the New Traffic Signal Mast Arm Structure)

Traffic Signal Mast Arm/Steel Pole Character Description (please check):

OCTAGON:X SQUARE: ____ ROUND: ____ OTHER: ____

HORIZONTAL CLEARANCE: 7.00ft Min.

VERTICAL CLEARANCE: 17.5ft Min.

Traffic Signal Mast Arm Location

COUNTY: <u>Manatee</u> SECTION/SUBSECTION: <u>13020000</u> M.P.: <u>11.175</u> (At the center of the intersection) (Refer to SLD's)

NAME OF HIGHER RANKED ROUTE: <u>US 301/SR 43</u> NAME OF LOWER RANKED ROUTE: <u>SR 62</u> (Primary Route, example: I-75/SR 93) (Secondary Route, example: Main Street)

RANKING #: 2

THE ROUTE RANKING IS LISTED IN ORDER BELOW

- 1. Interstate Highway
- 2. U.S. Numbered Highway
- 3. State Highway
- 4. County Highway
- 5. City Street
- 6. Federal Lands Road
- 7. State Lands Road
- 8. Other

NOTE: ONLY ONE (1) NUMBER WILL BE ISSUED PER INTERSECTION

RANKING #: <u>3</u>

FUNCTIONAL CLASSIFICATION OF INVENTORY ROUTE CODE: <u>02</u> (see options below)

MANUFACTURED BY: Unknown

- Code Description
 - Rural A Dringing Arterial Int
- 01 Principal Arterial Interstate 02 Principal Arterial – Other
- 06 Minor Arterial
- 07 Major Collector
- 08 Minor Collector
- 09 Local
- <u>Urban</u>
- 11 Principal Arterial Interstate
- 12 Principal Arterial Other Freeways or Expressways
- 14 Other Principal Arterial
- 16 Minor Arterial
- 17 Collector
- 19 Local
- Federal Aid _____ ***Non-Federal Aid _X

***If Functional Classification=08, 09,or19 = Non-Federal Aid